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Electronic screening in one-component plasmas: Collective-mode structure
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The Golden-Kalman velocity-average approximation scheme for one-component plasmas is gen-
eralized to account for electronic screening effects. New formulas are established for the dispersion
and damping of the ion-sound and ion-plasma modes at arbitrary coupling.

Studies of the dynamical properties of strongly coupled
plasmas have, for the most part, been directed at one-
component-plasma (OCP)"? and binary-ionic-mixture® ¢
configurations where the ions are modeled as mobile clas-
sical point particles in a neutralizing background of high-
ly degenerate and rigid electrons.

The OCP collective-mode structure is substantially
modified when the rigidity constraint is relaxed to allow
for electronic screening:” at wavelengths long compared
with the Thomas-Fermi screening distance
K, '=(ep/6mn,e*)'’?, the ion-plasma mode is suppressed
in favor of ion-sound modes which propagate when the
Fermi energy € of the electrons is much larger than the
thermal energy (1/B) of the ions, viz., «, <<kK;
=(4mn;Z%*B)”2. When the ions are modeled as a collec-
tion of cold noninteracting particles, the propagation velo-
city is given by the well-known Bohm-Staver formula®
Vo=(Vr/V3)w;/0,); w; and w, are the ion and electron
plasma frequencies. When the ions are warm and in-
teracting, a generalized hydrodynamic calculation®~!!
leads to the sound speed’
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which features an isothermal compressibility correction.
In this paper, I reformulate the Golden-Kalman (GK)
velocity-average approximation (VAA) integral equation
[Ref. 2(a)] for the OCP ionic polarizability to take ac-
count of electronic screening. I then calculate the dielec-
tric response function and longitudinal mode structure in
the k <<k, a)ga)i=(47rn,-Zzez/m,-)1/2 wave-number—
frequency domains and over a range of ion-ion coupling
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strengths (characterized by y;=«}/(4mn;,) or by
I'=p(Ze)*/a;; a;=(3/4mwn;)""? spanning the entire fluid
regime. My calculations result in new ion-sound formulas
[Egs. (16) below] which are structurally different from the
Postogna-Tosi expression (1).

In the present work the extreme degeneracy of the elec-
tron gas guarantees that electron-electron correlational
effects are negligibly small [viz., 7y, =k, /47n,
~(Bep) 73y <<vi] even up to y;; ~3200 typical of the
OCP crystal phase.?®"?® T further suppose that
electron-ion interactions are weak compared with ion-ion
interactions. This was a principal assumption of the Ref.
5 calculations leading to Eq. (1) and of the recent Ref. 12
statistical mechanical calculations leading to new dynami-
cal structure functions for two-temperature classical
electron-ion plasmas.

The three-stage procedure for calculating the ionic po-
larizability a;(k,w) begins from the linearized VA A kinet-
ic equation [Ref. 2(a)]
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linking the perturbed one-particle-distribution-function
response F;(k,v,w) to the total (external+induced) elec-
tric field perturbation E(k,w);

FOW)=n;(Bm; /27)* %exp( — Bm;v?/2)

is the Maxwellian distribution which characterizes the un-
perturbed state of the ions. The VAA coupling correction

ui(k,w)z—e(k,w)———l— > k-q [iw fowdte’“”S,-i[(k—q,t;q,t)+S,-,-,~(k—q,t:O;q,t:O) (3)

]
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is expressed entirely in terms of three-point ionic structure functions which are defined in Ref. 6; e(kw)
=1+a;(kw)+a.(kw) is the dielectric response function. Consistent with the assumption of the previous paragraph,
ion-electron correlations are considered to be negligible in the ionic kinetic equation and are accordingly left out. From
(2) and the constitutive relation
ik
4mZe

one readily obtains the first-stage expression for the ionic polarizability

[ d%Fikv,0)=—

a;(k,0)E (k,w) , 4)
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a,-(k,a))za,-o(k,a))[l+u,-(k,a))] ’ (5)

where a;o(k,w) is its random-phase approximation (RPA) value.
The second-stage calculation consists in converting (3) into a more tractable nonlinear-response-function expression via

the nonlinear fluctuation-dissipation theorem (NLFDT)!3(@)13(6)
ml Ll aaupy) 1 al=k—wqu) 1 apv—k—o)
uv elq,ule(p,ve(k,0) po e*(k,w)e(q,u)e*(p,v) ov e(p,v)e*(k,w)e*(q,u)
mB*Z3%e>n;
TS,‘[[(‘],H;PV) (k=p+q, o=u+v). (6)

The above NLFDT links a single dynamical three-point ionic structure function to total (ionic + electronic) quadratic po-
larizabilities, e.g., a(q,u;p,v)=a;(q,u;p,v)+a.(q,u;p,v), defined through constitutive relations in Refs. 6(a) and 6(b).
The Siie, Sieis Sice, €tc. structure-function contributions have been deleted because they are entirely comprised of the
much weaker ion-electron pair and ternary correlation functions. The (1/B€r)? S,.. contribution is also deleted since
Ber >>1. Substituting (6) into (3) then gives

a(qo—p;k—q,u) ol
elq,0—p)e(k—q,u)

2
u;(k,) lK_x_ f - a(q,u;k—q,0—pu)
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where, e.g.,

qlk—qlk

a(q,u;k—q,0o—u)
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a(qu;k—qo—p)=—
is a conveniently defined reduced quadratic polarizability. The detailed mathematical steps leading to (7) are given in
Ref. 2(a). In this extended GK formalism, the responsive electronic background effects modify the ion-ion coupling sole-
ly through the ee-screening clusters [since, eg, elg,u)=1+4+a;(q,u)+a.(q,u)]. Equations (5) and (7), when evaluated at
high frequency, reproduce through order 1/w* the high-frequency sum-rule expansmn of Re[a;(k,w— 0 )/e(k,0— o0)]
for arbitrary k and y values. This is an inherent feature of the GK formalism.22)6().6(®)
In the third-stage development, Eqgs. (5) and (7) are made self-consistent at long wavelengths (k —0) by supposing that
the quadratic polarizabilities a; and a, have RPA-like structures for arbitrary values of y;;. After some algebra [again,

see Ref. 2(a) for the details], one arrives at the dynamical superposition formula
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v, Us) 15 n; 5N; q%k f—w ® e(q,u)e(q,0—p) (
T
Elsewhere,'* it has been rigorously demonstrated that the BU;(vi) .
static (w=0) limit of the VAA kinetic equation [Ref. 2(a)] n. =—2Vii - (10)
1

generates the entire hierarchy of exact Born-Green-Yvon
(BGY) equations for the equilibrium pair, ternary, etc.
correlation functions, and the VAA ionic-correlation-
energy density therefore can be assumed to be determined
from hlghly accurate Monte Carlo numerical simula-
tions'® or from an independent theoretical approach For
example, the DeWitt-Rosenfeld calculations provide'®

BU,;(T")

n;

=—0.9T+0.970174

—0.5+1.575 174 _0.042 56" 172 ; 9)

the first right-hand-side numerical coefficient is very
nearly identical to the Madelung constant for the bee ion-
ic crystal and is indicative of strongly developed order in
the liquid phase. At weak coupling (y;<<1), the
correlation-energy density is calculated from the formula

Again, observe that at high frequencies v >>w; and T ar-
bitrary, the combined Egs. (5), (8a), and (8b) reproduce the
exact (small-k) limit of the crucially important sum-rule
coefficient

@, = do ; a;(k,w)
0= J, oM e
Uy
=oXw +m,_,)+m;‘k 3+—‘Lé—‘— (11)
i 15 n;

of the 1/w* term in the expansion of «; /€. Thus internal
consistency between the third-stage development of the
approximation scheme and the w—o0 limit of the
second-stage VA A expression (7) is guaranteed.

As to the noninteracting electrons, it suffices here to
quote the textbook polarizability formula!’
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a.(k,0)= d’ - (12)
¢ #ik? f,, <2e® P2 o+ (#H2/2m,)—k-v+i0  wo—(#k*/2m,)—k-v+i0
I
describing the linear response of a completely degenerate V(F— o0 )=Vo(1—.08«2a2)' /2 .
electron gas. For the frequency range (%ik2/2m,) <<w
<< kVp of interest in the present paper, (12) simplifies to Ion-plasma mode.
6mn e’ j ) in(V/
a, (k,o)= e2 iT o ' (13) Ko <k <(1/a;)[min(V'3I',1)],
GFk 2 kVF 1/2
2 2
©; k“a;
Note that (13) also describes the linear response of relativ- ~ @(k)= A2 /K2 1+ a0 [3+v(w;,T)]
istic electrons if one stipulates that Tk
(18)

er=(mict+#ckE) 2 —m,c? .

Equations (5), (8a), (8b), and (13) can now be consolidat-
ed into the long-wavelength dispersion relation

w; o k?
6(k—>0,0))=1—‘—2———4—2[3+V(a),r)]
(03] @ K;
+£ m_© 1o (14)
k2 2 kve |

which leads to the following dispersion and damping for-
mulas for the ion-sound and ion-plasma modes.
ITon-sound mode.

k<Ke<(1/a,~)[min(\/3—l:,1)],
kV im k w,;

(k—0)==% — —
@ (1+k2/k?)  4V3 k, o,

) (15)

where the sound speed

172
3 _ 17
Vo 1+EE(B€F) ! 3———66K for y <1 (16a)
V= N 1/2
(kea;)
Vo |14 =5 [3+Rev(0,1)] for T>1 (16b)
and where
( 2 (12Z /m)*r; for pp <<m,c (17a)
K.a; )=
o (81Z2/2m) Y e2/#c) for pp>>myc .  (17b)

Equations (16a) and (16b) reveal that as I increases from
zero, V decreases from its maximum RPA value
V(y=0)>V, to the Bohm-Staver sound speed ¥V, at
I'=15 [Rev(0,15)=—3] and then approaches the
minimum value

From analytical and numerical calculations in Refs. 2(a)
and 2(d)—2(D),

v w;,y <1)=—(0.249+i0.056)y ,
Vw;, ['~8.8)=—(3+1i),
Rev(w;, I'— o0 )=—0.24T .

Equation (18) indicates that the responsive electron back-
ground acts to slightly depress the OCP ion-plasma fre-
quency while leaving unaffected the dispersion of the
plasma mode.

Formulas (15) and (16) are new while the x, =0 limit of
(18) has been extensively studied in Refs. 2. Note the
structural difference between the Postogna-Tosi sound
speed (1) and its VAA counterparts (16a) and (16b): The
former features an isothermal correction which can be
valid only if @ tends to zero faster than kV;; the adiabatic
index ¢, /c, =3 which shows up in the latter, however, is
a consequence of the fact that it is kV; which tends to
zero faster—even at the very low frequencies characteris-
tic of the ion-sound wave. This leads to the conclusion
that (1) is derived from an inconsistent set of assumptions.
One other important difference should be noted: In the
generalized hydrodynamic description® of the screened
OCP, the ion-sound wave is damped by order-k? ion
viscous transport; in the present VAA description, howev-
er, it is the order-k electron Landau damping which is
dominant for k <x,. Note that recent experiments'® in
equal-temperature plasmas indicate that the ions are very
collisional, so that order-k? damping is expected there.
However, since those experimental conditions do not satis-
fy the Ber >>1 assumption of the present work, the two
very different damping mechanisms are not in conflict.
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