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Recoil saturation of the self-energy in atomic systems
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We consider the dispersion-interaction self-energy of two atoms or of a charge and an atom
without imposing the Born-Oppenheimer approximation. We find compact expressions in terms of
matrix elements of operators in the atomic displacement which are not limited by multipole expan-
sions. The saturation effect of recoil causes the self-energy to be finite even at small separation.
The relation to previously obtained results in terms of multipole expansions is discussed.

There is presently a renewed interest in the study of in-
teracting atomic systems in which one or more of the
members has very small mass, such as positronium. ' In
this situation, nonadiabatic effects arising from the break-
down of the Born-Oppenheimer approximation become
important. At large separation distances the nonadiabatic
contributions generally appear as velocity-dependent
corrections to the van der Waals potential and can be
developed as a series in inverse powers of the separation
distance. At small separation distances the major effect
of the breakdown of the Born-Oppenheimer approxima-
tion is the recoil of the atoms due to conservation of
momentum during the exchange of virtual quanta. This
recoil causes a weakening, or saturation, of the interaction
forces.

Recently a method has been developed for treating
these many-body effects in atomic interactions in a com-
pletely quantum-mechanical manner. This method is
based on determining the interaction self-energy from per-
turbation theory and can be extended to all orders in the
perturbation series. In the point dipolar limit, it has been
applied to the interaction of two atoms' or an atom and a
charge, in the case in which exchange is neglected. For
both of these examples, in addition to determining the
long-range nonadiabatic corrections, the saturation of the
interaction at close range was considered. The effect is
quite similar, the atomic 1/R (where R is the separation
distance) van der Waals potentials is reduced to a I/R
behavior. ' and the charge-atom 1/R polarization po-
tential saturates to a 1/R form. In both examples the
interaction energy is reduced by two powers of 1/R, but it
still increases without bound at small separations, a direct
result of the treatment of the atoms as dipoles. One
would expect a similar behavior in each of the terms of
the multipole series, but clearly this large interaction ener-

gy at small separation cannot be correct. When the mass
of the nucleus is finite, its recoil as it exchanges virtual
quanta will smear it out into a charge cloud. Thus the in-
teraction of atomic systems at short distances should ap-

pear as the overlapping of charge clouds (or charge distri-
butions) which gives rise to finite interaction energy.

In this report we show that the total interaction energy
in second-order perturbation theory of a system of two
hydrogenic atoms, or of an atom and a charge, can be
written in terms of matrix elements of closed-form atomic
operators. This is equivalent to summing the whole mul-
tipole series. In addition to reducing to previously ob-
tained results in the appropriate limits, this new expres-
sion exhibits two interesting features. First, the interac-
tion energy is shown to be finite at a11 separation dis-
tances. Second, it demonstrates that the large separation
expansions of the interaction potential, which are often
expressed as asymptotic series in 1/R, can be written as
finite closed-form expressions.

We begin by discussing the interaction between two hy-
drogenlike atoms and the case of a charge interacting with
an atom will be shown later to be very similar. For sim-
plicity, we neglect exchange. The unperturbed system of
two isolated atoms has an eigenstate consisting of the
product of two atomic functions and a momentum func-
tion in the relative coordinate R between their centers of
mass

The momentum function is a plane wave
PJ(R) —exp(iQJ R) and the unperturbed energy is

Ei=&t,. +&n, +Qg /2P ~'
where eI and e„are atomic energies measured from thej 1
ground state and p is the reduced mass of the two atom
system

p=(mt+1)(m2+ I)/(m~+m2+2) .

If r& and rz are the respective atomic displacement opera-
tors (i.e., for a hydrogenic atom r, q are the respective dis-
placement vectors between the electron and the nucleus of
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each of the two atoms), the perturbation contribution to
the Hamiltonian is
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with the R; given by
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The matrix elements represented by angular brackets ( )
are taken with respect to atomic states only, while those
represented by ( ) include also the state of relative motion,
as shown in Eq. (1). After Fourier expansion of the per-
turbation (4), the matrix elements can be partially evaluat-
ed to put the self-energy in the form of a sum over atomic
matrix elements of generalized atomic operators

The R; above are expressed in center-of-mass coordinates
and the four terms in Eq. (4) correspond to the four dif-
ferent potential terms arising from the interaction of the
electron or nucleus of one atom with the electron or nu-

cleus of the other atom.
The interaction self-energy Xo(R) is defined by equat-

ing the energy shift of the perturbed system to the integra1
of the self-energy weighted by the probability of finding
the system in the initial state:

b.Eo ——f d R Po (R )Xo(R)go(R) . (6)

which leads to a spatially dependent self-energy of the
form

As shown previously this self-energy can be generalized
to all orders of perturbation theory, but for the problem at
hand we will be interested in the energy shift to second or-
der, given by
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If we now make the lowest-order expansion in terms of
the parameter R;/R all results obtained previously for
two atoms interacting in the dipole limit' are recovered.
Evaluating the operator of Eq. (10) for a general relative
momentum Qo of the unperturbed system is straightfor-
ward but leads to complicated forms beyond the scope of
this letter. However, many features of the general prob-
lem can be illustrated by looking at the special limiting
case of two atoms with no relative motion, Qo

——0. Then
all integrals can be readily evaluated to give the self-
energy in the form

4
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. The terms exponentially de-

creasing in R in the second matrix element of (11) are due
to the quantum-mechanical recoi1; specifically, they arise
from the term in Q in the denominator of Eq. (10). For
large R Eq. (11) becomes the familiar London form of the
1/R van der Waals potential. Further discussion of Eq.
(11) is perhaps best deferred until we obtain below the cor-
responding expression for the charge-atom case where the
results are somewhat simpler in form. We note in pass-
ing, however, that Xo(R) is finite as R ~0, whereas if one
makes the expansion for a point dipole the short-range
self-energy approaches the form

Xo(R)~(2p/9R )(0
I
r,

I
0) (0

I
rz

I
0), aR 0 . (12)

Hq= g( —1)'IR—L, I-', (13)

with

L|———r/(m+ 1), Lz ——mr/(m +1), (14)

with the atomic operator I' given by

where r is the atomic displacement operator and R is the
vector joining the charge to the center of mass of the
atom. The self-energy is again defined by Eq. (8) and can
be put in a form similar to the atomic case of Eq. (9)

Xo(R)= g (0 IH
I
n)(n II'

I
0),1

2~' .
A similar comparison has been noted in the somewhat re-
lated case of an atom interacting with the collective elec-
tronic excitations of a solid surface.

Moving now to the interaction between a hydrogenic
atom and a charge of unit mass, the unperturbed eigen-
states are products of a single atomic state and the relative
momentum wave function. The perturbing potential is

2I'= f (dQ/Q )e'~' g exp( —iQ.L;)

X [e„—(2Q.Qo —Q )/2pq]

(16)
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where the reduced mass in this case is

pq ——(m+1)/(m+2) . (17)

Another interesting point arises for the positronium-
charge system. When all the masses are of unit magni-
tude, the self-energy involves matrix elements of the form

Again the integrals in Eq. (16) can be carried out for all
values of go but this leads to some lengthy and cumber-
some equations. The case of zero relative motion go=0
leads to a simple expression in compact form similar to
Eq. (11):

X$(R)= —g (0
~

Hq
~

n )
1

2
—b[a —L, L

n H~ — —1' 0, 18
iR —L;/

where b =2@~
~
e„~ . As was pointed out for the case of

Eq. (11), when Eq. (18) is developed in an expansion in
large values of the separation distance R, one recovers all
previously obtained results for the multipole series, be-
ginning with the long-range polarization potential which .

behaves as 1/R . However, Eq. (18) gives us the
compact-form expression from which the asymptotic mul-
tipole expansion can be derived. Of interest here is the
fact that the interaction self-energy is finite in the limit of
small separation, as should be the case for quantum-
mechanical systems. Two interesting limiting cases can
be readily evaluated. For the case of positronium in-
teracting with a charge of unit mass we have m = 1 and
the self-energy for R~O is zero. On the other hand, if
the mass I is very large we have

XII(0)~—m, m~oo .

XII(R)~ — (0
~

r
~
0) .

3R
(20)

The self-energy at the origin diverges with the mass in
this semiclassical limit.

By way of contrast, if we look at only the contribution
of a point dipole, the interaction self-energy saturates to a
1/R form but is still divergent. '

(i
/

/R+r/2/ ' —fR —r/2/ '/n) (21)
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and clearly all even terms in the multipole expansion will
vanish. A similar effect occurs in the interaction of two
positronium atoms ' as can be shown with Eq. (11).

We have considered here the self-energy for an atom in-
teracting with another atom or with a charge. We show
that the self-energy can be express'ed in terms of matrix
elements between unperturbed atomic states of closed-
form operators in the atomic displacement. This result in
itself is of interest because it gives a compact form from
which the well-known asymptotic multipole expansion at
large separation distances can be obtained. These closed
forms also clearly show that when the atoms are posi-
tronium, terms of even parity in the multipole series are
not present.

Since these calculations were carried out without im-
posing the Born-Oppenheimer approximation, the nonadi-
abatic and recoil contributions are present. Recoil effects
are manifest at small separation distances where they
cause a saturation of the self-energy to a finite value.
This finite interaction energy is a reflection of the fact
that in a real quantum-mechanical atom of finite mass
both the nucleus and the electron must be viewed as
"charge clouds" and the self-energy at that separation dis-
tance is just the interaction energy of the corresponding
overlapping charge distributions.
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