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Electronic screening in one-component plasmas: Collective-mode structure
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The Golden-Kalman velocity-average approximation scheme for one-component plasmas is gen-
eralized to account for electronic screening effects. New formulas are established for the dispersion
and damping of the ion-sound and ion-plasma modes at arbitrary coupling.

3 BP;V= Vp 1+
2ZEF Bn;

1 /2

which features an isothermal compressibility correction.
In this paper, I reformulate the Golden-Kalman (GK)

velocity-average approximation (VAA) integral equation
[Ref. 2(a)] for the OCP ionic polarizability to take ac-
count of electronic screening. I then calculate the dielec-
tric response function and longitudinal mode structure in
the k « tc;, co &co;=(4an;Z e /m;)' wave-number—
frequency domains and over a range of ion-ion coupling

Studies of the dynamical properties of strongly coupled
plasmas have, for the most part, been directed at one-
component-plasma (OCP) ' and binary-ionic-mixture
configurations where the ions are modeled as mobile clas-
sical point particles in a neutralizing background of high-
ly degenerate and rigid electrons.

The OCP collective-mode structure is substantially
modified when the rigidity constraint is relaxed to allow
for electronic screening: at wavelengths long compared
with the Thomas-Fermi screening distance
tc, '=(eF/6nn, e )', the ion-plasma mode is suppressed
in favor of ion-sound modes which propagate when the
Fermi energy eF of the electrons is much larger than the
thermal energy ( 1 lf3) of the ions, viz. , x., « Ic;

=(4vrn;Z e P)'~ . When the ions are modeled as a collec-
tion of cold noninteracting particles, the propagation velo-
city is given by the well-known Bohm-Staver formula
Vo ——(V /F&3)( c/oco, ); co; and to, are the ion and electron

plasma frequencies. When the ions are warm and in-
teracting, a generalized hydrodynamic calculation
leads to the sound speed

strengths (characterized by y;; =x; /(4~n; ) or by
I =/3(Ze) /a;; a; =(3/4vrn;)' spanning the entire fluid
regime. My calculations result in new ion-sound formulas
[Eqs. (16) below] which are structurally different from the
Postogna-Tosi expression (1).

In the present work the extreme degeneracy of the elec-
tron gas guarantees that electron-electron correlational
effects are negligibly small [viz. , 1 „=Ic, /4vrn,
—(PeF) y;; «y;;] even up to y;; —3200 typical of the
OCP crystal phase. "' ' ' I further suppose that
electron-ion interactions are weak compared with ion-ion
interactions. This was a principal assumption of the Ref.
5 calculations leading to Eq. (1) and of the recent Ref. 12
statistical mechanical calculations leading to new dynami-
cal structure functions for two-temperature classical
electron-ion plasmas.

The three-stage procedure for calculating the ionic po-
larizability a;(k, co) begins from the linearized VAA kinet-
ic equation [Ref. 2(a)]

i (co —k v)F;(.k, v, co)= [1+u;(k,co)]E(k,co) F (v)
fPl Bv

linking the perturbed one-particle-distribution-function
response F;(k,v, co) to the total (external+induced) elec-
tric field perturbation E(k, co);

F; '(U) =n;(Pm;/2~) ~ exp( —Pm;v /2)

is the Maxwellian distribution which characterizes the un-
perturbed state of the ions. The VAA coupling correction

2
Ki k.

u;(k, co)= —e(k, co) g ico dte' 'S;;;(k—q, t;q, t)+S;;;(k q, t =0;q, t =0)—
k l q~o

(3)

is expressed entirely in terms of three-point ionic structure functions which are defined in Ref. 6; e(kco)
=1+a;(kco)+a, (kco) is the dielectric response function. Consistent with the assumption of the previous paragraph,
ion-electron correlations are considered to be negligible in the ionic kinetic equation and are accordingly left out. From
(2) and the constitutive relation

d U F;(k,v, co) = — ct;(k, co)E(k, co),
ik

4~Ze

one readily obtains the first-stage expression for the ionic polarizability

(4)
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a;(k, co) =a;o(k, co)[1+u;(k,co)], (5)

where a;0(k, co) is its random-phase approximation (RPA) value.
The second-stage calculation consists in converting (3) into a more tractable nonlinear-response-function expression via

the nonlinear fluctuation-dissipation theorem (NLFDT)' 'I' ' '

Im
1 a(q, p;p, v) 1 a( —k, —co;q,p)

pv e(q, p)e(p, v)e(k, co) @co e*(k,co)e(q, p)e*(p, v)

1 a(p, v; —k, —co)

cov e(p, v)e*(k, co)e*(q,p)

vrPZe n;

qpk
S;;;(q,p;pv) (k=p+q, co=p+v) . (6)

The above NLFDT links a single dynamical three-point ionic structure function to total (ionic+electronic) quadratic po-
larizabilities, e.g. , a(q, p, ;p, v)=a;(q, p, ;p, v)+a, (q,p;p, v), defined through constitutive relations in Refs. 6(a) and 6(b).
The S;;„S;„-,S;„,etc. structure-function contributions have been deleted because they are entirely comprised of the
much weaker ion-electron pair and ternary correlation functions. The (1/PeF) S„, contribution is also deleted since
PeF && 1. Substituting (6) into (3) then gives

2

(1, )
~ 1 kq "

d g ( )
a(qpk —q~ p) a(q~ p;k —qp)

k~ N, o k q2 —~ e(q, p)e(k ,—q, co —p) e(q, co —p)e(k —q, p)

where, e.g.,

q /k —q/ka (q,p;k —q, co —p) = —
z 3 a(q, p;k —q, co —p)

2rrP (Ze) n;

(7)

(8a)

is a conveniently defined reduced quadratic polarizability. The detailed mathematical steps leading to (7) are given in
Ref. 2(a). $n this extended GK formalism, the responsive electronic background effects modify the ion-ion coupling sole-
ly through the ee-screening clusters [since, e.g. , e(q, p) =1+a;(q,p)+a, (q,p)]. Equations (5) and (7), when evaluated at
high frequency, reproduce through order 1/co the high-frequency sum-rule expansion of Re[a;(k,co~ ~ )/e(k, co~ iio )]
for arbitrary k and y values. This is an inherent feature of the GK formalism. "' "' ' '

&n the third-stage development, Eqs. (5) and (7) are made self-consistent at long wavelengths (k ~0) by supposing that
the quadratic polarizabilities a; and a, have RPA-like structures for arbitrary values of y;;. After some algebra [again,
see Ref. 2(a) for the details], one arrives at the dynamical superposition formula

f 2

ku;(k~0, co)= —v(co, Ui;),
CO Ki

PU;;
v(co, U;;) =

15 n;

3 co a;(q,p)a;(q, co —p, )
dp6 (p)

5X; ~o z
~—~ e(q, p, )e(q, co p)— (8b)

Elsewhere, ' it has been rigorously demonstrated that the
static (co =0) limit of the VAA kinetic equation [Ref. 2(a)]
generates the entire hierarchy of exact Born-Green-Yvon
(BGY) equations for the equilibrium pair, ternary, etc.
correlation functions, and the VAA ionic-correlation-
energy density therefore can be assumed to be determined
from highly accurate Monte Carlo numerical simula-
tions' or from an independent theoretical approach. For
example, the DeWitt-Rosenfeld calculations provide'

PU, , (r) = —0.9I +0.97I '~

—0.5+ 1.575I ' —0.042 56I

the first right-hand-side numerical coefficient is very
nearly identical to the Madelung constant for the bcc ion-
ic crystal and is indicative of strongly developed order in
the liquid phase. At weak coupling (y;; « 1), the
correlation-energy density is calculated from the formula

PU~;(y;;)

n;
(10)

Again, observe that at high frequencies co ~&cg; and I ar-
bitrary, the combined Eqs. (5), (8a), and (8b) reproduce the
exact (small-k) limit of the crucially important sum-rule
coefficient

(k)=(4} co dco 3 a;(k, co)
co Im

2m

4 k' 4 PUii
=coi(coi +coe)+co& 2 3+

15 n;

of the 1/~ term in the expansion of a;/e. Thus internal
consistency between the third-stage development of the
approximation scheme and the co~ oo limit of the
second-stage VAA expression (7) is guaranteed.

As to the noninteracting electrons, it suffices here to
quote the textbook polarizability formula'
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cc, (k, co)= d p
4me 3 2 1

Rk ~ ~F (2M) co+(Ak l2m, ) —k v+iO
1

e —(Ak l2m, ) k—v+i 0
(12)

describing the linear response of a completely degenerate
electron gas. For the frequency range (haik /2m, ) «co
«k VF of interest in the present paper, (12) simplifies to

26mnee i w co
cc, (k, co) = 1+ (13)

eFk2 2 kVF

Note that (13) also describes the linear response of relativ-
istic electrons if one stipulates that

V(1 ~ Oo ) = Vo(1 —.08ic,a; )'~~

Ion-plasma mode.

ic, & k & (1/a;)[min(U'31, 1)],

CO].

co(k)= ~ ~,~~ 1+ [3+v(co;,I )]

1/2

k22 4

e(k~0, co) =1— —
~ [3+v(co,I')]

CO Q.) K;

+e l& CO

2 kVF
(14)

which leads to the following dispersion and damping for-
mulas for the ion-sound and ion-plasma modes.

Ion-sound mode.

k &~, &(1/a;)[min(v'31, 1)],
2

co(k~O) =+ kV i~ k

(1+k'/Ic,') 4v 3 K', ~,
where the sound speed

(15)

Vo 1+ (13eF ) 3—
2Z 60

(ic,a; )
Vo 1+ [3+Rev(0, 1 ) ]3I

1/2

1/2

for y & 1 (16a)

for 1 & 1 (16b)

and where

(12Z/vr) ~ r, for pz &&m, c
(ic,a;) =

(81Z /2~)'~ (e /Rc) for pF &&m, c .

(17a)

(17b)

eF ——(m c +A c kF)' —m c

Equations (5), (8a), (8b), and (13) can now be consolidat-
ed into the long-wavelength dispersion relation

(18)
From analytical and numerical calculations in Refs. 2(a)
and 2(d) —2(f),

v(co;, y & 1)= —(0.249+i 0.056)y,

v(co;, I =8.8) = —(3+i),
Rev(co;, I oo ) = —0.241

Equation (18) indicates that the responsive electron back-
ground acts to slightly depress the OCP ion-plasma fre-
quency while leaving unaffected the dispersion of the
plasma mode.

Formulas (15) and (16) are new while the v, =0 limit of
(18) has been extensively studied in Refs. 2. Note the
structural difference between the Postogna-Tosi sound
speed (1) and its VAA counterparts (16a) and (16b): The
former features an isothermal correction which can be
valid only if co tends to zero faster than kV;; the adiabatic
index c&/c, =3 which shows up in the latter, however, is
a consequence of the fact that it is kV; which tends to
zero faster —even at the very low frequencies characteris-
tic of the ion-sound wave. This leads to the conclusion
that (1) is derived from an inconsistent set of assumptions.
One other important difference should be noted: In the
generalized hydrodynamic description of the screened
QCP, the ion-sound wave is damped by order-k ion
viscous transport; in the present VAA description, howev-
er, it is the order- k electron Landau damping which is
dominant for k & ~, . Note that recent experiments' in
equal-temperature plasmas indicate that the ions are very
collisional, so that order-k damping is expected there.
However, since those experimental conditions do not satis-
fy the PeF »1 assumption of the present work, the two
very different damping mechanisms are not in conflict.

Equations (16a) and (16b) reveal that as I increases from
zero, V decreases from its maximum RPA value
V(y=0) & Vo to the Bohm-Staver sound speed Vo at
I =15 [Rev(0, 15)=—3] and then approaches the
minimum value
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