PHYSICAL REVIEW A

VOLUME 35, NUMBER 12

JUNE 15, 1987

Center-manifold renormalization in dynamic critical phenomena for dissipative spin systems

Ariel Fernandez and Herschel Rabitz
Princeton University, The Frick Laboratory, Princeton, New Jersey 08544
(Received 8 December 1986)

We consider a purely dissipative spin system operating far from thermodynamic equilibrium. We
prove that a coarse graining for short-wavelength modes is obtained near criticality by performing a
center-manifold reduction of fast-relaxing modes. The spin systems considered are realizations of a
time-dependent Ginzburg-Landau model. Agreement with renormalization-group derivations is ob-
tained. Neutron scattering cross sections for a magnetic material in the dynamic critical case are
calculated making use of the center-manifold reduction. Experimental measurements of static spin
autocorrelations are used to obtain the distribution of fast modes about the center manifold. Mak-
ing use of this information, predictions are made on neutron scattering for magnetic materials cou-
pled to a heat bath near a dynamic critical point. The existence of a center manifold determines
scaling relations between the strength of the statistical forcing field and the spin-correlation length.
Thus, the relevance of a time-dependent experiment under far-from-equilibrium conditions becomes
apparent inasmuch as such an experiment can lead to the elucidation of the nature and strength of

the statistical noise.

I. INTRODUCTION

The stability and permanence of far-from-equilibrium
organizations in dissipative systems may be ensured when
a center manifold (CM) can be associated with the emerg-
ing structures.'~* This manifold constitutes the locally
attractive and locally invariant portion of phase space em-
erging beyond a dynamic instability. The CM reduction
accounts for the contraction in phase space due to a sta-
tistical subordination of fast-relaxing modes to order pa-
rameters which occurs in dynamic critical phenomena.*—¢
The basic tenet of this approach is that the probability
density is distributed in a narrow strip along the CM.
The width of this strip depends on the position on the
CM, that is, on the CM coordinates and it can be taken as
constant only to a first approximation.2~* The distribu-
tion of fast modes about the CM will be determined in

“this paper and the results will be used to get information
on neutron scattering cross sections for dissipative spin
systems near a dynamic critical point.

The “critical slowing down” property for spin systems
implies that long-wavelength modes also have long-
relaxation-time scales.’~7 We shall take advantage of this
fact in order to obtain a coarse-graining CM reduction of
the short-wavelength modes. The CM-reduced Fokker-
Planck (FP) equation determines the dominant role of
long-relaxation-time modes. That is, the CM elimination
of fast-relaxing modes can be adequately viewed as a de-
crease in spatial resolution to eliminate short-wavelength
modes as in a dynamic Kadanoff transformation.>®

In spin systems, the probability distribution P may be
factorized into an equilibrium stationary distribution
times a perturbation from equilibrium. The distribution
P obeys a Liouville master equation. The transition prob-
ability rates satisfy a detailed balance which ensures the
ergodicity of the system.® Our approach is analogous in
that it introduces a factorization of P determined by the
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renormalization-group (RG) transformation R;. We
represent P as a product of a time-dependent factor for
the slow modes, Q;, and a time-independent factor Q,,
conditionally dependent on the CM coordinates. This fac-
torization must ensure a continuous flow of probability
about the CM. Instead of obtaining the Gaussian widths
for the probability density in analytic form, we shall
present the results of a numerical integration of the
Fokker-Planck equation making use of adequate scaling
for the Gaussian widths in order to display the relative
size of each term in the CM-reduced equation. Thus, the
integration reveals the scaling relations between the static
spin correlation length and the other relevant small pa-
rameters of the system: the Gaussian widths and the in-
tensity of the fluctuations due to the coupling of the sys-
tem to the heat bath. These scaling relations determine
the range for the statistical noise. Therefore, a neutron
scattering experiment’ performed under far-from-
equilibrium conditions for a dissipative spin system would
be most useful since the distribution about the CM can be
derived from scattering cross sections and that informa-
tion can be used to obtain the range for the statistical
noise forcing field. This point will be developed in Sec.
Iv.

The CM reduction has a counterpart in static phenome-
na. This counterpart is given by the smooth cutoff pro-
cedure to eliminate long-range interactions in coordinate
space.® But while this procedure is a purely mathematical
artifact, the CM reduction finds a physical justification in
the statistical enslavement of the fast-relaxing degrees of
freedom by the order parameters.

II. COARSE GRAINING CENTER-MANIFOLD
REDUCTION

Consider a set of block spins {y;(x,?)}, where the sub-
index i labels the spin component and x is the spatial
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coordinate. We shall use the Fourier representation and
consider the components y;, =y;,(?).

Each y,, is regarded as a random variable. Thus, the
object of interest is the probability density functional
P({ y,-p},t). We shall now demonstrate that the distribu-
tion of the y;,’s about the CM provides the necessary in-
formation to calculate dynamic spin autocorrelations.
These quantities are directly measurable in slow neutron
scattering experiments. The magnetic material should be
coupled to a heat reservoir constituting a dissipative sys-
tem operating far from thermodynamic equilibrium.

We shall consider an initial spatial resolution to order
L. A coarse graining Kadanoff transformation K; cor-
responds to a cutoff in the wavelength range and spatial
resolution to order s/L. That is, the short-wavelength
modes in the range L /s <q <L must be eliminated and a
reduced equation for the y;’s with 0<k <L /s must be
obtained. Throughout the paper, the ranges for the
indexes k and ¢ are as indicated above, the i’s and j’s
range from 1 to »n and the p’s from O to L.

We associate a CM to a transformation K, in the fol-
lowing way:

Vig= > bjgn’ I1 yii | (1)
n'=2 ik
2y =n'

This CM is denoted CM(s). The long-wavelength modes
yi’s are therefore regarded as the CM coordinates. They
are the order parameters when we downgrade the spatial
resolution from order L ~! to order s/L. Following the
methods of the standard CM reduction, we factorize
P =P({y;},t) in the following way:

P=Q1({yik}’t)Q2({yjq} | {yuc)) - 2

The explicit form of Q, was derived elsewhere:?~*

0,= H(gjq /F)I/ZCXP{ —gjq[yjq —j)\jq( {yik } )]2} : 3)

)a
The Gaussian widths wj, are given by
qu:gjzl/Zzgq—l/Z ) @)

These quantities are functions of the CM coordinates and
they are determined making use of the condition that they
should allow for a continuous flow of probability about
the CM.2~*

The CM-reduced FP equation will be directly obtained
by numerical integration of the FP equation for P with
adequate scaling relations to display the relative size of
each term, introducing the factorization P =Q,Q,. The
analytical derivation of g,=g,({yx}) is a formidable
task. Instead we shall obtain an approximate solution in
terms of static spin autocorrelations and also display the
second moments 6, ={(y;, —{yj,))*) which result from
the numerical integration. The general form of the g;’s is
8, =G (@) '+0({|yu| ). The constant  term
represents the balance between the fast drift towards the
CM and the diffusion effect provided by the statistical
noise.! ~* This term is equal to the reciprocal of the static
spin autocorrelation, G (g), and it is directly accessible
fro;n neutron scattering data for static critical phenome-
na.
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At this point, it is worth outlining a smooth cutoff pro-
cedure introduced in static critical phenomena to elim-
inate unwanted long-range interactions in coordinate
space. These interactions are reminiscent of the Friedel
oscillations due to a sharp Fermi surface which occurs in
the physics of metals.®

We note by H the spin Hamiltonian. The transforma-
tion K,H = H' is defined as follows:

e~HUI= | [H dyp e Y0y, (5)
iLp
where
QUy)=Nexp | = Sy —xpp;)’ (©)
Lp

and N is the normalization constant. The variable w can
be fixed arbitrarily large and x, is a smooth function sub-
ject to the restrictions

1 forp<L/s,
0 forp>L/s+A, A<<L/s .

p:

()]

We can pose the problem of finding the dynamic coun-
terpart of this procedure. This will involve taking advan-
tage of the subordination of fast variables in the integra-
tion of the FP equation for P factorized as indicated in
Egs. (1)—(4), over the fast-relaxing modes. This pro-
cedure is analogous to the one described above except that
now each mode has a Gaussian width gp'l/ 2 instead of the
constant (w/2)~1/? and the variables Xpyip are replaced
by $;, for p > L /s. The smoothing is accomplished by the
functional dependence of modes determined by Eq. (1).
We should emphasize that while the static smoothing is a
mathematical device, its dynamic counterpart is rooted in
the CM statistical subordination of fast modes, that is, on
physical grounds.

III. CENTER MANIFOLD
FOR A DISSIPATIVE SPIN SYSTEM

The onset of a CM determines scaling relations among
the small parameters in the system.*® This fact will be
used in order to properly display the size of the terms
which occur in the integration of the FP equation for P
along the CM. In the case of spin systems near criticality,
a convenient set of such small parameters is the following.

(a) The inverse of the spin correlation length.

(b) The Gaussian widths.

(c) The intensity of the random source terms.

Specifically, we consider a generic time-dependent
Ginzburg-Landau spin model in which each of the block
spins is in contact with a thermal reservoir. The heat con-
duction occurs sufficiently fast so that the condition of
each reservoir is independent of the spin configuration.
This is a valid assumption since the spin correlation
length £ diverges as we reach criticality; therefore, we
have p/£—0, where p is the correlation length for the
thermal statistical source. That is, we can regard the heat
bath as a set of independent noise sources corresponding
to additive noise and independent of each other.

In the Fourier representation, the model is determined



by the equations®

ay;
—ét—”= —MD;_,H +f, , (8)
d
Dy=—, 9)
v ayip
H=H,+H,, (10)
Ho=7 J[a(T =T )+p*1|yp|?, (11)
ip
Hi=zuW™ 3 y —pYipYipVip—p'—p" »
Ljpp'p"
W =size parameter . (12)
(f,-P(t)f,-P,(t’))=2M8,~j8_pp,8(t—t’) . (13)

The  parameter space is the vector space
[(M,a(T —T_.),u)], where a and u are the Ginzburg-
Landau parameters.

To a first approximation,>~* the 8jq’s can be regarded
as constants representing the balance between the fast
drift, given by the inverse of the relaxation time, T,, and
the strength of the intrinsic fluctuations given by the ef-
fective diffusion coefficient M. That is,

M[a(T-T,)+q’]

g = v =a(T—-T,)+q*=G(9~',
(14)

where the relaxation time is given by
T,=[a(T-T,)+p*1"'M~". (15)
The static spin correlation G(gq) is defined:

=( ijq ! 2>
The long-wavelength modes (p small) also have long re-
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laxation times. This follows directly from Egs. (14) and
(15) and the relation

lim T,= lim X(DM '=o , (16)
T—T, T—T,
p—0

where X(T) is the susceptibility. It is this property that
allows for the implementation of a coarse-graining pro-
cedure based on a CM reduction.

CM(s) can be determined from Egs. (1) and
(8)—(12).1=* That is, from the following polynomial rela-
tion which expresses that the yj;’s are not explicitly
dependent on time but are indirectly dependent since they
are subordinated to the y;’s:

—MDj_qszkDik(ﬁjq (—MD;_;H) . (17)
The FP equation for’ Pis
2p =M 3 Dyl(D; ,HP +D; ] (18)
We shall denote
F=[ [de,-q JQZF (19)
iq

for any functional F=F({y;}). Therefore, from Eq.
(14), it follows that for large L (high initial resolution)
and small s (soft coarse graining), we get

F=F({yua},{9je]) - (20)

Making use of Egs. (2) and (3) and the notation given
by Eq. (19), we can integrate Eq. (18) over the short-
wavelength—fast-relaxing modes y;,’s. This gives

d = <« Dix& _
~01=M3 |Dyl[(D; _+H)Q,]+n( ikH)z_l—‘q—Ql —amM? Y 8¢[Di(D;_4H)1Q1+M ¥ Dy D; _Q,
at ik q 284 ij.k,q ik
Di.g Dy D; g, n D;_,g _
+nM'S LDpQ |+nM 3 — 2‘ qu—Z—MZ ——% 1 0,—2M* ¥ g,(DyD;_ H?Q, .
ik,q q ik,q 8q ikq 8q ij,k,q

Instead of attempting an analytic solution of the form
8,=84({yix}) to obtain the CM-reduced equation from
Eq. (21}, we present the results of a numerical integration
of Eq. (21) (Fig. 1, curve b). The scaling adopted to get
the reduced equation is M =0 (W ~3), g,=0( W=2)442,
W =0(§) (since spin fluctuations have a macroscopic
range near criticality). Specifically, we take £=55.2 A
following Ref. 9 (in their notation, £~ !=xk=0.0181 A7Y.
On the other hand, curve a in Fig. 1 gives the second mo-
ment 6, as obtained from the approximation
8is=[G(g)]~". In this case, the autocorrelatxons G(q)s
are obtained from neutron scattering data.’

Making use of this approximation and the fact that H,
is of order W 3 for this problem, we get, to order W 3,

2n

the reduced equation

%Ql =M 3 {Dy[(D; _tHo)Q11+DyD; _Q:} .(22)
ik

The results of numerical integration can be used to get
the proper dynamic spin autocorrelations G (q)—-gq To
first approximation, we have seen that G(g)=G (q).

In Fig. 2, curves a and b correspond to different calcu-
lations making use of the Ornstein-Zernike and Hart
equilibrium spin autocorrelations, respectively, reported
elsewhere.’ Curve c, instead, gives the scattering cross sec-
tions for a dissipative system, coupled to a heat bath, with
the dynamic autocorrelations, G(g)’s.
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FIG. 1. Distribution of fast modes about the center manifold.
Second moments 6,’s as functions of the wave number. The
choice of parameters is M =2.2W =3, W =£=55.2 A. Curve a
is obtained by making the approximation g;,=[G(g)]~'. The
autocorrelations, G(gq)’s, are determined from the scattering
cross sections for equilibrium critical points (Ref. 9). Curve b is
obtained by numerical integration of the CM-reduced equation
(21).

The nature of this bath and the intensity of its associat-
ed random source can be determined in a time-dependent
neutron scattering experiment. The dynamic spin auto-
correlation in a dissipative magnetic material are directly
accessible from experimental data. Making use of this in-
formation, the Gaussian widths of the distribution Q, can

scattering intensity (arb. units)

23 4 5 6 7 ¢ 9
scattering angle

FIG. 2. Scattering intensities near an equilibrium critical
point (curves a and b) and for a dissipative spin system coupled
to a heat bath (curve ¢). The scattering angle is given in degrees.
Curve a corresponds to an Ornstein-Zernike equilibrium spin
correlation  function with effective correlation length
£=(0.00583)"! A. Curve b was obtained with a Hart correla-
tion function with £=(0.018140.184)~! A. Curves a and b
are from Ref. 9. Curve ¢ was obtained making use of the nu-
merical integration of Eq. (21) giving the dynamic correlation

Glq).
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be derived. Since there are scaling relations linking the
small parameters of the system at the onset of a CM, the
noise intensity range can be calculated. The dynamic ex-
periment, however, cannot be compared to its static coun-
terpart (given in Ref. 9) yielding equilibrium spin auto-
correlations. This is no since the intensity of the forcing
field provided by the random source is not an independent
parameter which can be varied arbitrarily. Its range is
controlled by the scaling relations imposed by the ex-
istence of a CM; thus, the static case is in no sense a limit
of the dynamic one taking M —O0 since the latter pro-
cedure is not valid.

IV. CENTER-MANIFOLD RENORMALIZATION

In this section we shall consider for the sake of
mathematical simplicity the case in which the dimension
of the system is d >4. This case will serve as an illustra-
tion to show that the coarse-graining procedure based on a
CM reduction and the renormalization-group approach
yield the same results. The first-order approximation
8jq=G (@)~! will be assumed throughout this section.

As s becomes small, the distribution Q, behaves like a
Dirac 8 function peaked at the CM. That is, for soft
coarse graining with sharp initial resolution (large L), we
get from Egs. (3) and (4)

L/shan]SLQ2 B g Byig —ig) - @3
Lsgrlge
This allows us to obtain an explicit expression for the in-
finitesimal operator K for the semigroup of transforma-
tions K; induced by the family of manifolds [CM(s)]

= 1
K=lim |<(K, 5—1
50 6( 1+8 )]
.1 ~
=lim— II 5(y,~q —y,-q) —11. (24)
505 L_/(11—+—28)gqu
i=12,..., n

On the other hand, for large s, we find that the long-
wavelength modes which have large correlations near cri-
ticality (since g =L /s is small) are more broadly distribut-
ed about the CM than the short-wavelength modes
(g >>L/s).

Along the manifold [ M,a (T —T,),0], we get

D; _(H=[a(T—T,)+k* ]y . (25)

In order to find the renormalization-group transforma-
tion R, we consider the critical manifold (M,0,0) and ap-
ply the rescaling transformation N; to the set of Langevin
equations equivalent to Eq. (22):

d

30 k= — MKy + fic - (26)
By replacing y;; for sy (s ~7), we get
—(%sy,.sk(ts ~2)— _ Mk s, (15— + fix - 27

Let us make the substitution
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sk=k', s7%=t', s i s(t'sH)=Fit') .

Then we get

%yikr(t’)——— —M'(k" Pyt )+ fir(2') (28)
(Sl () flien (27)) =2M"8(t" —1"")8,;8 _gxr (29)

where M’ =Ms?~2, Therefore, R,(M,0,0)=(Ms*~2,0,0).
This transformation has stable fixed points if and only if
z=2, a result already obtained from renormalization-
group theory.®

It is worth noticing that for a spatial resolution to order
s /L, the corresponding reduced equation (22) is valid in
the whole parameter space; it is not restricted to the criti-
cal manifold as is the case in previous treatments.’ 8

V. CONCLUSION

We have shown how the CM coarse-graining reduction
can be implemented to predict dynamic spin autocorrela-
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tions which can be measured by neutron scattering in far-
from-equilibrium systems coupled to a heat bath. In or-
der for a CM to emerge, we have shown that the strength
of the random source must be properly scaled with the
size parameter of the system. [See also Ref. 4(b).] This
fact determines the importance of a time-dependent neu-
tron scattering experiment under far-from-equilibrium
conditions since the range in the strength of the random
source can be readily calculated from the dynamic scatter-
ing cross sections, as shown in Sec. IV. We have also
shown analytically the equivalence of a CM reduction and
a renormalization-group treatment in the case d > 4.
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