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Exact density-potential relation for the ground state of the Be atom
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The exact ground-state density n (r) of the Be atom can be generated, at least in principle, from a
local one-body potential energy V(r), which must include however an appropriate contribution from
exchange and correlation interactions. Here an exact relation between n (r) and this given V(r) is
exhibited by making use of the density matrix variational method set up by Dawson and March for
two occupied levels in a one-dimensional system.

I. INTRODUCTION

A basic aim of modern density-functional theory' is
to obtain an explicit relation from which to calculate the
ground-state electron density n (r). In Thomas-Fermi
theory, the forerunner of modern density-functional
theory, this is achieved for electrons moving in a common
one-body potential energy V(r) as

n(r)= (2m) ~ [p —V(r)] ~

3h

in classically allowed regions, and n (r) =0 where motion
is classically forbidden.

That this relation (1.1) can be transcended by taking ac-
count of density gradients was already clear to von
Weizsacker. ' But inclusion of such low-order density
gradient corrections is inadequate in, say, closed-shell
atoms, for the density n (r) thereby generated does not re-
flect the atomic shell structure in an atom such as Ar.

Therefore, in the present work, by focusing solely on a
simple atom, Be, in its ground state, we shall set up a for-
mally exact method of calculating the density n (r), given
a one-body potential energy V(r) in which both ls and 2s
electrons move. That such a common potential should
underlie electron density calculations in atoms, molecules,
and solids was already clear to Slater, but the V(r) he
proposed was simply the sum of the Hartree potential
generated by the nuclear framework and n (r) itself, plus a
local-density [n(r)]'~ type potential from exchange ef-
fects. Cxombas and others had earlier proposed adding a
contribution to Thomas-Fermi-Dirac theory from local-
density approximations to the correlation energy. A for-
mally exact definition of V(r) was given by Kohn and
Sham but this involves a functional derivative with
respect to n(r) of the, as yet unknown, exchange and
correlation energy functional E„,[n]. All that is impor-
tant for the present study is that a formally exact central
potential energy exists which will generate the true elec-
tron density n (r) of the ground state of Be. This will be
assumed below; given that, the density-functional pro-
gram of obtaining n (r) exactly given V(r) is pushed
through to a final, exact, though still somewhat compli-
cated n- V relation.

To complete this Introduction, we merely comment

rR„(r)~P„(r), n =1,2
r~x.

It must then be noted that the "one-dimensional density
p(x)" which they calculate is in fact such that

p( x)——4sr [Pi(x) +Pz(x) ] . (1.4)

Once one has calculated p(x) from the Dawson-March
variational procedure, the Be atom density n (r) given in
Eq. (1.2) is clearly related to this one-dimensional density
p(r) by

4rrr n(r)=2p(r) . (1.5)

If J p(r)dr =2, as we shall assume, then from Eq. (1.5)
the 8ensity n (r) integrates to 4, as it must for the ground
state of Be.

In Sec. II, we first clarify, and then manipulate, the
Dawson-March equations to yield an explicit relation be-
tween n (r) and the given V(r) which, as we have stressed
above, involves many-electron contributions which are not
yet known exactly. However, the procedure given in Sec.
II relates n(r) exactly for Be to the given V(r). It is
relevant in connection with Sec. II to mention the work of
Capitani et a/. ," which is closely related to the work of
Dawson and March. ' Capitani et ah. also, in fact, dis-

briefly on the relation of the Be atom density n (r) to an
equivalent two-level problem in one dimension. Thus,
given V(r), we can obviously calculate the radial wave
functions R &(r) and R2(r) of the 1s and 2s electrons, with
corresponding eigenvalues e& and e2 from the Schrodinger
e uation. Provided we adopt the normalization

~ ~

R„4m.r dr = 1, the ground-state density is evidently

n (r') =2[R ~ (r)+R2(r)] . (1.2)

Instead of setting up the off-diagonal density-matrix
generalization of Eq. (1.2) for Be, we shall find it econorn-
ical below to transform instead the calculations of
Dawson and March' in which a variational density ma-
trix was set up for two occupied levels in a one-
dimensional system.

To make contact with their work, one needs only to
make the transformation
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cuss briefly the relationship between spherical and one-
dimensional problems.

II. EXACT DENSITY-POTENTIAL RELATION
FOR A TWO-LEVEL ONE-DIMENSIONAL CASE

Consider a two-level, one-dimensional, independent-
particle problem for an external potential V(x), e.g. , the
harmonic oscillator with the first two states occupied, as
discussed in the Appendix B. Following Ref. 10, we
adopt polar coordinates in which to express the one-body
orbitals P, and P2 as well as the single-particle density
matrix y(x, x), in terms of the density p(x), given simply
by p(x ) =y(x, x ) =2P &+2$z.

P,"+2[v; —V(x ) ]P; =0; i = 1,2 (2.9)

the idempotency conditions (2.6) are automatically ful-
filled by the orthonormality of orbitals. Therefore we can
alternatively derive Eqs. (2.7) and (2.8) using the
Schrodinger equations. This allows the following identifi-
cation of the Lagrange multipliers:

g=O, g=(ei —e2)/2, A, =(ei+e2)/2 . (2.10)

where X =p, and k, g, and g are Lagrange undetermined
multipliers.

Clearly, for given exact orbitals Pi and Pz satisfying the
one-body Schrodinger equations

and

2'I P&(x) =p'i cos8(x),
2'I $2(x) =p'l sin8(x),

(2.1)

=0,

As demonstrated by Dawson and March, ' differentia-
tion of Eq. (2.8) and substitution of Eq. (2.7) yields

I
X'

~ 2 1 ~ 1 X"8"8'+ (8')'+ —V' ——
X 2 2 X

y(x', x) =Vp(x')v'p(x)cos[8(x') —8(x)] . (2.2)

Hence one obtains the expression for the kinetic energy
density

which can be transformed into a solvable Bernoulli dif-
ferential equation for u =(8'), with general solution

I II III

1 B y(x', x)tx= ——
2

X =X

I 2

= ——,
' p"(x)+ — + —,

' p(8')',
8 p

satisfying the one-dimensional virial theorem' '
t(x)= ——,'p" ——,

' f pV'dt .

Combining Eqs. (2.3) and (2.4) immediately yields
2

2 1 p 0 1 x
u =(8') =— — —— pV'dt,

4

(2.3)

(2.4)

(2.5)
p"+—

4 p f p V'dt,
p

A simple integration by parts given Eq. (2.5), since
2

&1 1 z" 1 x' 1u= + g V'dt=X' 2 X 2 X X'
2

(2.12)

(2.13)

which gives (8') in terms only of p and V.

The equations relating p =7 and V for the the two-
level independent-particle problem in one dimension have
been derived from the Euler-Lagrange equations corre-
sponding to a minimum of the appropriate energy func-
tional for the two-level case:

E2[p, 8]= f (t + Vp)dx,

subject to the density-matrix idempotency constraints

and hence Eq. (2.5) is regained provided Ci ——0. There-
fore Eq. (2.20) of Ref. 10 represents basically the use of
the virial theorem (2.4) in expressing the kinetic energy
density for such a two-level problem.

Equations (2.7), (2.8), and (2.11) allow, after a some-
what lengthy algebraic manipulation, 0 to be eliminated
completely, and in this way one arrives at an exact equa-
tion explicitly relating p and V. This achieves then a
basic aim of density-functional theory in the two-level
case. The explicit form of this equation is

2

f pcos(28)dx= f psin 8dx =2,

f psin8cos8dx=O.

In this way, one obtains the equations'

(2.6)

u + 4F+—3 1

4 p
I

4(F' —g') ——~ F' u+ —„'(F')'=0,
2 p

I

—,8"+ 8' =g sin(28) —g cos(28)x (2.7)
(2.14)

where u is given by Eq. (2.5), g' and A, by Eq. (2.10), while
F is defined by

and

——,X"+ [ —,( 8') + V]X= [A +g cos(28) +g sin(28) P,
+IIF=V ——

2 x
1—A, = V+—
8

2

p
p p
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I

~u+2u ~2(4F 4Fu u 4g )
~

p
(2.16)

If we now insert u from Eq. (2.5) and F from Eq. (2.15)
into the right-hand side of Eq. (2.16), we can write an
explicit expression for F as J F'dx in terms of only p, V,
and their derivatives. One can then view Eq. (2.15) as a
Schrodinger equation for X=p'~, to be solved self-
consistently for a given V. We will discuss the meaning
of this Schrodinger equation in more intuitive terms in
Sec. III.

An alternative way of writing the two-level density-
potential relation is to treat Eq. (2.14) as a quadratic equa-
tion in F, which can be solved to yield, with an ambigui-
ty of sign to be resolved through physical boundary con-
straints,

Finally, we reiterate that in order to illustrate the rela-
tion (2.14) between V and p, the linear harmonic oscillator
is considered as an example of a model two-level problem
in Appendix B.
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III. DISCUSSION AND SUMMARY

Equation (2.14) is the principal result of the present
study. It is worthwhile to relate it to the proposal of one
of us' that the density should be generated from a
Schrodinger equation for p'~ =X with effective potential
energy

~(r) = V(r)+ V,.„„(r), (3.1)

where Vp,„~;(r) results from the Fermi statistics. This
Pauli potential is essentially, to within an additive con-
stant, the function F introduced through Eq. (2.15). Then
Eq. (2.16) can be seen to give, through the quadrature
F = f F'dx, an expression for Vp, „~; in the two-level
case only in terms of p and V and their derivatives.

To see the direct relation of the present treatment to the
density-functional Euler equation, we would have, in
essence, to solve the p- V relation for the potential energy
V in terms only of p and its derivatives. We have not suc-
ceeded in doing this to date. An equivalent procedure
would be to get (8') solely as a function of p and its
derivatives and then to use Eq. (3.3) for the kinetic energy
density. This encounters immediately the cubic equation
(2.14) for u =(0'), solved in Appendix A. What is not
presently clear to us is whether, if V could be obtained as
a functional of p, it would merely contain one parameter,
which could then be identified with the chemical potential
IM of density-functional theory, already appearing in the
approximate form (1.1). The present p- V relation certain-
ly contains two parameters, A, and g, related to the two
lowest eigenvalues of standard wave-function theory.
Thus, again, we are tempted to speculate that the exact
density-functional theory is equivalent to the customary
wave-function theory, ' though no doubt more compact in
some sense.

Solution of Eqs. (2.15) and (2.14) self-consistently for
given V(r), using, say, a local-density approximation for
V(r), or its extension to embody density gradients, ' and
its use in Eq. (1.5) for the, Be atom ground-state density
will now reAect the "shell structure" of the atomic densi-
ty; the Pauli potential Vp,„~;, reflected by F in Eqs. (2.14)
and (2.15) resulting from the requirement of Fermi statis-
tics.

APPENDIX A: SOLUTIONS
OF CUBIC EQUATION {2.14)

u +Bu +Cu +D =0,
we evidently have the explicit expressions

2
I

B =4F+ —,
'

p

(Al)

(A2)

I

C =4(F g) ———
2 p

FI (A3)

and

D = ,(F')— (A4)

One can, following Cardano, eliminate the quadratic
term in Eq (Al) by making the substitution

BU=u +—
3

(A5)

to yield

U +pU+q =0, (A6)

where p and q are readily obtained in terms of 8, C, and
D given above.

The three solutions of Eq. (A6) are then

a
U& ——2r cos—,

3
'

U2 ——2r cos —+ 120
3

U3 ——2r cos —+240
3

(A7)

where r =V —p/3 and cosa= q/2r . —
Hence, explicit solutions for u from the cubic equation

(2.14) are known.

It is of interest to record here the way one can solve the
cubic equation (2.14) for u. Writing this in the form
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APPENDIX B: FORM OF THE p- V RELATION
FOR THE HARMONIC OSCILLATOR

Consider a linear harmonic oscillator with units in
which the Hamiltonian 0 takes the form

(81)

As one can readily verify, this equation is indeed satis-
fied by u given in Eq. (86). One way to demonstrate that
is to use the Cardano method, described briefly in Appen-
dix A; this leads to the following reduced equation (A6)
for U [Eq. (A5)]:

We are dealing here with the first two states occupied:

and E'2=
~

1 3

Hence, from Eq. (2.10)

A, =1 and

(82)

(83)

U +pU+q—= U —[W/(3Z )]U

+ [2x'( W+6)/(27Z')] =0,
where P =x Z +12. Since

q /4+p /27= —4(x Z +g)/(27Z ) &0,

(89)

(810)

Explicit use of the exact wave functions P &
and $2 yields

for the density'

the cubic equation (89) has indeed three real solutions
(A7) defined by

p =~-'r'exp( —x')Z,
where

(84)
and

r =(—p/3)'"=3m'"/Z (811)

Z = 1+2x (85)
The resulting expressions for u from Eq. (2.5) and the
Pauli potential F from Eq. (2.14) are

1E =2/Z (86)
and

F=(4x —3)/(2Z ) . (87)
Finally the explicit form of the p- V equation (2.14) is

u +Bu +Cu+D= u+[(x —Z —6)/Z ]u

cosa= —q/(2r )= —x Z(&+6)/W

Now, from the known solution (86)

U=u +B/3=x /3 .

Hence, from Eq. (A7),

cos—=x Z/(2W' );
3

(812)

(813)

(814)

+ [4x (Z +2) /Z ]=0 . (88)

—I[4x Z(Z+2)+8(x —1)]/Z Iu
this finally yields the expression (812) via the familiar
identity cos3y =4 cos y —3 coscp.
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