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Ullersma's model consistently describes the quantum-mechanical damped harmonic oscillator.

Proper limiting processes in the initially reversible solutions lead to irreversible behavior. It is

shown that the irreversible solutions can directly be derived from a field version of the discrete

Ullersma Hamiltonian H (H ~HF). In the ground state of the system the phonon occupation nurn-

ber of the oscillator does not vanish. Therefore, these "bare" phonons cannot be interpreted as

"physical" quanta or particles. By suitable canonical transformations, the bare-field description is

transformed into a physical description (HF~Hph), which allows the definition of physical particles

and which is characterized by a renormalized frequency, a screened interaction between oscillator

and bath, and a symmetry of position and momentum operators. The physical description is closely

related to the rotating-wave approximation of the original model. The relaxation behavior and the

equilibrium properties of the different descriptions are discussed and compared.

I. INTRODUCTION

The understanding and the consistent description of the
irreversible character of quantum-mechanical systems is
of central importance in statistical mechanics. Especially
at very low temperatures where the quantum description
is indispensable. In order to understand the transition to
irreversibility and to clarify many important questions in
this context, it can be very useful to study simple and ex-
actly solvable models. The most popular archetype is the
damped harmonic oscillator. '

Although the pioneering studies have been made nearly
20 years ago, ' lately there has been a revival of this to-
pic. " The recent work is partly motivated by the pro-
gress of experimental low-temperature techniques. From
a theoretical point of view, there are relations to the prob-
lem of quantum tunneling in dissipative systems. '

Usually one starts with a reversible Hamiltonian which
describes the harmonic oscillator (system), the heatbath
(system with many degrees of freedom), and the interac-
tion. A proper limiting process in the initially reversible
solutions, which corresponds to the transition to the infin-
ite bath, leads to the desired irreversible behavior. The
bath is often represented by a set of noninteracting har-
monic oscillators which are coupled to the central oscilla-
tor; the coupling is linear in the position coordinates of
system and bath [a justification of this bath modeling was
given by Caldeira and Leggett; see Appendix C in Ref.
12(b)]. This same model was thoroughly analyzed by Ull-
ersma in his comprehensive work. Recently, various as-
pects of this model (e.g. , low-temperature anomalies) were
discussed by Lindenberg and West, Grabert et al. ,
Braun, Haake and Reibold, Riseborough et al. , and the
author. "

Ullersma's model can be related to some models in
quantum field theory which describe the decay of unstable
particles, ' e.g., the decay of the excitations of a harmoni-
cally bound electron in the blackbody radiation field. '
For large times (taboo) the occupation number of the

electron excitations (i.e., phonons which are described by
the creation and annihilation operators a and a, respec-
tively) should be in thermal equilibrium with the radiation
field. If we initially assume a photon vacuum state (tem-
perature T=O), the phonon occupation number (a a)
should vanish for t~ oo. In contrast to this assumption,
the calculation leads to a finite ( &0) value for (a a ).
Eganova and Shirokov' "' have pointed out that the
underlying "bare"-field description of the decay process
excludes the definition of (a a ) as an expectation value
of physical quanta: in the physical vacuum (i.e., in the
ground state of the global system, which is reached for
taboo ) physical quanta cannot be present. Eganova and
Shirokov' developed a method which allows the defini-
tion of physical (or dressed) particles. In contrast to the
bare-field description, the physical description must
guarantee that the physical vacuum coincides with the
ground state of the physical particles.

In the studies of Lindenberg and West and Grabert
et al. it is shown that the irreversible solutions for the
Ullersma model also lead to a residual population (a a )
( T =0, t ~ oo ) of the oscillator. Therefore, we will
transfer the argumentation and the method of Eganova
and Shirokov to the Ullersma model. In this paper we
want to formulate the corresponding quantum relaxation
process in terms of physical phonons, i.e., in terms of
quanta which fulfill the fundamental demand to be absent
in the ground state of the system.

In Sec. II the discrete bath of the Ullersma Hamiltonian
is rewritten in the form of a continuous Bose field
( H ~HF ). We will prove that this field formulation
directly leads to the irreversible solutions. The transition
to irreversibility must no longer be performed in the re-
versible solutions of the Ullersma Hamiltonian ' '" and
no longer requires operations in the complex plane. We
will discuss some important properties of the solutions.

In Sec. III we set up the canonical transformations
which transform the bare-phonon description into the
physical one (HF~H~q). The physical Hamiltonian is
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characterized by a renormalized frequency of the oscilla-
tor, a screened interaction between oscillator and bath,
and a symmetry of position and momentum operators.
We solve the corresponding initial-value problem and we
discuss the solutions of the Heisenberg equations of
motion. We will see that the physical description is close-
ly related with the rotating-wave approximation (RWA)
of the bare-phonon description. In Sec. IV we compare
the different solutions (bare-field, physical, and RWA
description) and we discuss high- and low-temperature
anomalies.

(iii) We consider co„as a continuous function of v and
introduce the density of states

df '(co„)
co„=f(—v) = dv=D(co„)dco; D(co„)=

d COv

(iv) We define the new bath variables (the continuous
bath frequency is denoted by k: co ~k)

qk=[D(k)]'"q. , p„=[D(k)]'"p. ,

and the corresponding canonical commutation relations

[qk pk'] =ifi5(k —k') . (2.4)

II. FIELD FORMULATION OF ULLERSMA'S MODEL

A. Diagonalization of the field Harniltonian

The model describes one central oscillator ("oscilla-
tor") which is coupled to N further harmonic oscillators
("bath"). The coupling is linear in the position coordi-
nates' (momentum coordinates, p,p„position coordi-
nates, q,q; frequencies, coo, co; masses, mo, m; coupling
constant, ~r ),

N
H= —,(p /mo+mocooq )+ g —,(p /m +m co~ )

c(k)=[ D( k) r(k) km ]o'~ (2.6)

Now we introduce the particle operators a, a and bk, bk ..

In the new Hamiltonian HF one discrete (bare) oscilla-
tor is coupled to a Bose field

HF —,'(p /——mo+mQcoQq )+ —,
' f dkk(pk+qI, )

+ f dk c(k)qqk .

The new coupling constant E(k) is related to the old one

[r. r(k)l

N

+ g (r~ mo)' co~q
v=1

(2.1)

a =(2fimocoo) '~ (mocooq+ip),

bk=(2&) '"(qk+ipk»

(2.7)

(2.8)

In the following four steps, Ullersma's method leads to
the damped harmonic oscillator.

(i) The discrete Heisenberg equations of motion are ex-
actly solved; i.e., the Hamiltonian (2.1) has to be diagonal-
ized:

N+1
H= g —,

' (p„+z„q„) .
n=1

(2.2)

The irreversible solutions which follow from the above
sketched method can be obtained more directly by a field
model. The spectrum of the underlying Hamiltonian con-
sists of one discrete eigenvalue and a set of continuous
eigenvalues. A formal procedure turns the Hamiltonian
(2.1) into the following desired field model.

(i) We perform the canonical transformation

(ii) The initial conditions of the bath oscillators are
characterized by thermal Bose occupation numbers (tem-
perature T).

(iii) The discrete eigenvalues z„are replaced by a con-
tinuous set (the transition is performed in the solutions of
the equations of motion and requires operations in the
complex plane).

(iv) The introduction of a smooth density of states for
the bath oscillators is inherently connected with step (iii):

g(. )~ f (. )D(co)dco; r ~r(co) . (2.3)

and fix the initial conditions. We assume that at t =0 the
oscillator and the field are decoupled and that the field
represents a heatbath

~bk~0

( bkbk')Q =&(k —k') ( &k )th,

where

Ak
( n„),„= exp

B

(2.9a)

(2.9b)

(2.10)

The procedure of diagonalization corresponds to the
method of Eganova and Shirokov. ' " We perform at
first a canonical transformation which diagonalizes the
momentum part of HF and secondly an orthogonal
transformation U which diagonalizes the quadratic form
of the position variables. The matrix U consists of one
discrete column and a set of continuous columns and sat-
isfies the conditions of orthogonality U U= UU = 1:

U=(Ui, Uk ) . (2.11)

Correspondingly, the diagonalized Hamiltonian consists
of a continuum of positive eigenvalues (0 &co & ca )

HF =
2 f dco(p~+ co q~ ) (2.12)

The corresponding "particle" operators are given by

p ~p +co~, q ~q /+co~„. b =(co/2R)'~ q +i (2fico) '
p (2.13)

(ii) We make the transition to a continuous bath spec-
trum

g ~ f dv, [q,p„]=i%6(v—p) .

The transformation U (Ref. 17) can be represented in
terms of the complex impedance Icb(co) (b represents bare)
and the generalized susceptibility Pb(co). The impedance
is determined by the density of states and the coupling
constant
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~'s(~) =(m./2)D(co)y(co),

~I, (k)
x'b(cu) = (2—/~)roP f dk

k —m2

(2.14a)

(2.14b)

The real and imaginary parts of ~b are related by the
Kramers-Kronig dispersion relation. Consequently, the
analytically continued function vs (z) ( z =co'+i co" ) is
analytical in the upper halfplane cu" & 0 and can only have
singularities in the lower half-plane m" (0. The same
statements are also valid for the generalized susceptibility
(it can be shown that Xb(co) is the Fourier transform of
the linear response function, which is related to the per-
turbation Hamiltonian H,„,= —qF (t) [Ref. 2(b)] }

Xs(z) = [—z + Qs —izvb(z)] (2.15)

B. The irreversible solutions

After some straightforward algebra we obtain the solu-
tions for the particle operators a (t) and bk(t) in the
form'

In (2.15) we have defined a renormalized frequency II&.

Qb ci—)—p (2—/rr) dc@ xb(co) . (2.16)
p

The stability of the solution demands that AI, must be
positive.

COp

Q7+ coo
a (t) = f e ' 'XI,'(cu) [(co—cop)a (0)+(co+cop)a(0)]

27T

k
dk

27Tcop

1/2

2m co —k — —2m co+ k

1/2

dk ~b k ~o+k Xs k e '"'bk 0 + ~p —k +t, k e'"'bk 0
27Tct) p

(2.17)

bk(t) =e '"'bk(0)—
' 1/2

I~I, (k) Xq(k)e ' '[(k+ cop)a (0)+(k —cop)a (0)j
27Tcop

' 1/2

vI, (k)
dQ) Xb (~ ) 2kf e ' ' [(co+cop)a(0)+(co —cop)a (0)]+ ~I, (k)2' CO —k 7T

' 1/2

xf dk ~I,(k)2k'
1/2

dc' bk(0) bp (0)
' 'XI,'(~), +—~ — 2n (co —k)(cu —k') (co —k)(co+ k')

2k
~s(k)

1/2 X~(k'),„,, Xb(k)

k +k k'+k

Xg(k') „, Xg(. k, )
(2.18)

The solutions (2.17) and (2.18) are consistent in the sense
that for all times t &0 the canonical commutation rela-
tions are exactly valid. Of course, this is a consequence of
the orthogonality conditions. All terms in (2.17) and
(2.18) which include a co integration are exponentially
damped [all possible singularities in Xb(co) have a negative
imaginary part]. We can infer that the time-dependent
nonequilibrium values of all physical quantities referring
to the central oscillator approach their equilibrium values
exponentially. ' The long-time behavior of a ( t) is
described by the last term of (2.17), which is driven by the
initial values of the bath operators. Equation (2.18) re-
veals that for t~ ~ not only the free or diagonal part is
left [first term in (2.18)]. There are also contributions
from all other bath oscillators [nondiagonal parts, last
term in (2.18}],and the initial values of the central oscilla-
tor "are not forgotten" [second term in (2.18)]. We can
return to the discrete bath in (2.17) and (2.18) by the re-
placement

oo

dk —~b k

' 1/2

C. The particle interpretation

We emphasize that a(t) and bk(t) are not only deter-
mined by the initial values of the annihilation operators
but also by the initial values of the creation operators:
For the expansion of a and bk we need the annihilation
and the creation operators of the diagonalized Hamiltoni-
an

a = —,
' f dc@ U] [(+cop/ct)+ +6)/ p)re„

+ (+cop/co —+co/cop)b ] (2.19)

[additionally, we have to replace 5(k —k') by 5kk in
(2.9)]. In this discrete version the solution (2.17) coincides
with Ullersma's result.
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b„= ,
' f—dc@Uk. [(&k/co+Neo/k )b„

+(&k/co —&co/k )b ] . (2.20)

From (2.19) and (2.20) it follows that the ground state of
the diagonalized Hamiltonian (2.12), which represents the
vacuum of the "universe, " i.e., the state of lowest energy
("physical" vacuum), and which is defined by the relation

b vac) =0, (2.21)

~ dco (coo —co) 2

Xb'(co) .
277 cop

(2.22)

In the physical vacuum no physical particles (phonons)
should be present and a a cannot be interpreted as a phys-
ical particle number operator. ' " Therefore, we will
denote a a as a bare particle number operator and we will
speak of a bare-field description of the relaxation process.

The positive expression (2.22) corresponds to a negative
value of the interaction energy

does not coincide with the ground state 0) of the opera-
tors a and bk (a

~

0) =bk
~

0) =0). Consequently, we find
in the physical vacuum excitations of the oscillator

2
cc

2 (Cop —CP )
( vac

~

a a
~

vac ) = —,
' f dco U &„

COC00

a —(2A') '
(q+ip ), bk —(2') '

(qk +ipk ). Obviously,
we can find an orthogonal transformation M which diag-
onalizes the momentum and the position part of Hph
simultaneously:

M]

Mk
q

qk

Mi
=fd~ M q. .

keg

The expectation value of a a vanishes in the physical vac-
uum and the definition of a a as a physical particle num-
ber operator is possible. In Sec. III these considerations
will lead us to the physical description of the quantum re-
laxation process.

D. Some equilibrium properties

For t~ ac we find the correlation function

[coKb ( co )
~
Xb ( co )

~

=Xb ( co ) ]

We obtain the diagonalized Hamiltonian
H~h' ——f dco co(p +q ) and the corresponding operators
b —(2') '

(q +ip ). Now it is clear that a and bk
can solely be expressed by the annihilation operators 6

a —(q+ip) —f dcoM~ (q +ip ) —fdcoM~„b

bk — dao Mk„b~ .

vac f dk c(k)qqv vac)
oo

0

oo oo=—f dCo f dk —Kb(k)
2

1/2
k

Uk

(Ref. 21):

(a (t)a(t'))„

= f X (kb) C[o(pl+ k/CCto) e' ' ' '(nk ),h
2m

fi f Kb(co)co— f dk Xb'(—cp)(k +co) +(1 k/ )2 —ikit —t')

fi Xb(co)(co—p co ) . —~ dc'
(2.23) x((nk) h+1)], (2.24)

Eganova and Shirokov have pointed out that a Harnil-
tonian which describes the linear coupling of one harmon-
ic oscillator (oscillator) to a harmonic Bose-field (bath),
and which allows a physical particle interpretation should
be symmetrical in momentum (p,pk) and position (q, qk)
variables " H ~h f(p,pk )+f(q, q——k ). Owing to this
symmetry, the particle operators have the form

I

E,'", (t~ o)=otto[(a (t)a(t))„+—,'] . (2.25)

It can easily be seen that the correlation functions
(a(t)a (t') ) and (a (t)a (t') ) do not vanish.

The interaction energy (t~ oo ) can be derived from
(2.17) and (2.18)

and the appropriate energy of the oscillator in thermal
equilibrium

E;„(tattoo)= f dk e(k)(q(t)q&(t))„

~ dco, 2 " Xb(P) "dc', 2 " Xb(P)
%69Kb CO dP —2 RQ)Ky CO dP 2 2 P fl th

—6) Pl Pp+co p —co

Xb'( )2( o — ')((n ),h+ —,
'

) . (2.26)

For the calculation of (2.24)—(2.26) we have used the
Heisenberg picture. The comparison of (2.24) and (2.26)
with (2.22) and (2.23) (Schrodinger picture) shows us that
for T =0 and t~ oo the system reaches its physical

ground state. Therefore, the results (2.24) and (2.26) can
also be derived on the assumption that at t =0 the diago-
nalized system is in thermal equilibrium [one starts with
(2.19) and (2.20), uses the time dependence b„(t)
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p =mpq,

q(t)+Ilbq(t)+ f dt't(b(t —t')q(t') =f„(t),
where

(2.27)

(2.28)

=b (0) exp( i—cot) and assumes that the operators b„and
bt fulfill the bath condition (2.9)]. From (2.26) it can be
seen that the interaction energy exactly equals the double
difference of kinetic and potential energy.

We have mentioned above that for T =0 the positive
contribution of (2.24) is made possible by the negative in-
teraction energy (2.26). Of course, the bath cannot
transfer (positive) energy to the oscillator at T =0. The
temperature-dependent part of the interaction energy is
also negative: (p(n ),h

—co(n„), h)(p —co) '
& 0. The

consideration of only the free part in (2.18) [first term in
(2.18)] would have led to a complex expression (real and
imaginary part) for the interaction energy. The result
(2.26) crucially depends on the nondiagonal part of (2.18).

The analytical properties of t(b(co) allow us to represent
the long-time solutions (t~ ce ) in the form of a stochas-
tic integro-differential equation, which is in harmony with
causality

position and momentum variables. A simple canonical
transformation which will succeed has the form

—1/2
q =mo gq,

p =ma [g 'p+ f dk g(k)pk],

'"[qi 4k—(k)q]

1k=k Pk .1/2

(3.1a)

(3.1b)

(3.1c)

(3.1d)

(2g ) '=(g /2) coo+ f dk g (k)

g and g(k) are real numbers which must be determined
below. The insertion of (3.1) in (2.5) leads to a Hamiltoni-
an which is no longer diagonal with respect to the (pk)
terms. In the next step we diagonalize these terms by an
orthogonal transformation X=(Xk ) and we introduce
the corresponding new canonical variables q and p .
The calculation of X parallels the work of Eganova and
Shirokov [see Appendix A in Ref. 13(a)].

We demand that H~h should be symmetrical with
respect to the new momentum and position variables. We
obtain the conditions

t(b(t) = f t(b(co)e
27T

(2.29) —2$(k )
—t(b (k )
2

1/2 ',

Kb ( t) vanishes for t (0 and, consequently, t(b (co ) can be
described as the Laplace transform of an a priori given in-
tegral kernel

Kb(ai) = f dt i(b(t)e'"' . (2.30)

The statistical properties of the stochastic operator f„can
easily be found. We insert the solution q(t~ &x& ) in (2.28)
and use the initial condition (2.9)

=0/2,

(gv v)-' f dk g'(k)Xk„

=gv v f dk —i(b(k)
0 77

=(2+Amo) 'E(v) .

1/2

(3.2)

—g(k) Xk

(3.3)

(f„(t))=0,
(f„(t)f„(t') )

(2.31)
In (3.2) and (3.3) we defined a "dressed" frequency 0 and
a dressed coupling function E(v). The physical Hamil-
tonian has the desired structure

2AcovI, co n, h+1 e
m p oo 2'

(2.32)

H» —(II/2)(p'+q')+ —, f dvv(p. +q'. )

+ dvE v 4mpO '
qq +pp (3.4)

The spectrum of the dissipative kernel, more exactly its
real part t(b(co), determines the spectrum of the correlation
function of the stochastic operator. It has been shown by
the author" that this fluctuation-dissipation relation
represents nothing else than the well-known Callen-
Welton-Kubo fluctuation-dissipation theorem. For arbi-
trary times t 0 there is no simple dynamic equation
which would exactly reproduce the decay process (2.17).
Nevertheless, there are stochastic differential equations
whose solutions approximate very well to the exact solu-
tions in the weak damping limit. "

III. THE PHYSICAL DESCRIPTION

A. The transformations

a =(2') '~ (q+ip), (3.5)

b„=(2') '~
( +i )

H»/iii=(Q/2)(a a+aa )+ —,
' f dvv(b P„+b b )

(3.6)

+ f dv(4moA) ' E(v)(a tb +ab „) . (3.7)

In the following we demand that at t =0 the dressed field
represents a heatbath:

(3.8a)

(3.8b)

Hzh can be expressed in terms of the physical particle
operators

In Sec. II C we have seen that the transformed Hamil-
tonian H„h should represent one oscillator which is cou-
pled to a Bose field and should be symmetrical in the new

The physical Hamiltonian (3.7) is closely related to the
rotating-wave approximation (HRwA) of the initial Ham-
iltonian HF. If we introduce the bare particle operators
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(2.7) and (2.8) in (2.5) and if we omit the "fast oscillating
terms" abk and a bk, we obtain the exact form of (3.7),
where the renormalized quantities A and E(v) are re-
placed by the bare quantities coo and E(v). We emphasize
that the ground state of HRw& does not coincide with the
ground state of HF and Hph HRwA and Hp are not con-
nected by a canonical transformation.

We point out that 2I y/cop need not to be very small com-
pared with one.

(iii) Kb(v) should be a slowly varying function of v, so
that we can replace Kb(k) in (3.13) by Kb(coo)=21. The
integration in (3.13) can be performed and we obtain the
quadratic equation A —(2/~)Kb(coo)A —Ab ——0 which
yields the first-order result

B. The dressed quantities 0 and E(v)
1

A =Ab+ K—b(~, ) .
7T

(3.17)

For the calculation of f and g(k), we put Xk„(Ref. 26)
into (3.7). After some simple algebraic manipulations we
find a nonlinear integral equation for g(v)

v2
g(v) =(2/~)' '

1+vg

The consideration of y would have led in (3.17) to addi-
tional terms of the order ~pI /y. Obviously, the inequali-
ty A —Ab «

l
Ab —~o

l

is vahd.

The left-hand side of (3.3) only depends on /=A 'i and
g(k). We replace g(k) by g' '(k) and we find the
lowest-order result

+P f dk, [[Kb(k)]' g(v)
v —k

(2+Amo) 'E(v) = —Kb(v)
2

]/2

v'v/A( 1+v/A )

(3.18)

From (3.9) we obtain g(v) as a function of g. The inser-
tion of g(v) into (3.2) leads to an equation for g. In order
to find an explicit relation between the dressed and the
bare quantities, we make the following assumptions

I /cop«1 . (3.10)

Then (3.9) can be solved by iteration. For the zeroth and
first approximation we find

(i) Kb(v) should be small, so that a smallness parameter
21 [2I =Kb(cu, )] can be attributed to Kb(v). "Small"
means that

Equation (3.18) corresponds to the simple formula [see
(2.6) and (2.14)]

E(v) =2E(v)(1+v/A) (3.19)

The comparison of the bare and the physical relaxation
process in Sec. IV will be based on the relations (3.17) and
(3.18).

C. The irreversible solutions and some consequences

We have explained above that one orthogonal transfor-
mation M will lead to the diagonalized form of Hph..

a',Dh'= f d~~(p'+q') . (3.20)

g' '(v)=[2Ki (v)/~]'i vg (1+v/ ) (3.11)
The explicit form of M was calculated in Appendix B of
Ref. 13(a). The definition of the quantities

, f dk
1+vg

kKb(k)

(0+v)(k+ 1/g )

(3.12)

E (v)/v
Kg(co) =~E (co) icoP dv-

p V —CO

("impedance") and

(3.21)

In the following we will limit our discussion to (3.11).
The insertion of (3.11) into (3.2) leads to a transcendental
equation for g:

1 ——f dk Kb(k)(k + 1/g ) =Ab . (3.13)

Xg(co) = [—co+ Ag —l Kg(co) ] (3.22)

E(v) =(2+moA) 'E(v), (3.23)

("susceptibility" ), allows the proper representation of M. 30

In (3.21) and (3.22) we introduced the coupling function
E(v):

The second term in the parentheses of (3.13) is small com-
pared to 1.

(ii) We define a cutoff parameter~s (m/2)y

and the renormalized frequency A~

Ay=A —f dvE (v)/v. (3.24)

(2/rr) f dkKI, (k)=2I y &co

and we assume the inequality

f ))COp .

From (3.14) it follows that

Qb =cop —2I p
2 2

(3.14)

(3.15)

(3.16)

The stability of the solutions demands that A~ & 0.
Above, we have placed the words impedance and sus-

ceptibility in quotation marks: The analytically continued
functions K~(z) and p~(z) need not be analytical in the
upper z half-plane. The real and imaginary parts of Kg(ci))
do not fulfill the Kramers-Kronig dispersion relations.
Furthermore, X~(co) is not an odd function of co.

In order to reveal the analytical structure of the prob-
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lem, we introduce the new variable x =co and the func-
tion K(x) (x & 0):

Kd(CO=X ) =XK(X)

From (3.21) it follows:

(3.25)

2
" E'(v=y')/y

K( x)=m.E (co=x )/x 2i—xP f dy
0 —X

(3.26)

We see that K '(x ) and K "(x) are connected by the
I

Kramers-Kronig relations and, consequently, the analyti-
cally continued function K can have no singularities in the
upper x half-plane. Correspondingly, the function
X(x)=X~(co=x ) is analytical in the upper x half-plane.

In contrast to Sec. II B we cannot extend the integration
range to the negative co axis. Nevertheless, the corre-
sponding integrals can be evaluated by contour integra-
tions. To begin with we shift the integration lines infini-
tesimally into the negative co half-plane and express the ir-
reversible solutions in terms of the above introduced
quantities Kd(co) and Xd(co):

de —imt
(X) Xd (CO)

(2(t}=CT(0)f e ' 'Xd(CO)+ f dv[Kd(v)/m]' b . (0) f e
0 CO —V

—f dv e ' '[Kd(v)/n ]' Xd(v)b (0), (3.27)

ao —dco Xd(CO)b„(t)=e ' 'b„(0)—[Kd(v)/vr]' Xd(v)e '"'a(0)+[ Kd( v) /m]' e '"' a(0)
Q) —V

00
) /2 d CO iao(—+ [Kq(v)/rc]' f dp b„(0)[Kq(p)/~]' f e

(CO —V)(CO —
(CC )

OO , , Xd(v)e ' ' Xd(p—)e
+[Kd(v)/~]'~ P f dpb„(0)[Kd(p)/~]'~

0 P —V
(3.28)

The terms in (3.27) and (3.28) which contain an integra-
tion over co vanish for t~ oo. In contrast to Sec. II B the
physical decay process (3.27) is not strictly exponential.
We close the integration line by a quarter circle from oo

to i 0() (t —& 0) and by the imaginary axis from —i N) to
0 to a contour C. For the sake of simplicity we assume
that Xd(co) has no singularities on the imaginary axis.
Then we can write

f dCOe ' 'f(CO)= f, dCOe ' 'f(CO)
0—f dCOe ' 'f(CO) . (3.29)

(3.30)

In contrast to the bare solutions (2.17) and (2.18), the
physical solutions (3.27) and (3.28) are only determined by
the initial values of the annihilation operators. There are
no physical particles in the physical vacuum.

If we replace in (3.27) and (3.28) Kd(v) with Kb(v) and
Xd ( CO ) With

X(RWA)( ) + II(RWA)

Whereas the contour integration in (3.29) describes a
strictly exponential decay, the second term in (3.29) can
cause an algebraic decay

—f dcO f(CO)e ' '= ——f dp f[CO= —(ip/t)]e

I

where

IIb cop dvKb(v) =cop—,(3.32}(RwA) 1 1 ~, I y
2' O 7T 2coo

we obtain exactly the solutions of the RWA version of H~
(2.5). Equation (3.31) has the same analytical properties
as Xd(co) and, consequently, the RWA solutions will not
decay strictly exponentially. '

D. Nonexponential decay

We consider times for which only the nonexponentially
decaying terms are essential. We obtain the asymptotic
solution

[a(t)]„„=CT(0) ——f Xd —~ e
t o m t

—f dve '"'[Kd(v)/~]'~ Xd(v)b (0)

+ f dv[Kd(v)/m]'i b„(0)

Xd
i dp
t o m —ip/t —v

(3.33)

CO—l Kb(CO)
2coo

ao Kb(V)—i —P dv
2COO 7T 0 V —CO

(3.31)

In the limit of large times we need the behavior of Xq(co)
for co~0. We assume that Kb(co) =(n/2)D(co)y(co) tends
to 2I (co/a), A. &0, for co~0. The positive quantity a
denotes a characteristic frequency (I «cc «y}. Then it
follows from (3.18), (3.23), and (3.21): Kg(co)
~4I (co/Q)(co/a)" as co~0. Now we note that Kd(co)
vanishes for co~0. We find the result
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as co~0 .

[a(t)] „=—f dv[ird(v)ln] gd(v)e ' 'b (0)

4r 1
(0)

~Q (tI4)'

+ 2 f dv[~d(v)lm. ]'~ b (0)
~QQd 0

X [vg (vt)+ivh (vt) i I—t] .
(3.35)

I

x,"( ) 4r (3.34)
nn„'

For finite temperatures we will only discuss the special
case A, =O (Ohmic dissipation). The p integrations in
(3.33) can be evaluated

In (3.35) we defined the functions

g (x)= —ci (x) cos(x ) s—i (x) sin(x)

1 3!
X X

as x~~,

h (x) =ci (x) sin(x) —si (x) cos(x)

21 + ~ ~ ~

X
as x~~ .

Equation (3.35) leads to the decay law

(3.36)

(3.37)

(a (t)a(t))„„—f Xd'(v)(n ),„
'2

(«„)-'(a '(o)a(o))+
2

f s(d)v[ vg (vt)+[vh(vt) 1/t) —)(n„),„

8I dv
2

«&d(v)Xd(v)e'"'[vg(vt)+ivh(vt) i It)(n„),h
—.

e-nnd2
(3.38)

The terms on the right-hand side of (3.38) are of the order
0(r ). Therefore, we can neglect the nonexponential con-
tribution to the decay if we restrict the discussion to
first-order results in I .

For T =0 (i.e., the bath is in the vacuum state at t =0)
only the first term in (3.33) contributes to the decay [I (A, )

denotes the I function]
2

(a (t)a(t)) 4r
(tA~) 4(ctt) '~

Qt ))1 VTQ

From (3.27) and (3.28) the interaction energy can easily
be evaluated

E;'~t"'(taboo)= f dvE(v)(a b„+ab )„
~ dv

Kd v

2 "de &d(~)
Xp

X [I (X+2) ] (a t(0)a (0) ) . (3.39)
= —fi g" 2 0, —

E. Some equilibrium properties

For t~ ao we obtain the correlation function [see
(3.27)]

(a (t)a(t')) „=f gd'(v)e' ' ' '(n ),h, (3.41)

and the corresponding energy

E,'~"'(t~ ~ ) =A'Q[(a t(t)a(t) )„+—,
'

] . (3.42)

In contrast to the bare-field description, the correlation
functions (a(t)a(t')) and (a (t)a (t')) vanish.

It is questionable if such a small effect ( —I t ) is
measurable: The contribution (3.39) must be large com-
pared with the exponential contribution

(a (t)a(t))=e '(a (0)a(0)) . (3.40)

Equation (3.40) is based on the assumption that the con-
tour integrals are essentially determined by the pole
cg =Qd i I in X—d (co ).

(3.43)

~d(v)= f dr~a(r)e'

a (t~ co ) fulfills the dynamic equation

(3.44)

For T =0 and taboo the system is in its vacuum state

~

vac). In this state there are no physical particles and
the interaction energy must vanish.

The results (3.41)—(3.43) can also be derived on the as-
sumption that at t =0 the diagonalized system is in
thermal equilibrium [one uses the time dependence of the
bath operators b (t)=b (0)e '"' and the initial condi-
tions (2.9) with respect to the bath operators b„). Of
course, the interaction energy (3.43) is negative for all
temperatures [((n ),h —(n ),h)(co —v) '&0]. As above,
the result (3.43) depends essentially on the consideration
of the off-diagonal contributions in (3.28) [last term in
(3.28)].

Now we pose the question, if the solution (3.27) for
t —+ oo can be determined as the exact solution of a causal
dynamical equation. It can easily be shown that with the
definition
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t—i +Ad a(t) i— dr Kg(t r—)a(~)
dj 00

2n - KI (v}
Xd(cp) = —co+ dv

(v+Q)

oo

d v —Kd(v)

1/2

b (0)e '"' . (3.45)
Kb(v)

P dv
207T p v —co

4
(1+v/0)

The right-hand side of (3.45) can be interpreted as a sto-
chastic "gaussian" operator g„(t) with the properties

Kb (CCI )—12
& (I+pI/II)

(4.4)

(g„(t))= (g„(t))=0,

( g„(t)g„(t')}= (g„(t)g„(t')) =0,

(3.46a)

(3.46b)

(g„(t)g„(t')}= Kd(v)e ' ' ' '((n„},b+1),
m

(g„(t)g„(t')}= Kg(v)e'"' 'l(n„},„.
(3.46c)

(3.46d)

In order to construct the equation (3.45) we have to
prescribe the way from an a priori given function Kd(v) to
the function Kd(r); i.e., we have to invert (3.44). On the
one hand we know that in general Kd(v) can have singu-
larities in the upper v half-plane. On the other hand, the
analytical continuation of (3.44) leads to a function which
must be analytical in the upper half-plane [we assume that
~q(r) is a reasonable linear response function]. Conse-
quently, we cannot find a reasonable function Kd(r) in
general. There is only the possibility that we abandon the
causality and that we extend the v. integration range in
(3.44) to minus infinity and in (3.45) to plus infinity,
respectively. In this case, x~(r) represents the inverse
Fourier transform of K~(v).

%e will only discuss first-order results in I and, there-
fore, we can replace co by ~p or 0 in the additional in-

dependent shift terms. Furthermore, the assumption that
Kb does not change appreciably in the range in which the
function (1+pI/II) is different from zero (note that
y »0) allows us to replace Kb(cp) by 21 in (4.4) and, ac-
cordingly, the cutoff parameter y is explicitly no longer
present in Xd(cp). The structure of the bare interaction is
screened by the function 4'/Q(1+co/0)

For co~0 the imaginary parts of (4.2)—(4.4) show the
same qualitative behavior (see Sec. III E):

Xb'(pI ~0) 2I cop cp
a

r '
A.

Xd'(co~0) ~4I 0 cp
CX

(4.5a)

(4.5b)

IIX(RwA)
( 0) P —3

CX

(4.5c)

With respect to (4.2) and (4.3) we will sometimes refer
to the Drude model (~A, =O) which fulfills the above
demanded and assumed properties

IV. COMPARISON AND DISCUSSION

A. The distributions

Kb(co) =21 y(y ico)—
where

I ((cop ((p

(4.6a)

(4.6b)

In the following we refer to the approximation (3.18)
and the corresponding relation between Kd(cp) and Kb(cp):

Kd ( cp ) = ( 2cp /II )( 1 +cp /II ) Kb ( cp }, (4.1a)

KI, (v)
Xb(cp) = —cia + QJp —2I l — cp P dv

77 p v —cp

CO Kb(v)
Kd(co) = 2i P f —dv . (4.1b)

(v —cp)(1+v/II )

For the calculation of physical quantities we need the dis-
tributions (2.15), (3.31), and (3.22):

2

Xb(cp) = —cp +(cpp 2I y) i—2I cp—2 2 ~ y'

CO +P

(RWA) Ip . co
2

Xb (Cp) = —Cp+ Cpp— —I', I
2cop ~p co +y

(4.7)

(4.8)

The shift terms in (4.2) and (4.3) are to be related to the
bare frequency cop and, therefore, the contributions of the
PrinciPal value integrals in (4.2) and (4.3) (PI~cop) can be
neglected compared to 21 y and I y/2cop, respectively.
These considerations lead to the simplified versions of
(4.2)—(4.4):

—l COKb ( CP ) (4.2) 21Xg(cp}= —co+ 0—
7T

co 4—iI—
II (1+co/0)

Xb (co) = —co+ cop—(RwA)

2cop

CO—l Kb(CP )
2@op

KI, (v)
P dv

2' p7T p v —co

(4.3)

(4.9)

With increasing frequency (cp & 0) the "width" in Xd(cp)
decreases faster than the "widths" in Xb and Xb ', e.g. ,
for cp =y we have Xd'(cp =y) =4QI /y and

II
Xb" ' (co=y)=I /(2copy). The right flank of Xz(co) is



5200 W. ECKHARDT 35

II
steeper than the right flank of Xb

' and Xb'(co). This
effect will be negligible if the contributions to physical
quantities can be neglected for co »cup.

cub) ———ry,

cob2, =+(~p —ry/~p) —t r .

(4.10)

(4.1 1)

In X'b '(co) there are two poles with positive real parts:

= —~y+ I y/2cop,(RWA)

b2 =( p
—I"y/2 p) —I .(RWA)

(4.12)

(4.13)

In Xd(co) only one pole with a positive real part exists:

2I
Cgd = (4.14)

For not too small times, i.e., for ty »1, in all three cases
the decay of energylike quantities is characterized by the
exponential factor exp( —2I t).

B. The decay laws

Whereas the bare-field description led to a strictly ex-
ponential decay law, the physical description additionally
showed an algebraic decay. If we restrict ourselves to re-
sults of first order in I, the algebraic decay can be
neglected and the decay laws are characterized by the neg-
ative imaginary parts of the poles in (4.2)—(4.4). In (4.3)
and (4.4) only poles with positive real parts contribute to
the decay. Now, we specialize to the Drude model
(4.7)—(4.9). In Xb(co) we find three poles with negative
imaginary parts (we restrict to lowest-order results in I
and y '): Wry

2cop

2~p yln
COp

(4.18)

For
~

t —t'
~

&&fi/kz T the correlation function
(a (t)a(t') ) „reveals an anomalous time dependence ( in
the "normal" case one would expect the exponential time
dependence —exp( —I

~

t t'
~

) exp—[icop(t —t')]). We in-
sert (4.5b) in (3.41)

(a (r)a(0))„= 4I kg T kgT
I (k+2)

)& g(A, +2, I i (k~—T/A)r) . (4.19)

The expansion of the generalized g function for
(k~T/A)r&&1 leads to an algebraic relaxation behavior.
For A, =O (Ohmic dissipation) we find

Re(a (r)a(0) ) „= (Ilr) (4.20)

totic behavior (4.5b) causes an anomalous T dependence
of the occupation number [g(A. ) denotes the Riemann g
function]

( 1 T)2+A.
(a t(t)a(t))„'=, , I (&+2)g(&+2) .

~f~ (triQ) (trta)
(4. 17)

Of course, the bare and the RWA description have the
same qualitative behavior. For A, =O [I (k
+2)g(X+2)~m /6] the corresponding formulas have
been given by Lindenberg and West.

Whereas the kinetic and potential energy of the physi-
cal particles are equal, the bare-field description leads to a
well-known asymmetry. In the low-temperature regime
we find the result (Drude model)

C. Some equilibrium properties

1. Anomalous loto temperature e-ffects (ks T «%coo)

(ata ) r=P= ln
UTCH p, COp

(4.15)

It can be seen from (2.24) and (4.6) that the T =0 con-
tribution to the occupation number (a a ) crucially de-
pends on the cutoff parameter y: If we would replace
y (co +y )

' with one in (4.7), the integrand in (2.24)
((nk ),h ——0) would behave as co

' for co~ oo. Therefore,
the convergency requires a finite cutoff parameter y. Lin-
denberg and West were the first who calculated this con-
tribution (Drude model)

These considerations can also be transferred to the bare-
field and the RWA description [see formula (3.23) in Ref.
5].

2. The Bose distribution for ks T & A'0

For k&T & A'II we can assume that the function (n ),h

does not vary over the width of Pd'(co) and that the contri-
bution to (3.41) in the frequency range 0&co & 0—I can
be neglected in comparison to the "peak" contribution
Il —I &co &0+I . Consequently, the Bose factor (n ),h

can be extracted from the integral at the position
co=A —(2I /m)

(a a ) „=(nn 2rz )th—
Energetically, the contribution (4.15) is made possible by a
corresponding negative contribution of the interaction en-
ergy(2. 26)

(4.21)
and

The orthogonality condition allows us the representations

(a a) =(n )[1+0(r/n)]

[E;„,(t )]r=P= — y + —ann
Ct7p 7T COp

(4.16) E,'~"'(t oo )=fiQ (In n)[1 +0(I /Q)]+ —,
'

) . (4.22)

The positive difference ficop(a a )
= —[E;„,(t~ ao )]

is transferred to the bath. The occupation number of the
physical particles and the occupation number which is
based on the RWA approximation vanishes for T =0.

In the low-temperature limit (k&T «%cop) the asymp-

The deviation from the ideal behavior (free phonons with
the frequency 0) is of the order O(I /0). In contrast to
this result, the corresponding considerations for the bare-
field and the RWA description lead to deviations of the
order O(yI /cop). In these cases we have to refer to the
bare frequency cop [see (2.25)].
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{ph) (ph) B
kin POt 2

1+ 2I
(4.23)

Equation (4.23) is to be confronted with the results of the
bare-field description

(4.24)

Ep ', ———,ksT(1+21 ) /coo) . (4.25)

We emphasize that I y/coo need not be small compared
with 1.

D. Conclusions

The dressed description of the quantum relaxation pro-
cess allowed the definition of physical particles, i.e., parti-
cles which are absent in the ground state of the system
(t~ oo, T=O). For not too low temperatures the ex-
ponential decay of the energylike quantities leads to
equilibrium properties which nearly correspond to a free-
phonon system (frequency II). The deviations are of the
order O(1 /0) and, therefore, they are small compared
with the analogous deviations of the bare-field description
(frequency coo), which are of the order ) I /coo.

One can visualize a physical particle (phonon) as a bare
particle which is surrounded by a "cloud" of bare-field
particles, so that there is only a screened interaction be-
tween the physical oscillator and the physical bath. Be-
cause of this screening, the cutoff parameter y does not
appear explicitly in the physical description.

The low-temperature anomalies of Sec. IV C 1 are

3. High-temperature expansions

In the classical regime kz T &&AQ, the physical descrip-
tion shows deviations from the classical value k&T/2,
which are of the order 0 (I /0)

present in all descriptions. The algebraic temperature and
time dependences in (4.17) and (4.19) are due to the
asymptotic formulas (4.5). If the impedance Ki, (co) would
be zero between co=0 and co=u (0&u «coo) we would
find a normal exponential behavior in the low-
temperature regime (e.g., one could relate a lower cutoff
frequency u with a finite extension of the bath).

V. SUMMARY

Ullersma's model could be mapped onto a field formu-
lation which directly led to the solution for the damped
harmonic oscillator. Because the occupation number of
the oscillator, i.e., the number of bare particles, did not
vanish in the physical vacuum, this relaxation process
could not be interpreted as the decay of physical quanta.
The postulate that a quantum-mechanical relaxation pro-
cess should be described "physically" required a descrip-
tion in terms of dressed particles, i.e., particles whose vac-
uum state must coincide with the physical vacuum. The
physical decay process represented a more ideal process
than the bare one; more ideal in the sense that the physi-
cal description implied a screening of the bare interaction.

Two essential virtues of the physical description are im-
plied by the above statements (i) the decay process leads
for T =0 to a pure state (ground state or physical vacu-
um) with respect to the physical particles and (ii) the effec-
tive or physical interaction is explicitly independent of a
cutoff parameter. On the contrary, the physical vacuum
must be interpreted as a mixed state with respect to the
bare particles. An essential drawback of the physical
description was the nonexistence of a "macroscopic"
dynamic equation which satisfies causality and which
reproduces the exact physical solution for t~~. It was
shown that the physical description is closely related to
the rotating-wave approximation of the bare description.
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In Ullersma's formulation it was assumed that mo ——m = 1.
The Hamiltonian which was discussed by Eganova and
Shirokov [formula (10) in Ref. 13(a)] differs from Hr by the
additional term

00 2

(2mo) ' dk c.(k)pI,

(2.34), in which the lower limit in the memory term is zero.
25See, e.g. , H. B. Callen and T. A. Welton, Phys. Rev. 83, 34

(1951);R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
The "continuous" matrix X is defined by the elements

Xt,„=rl(v) Pg(k)(v —k )

17

The coupling in Ref. 13(a) is given by the fine-structure con-
stant. In order to obtain finite results in the dipole approxi-
mation, a suitable high-frequency cutoff procedure has to be
performed. where

+g(v) ' 1+P f dk'g'(k')(k' —v')-'

x &(k —~)

U1 = Kb(Cc) )
2
7T

1/2

CO gb(CO)
g(v) = dk (k)XI,„

UP~ ——U]„k —Kb(k)
2
77

1/2
I

co' —k' X(to)
~

=g(v) [re (v)/2v]'

+ 1+P dk (k) (k — )

2 —1/2

In contrast to the exact solution (2.17), a (t) in Ref. 7 [formula
(3.14)] represents no exact solution of the initial-value prob-
lem. This point is extensively discussed in Ref. 11.

The statement is not in contradiction to the well-known
theorem that for tab oo the decay probability must decrease
slower than an exponential because for t~ oo the finite value
(2.28) is left. For this theorem, see, e.g. , R. E. A. Paley and
N. Wiener, Fourier Transform in the Complex Domain,
(A.M.S., Providence, 1932); M. V. Terent'ev, Ann. Phys.
(N.Y.) 74, 1 (1972).

The solution (2.17) can be derived from Ullersma's solutions
for the momentum and position operators. The solutions for
the bath operators were not explicitly calculated in Ref. 2(a).

2 t The linear response theory [5q(to ) /6F(to) = Xb (to ),
H& —— qF(t)] an—d the fluctuation-dissipation theorem also
lead to the correlation function (2.24). This method was ap-
plied by Grabert et al. (Ref. 5) for the calculation of the posi-
tion and momentum fluctuations in thermal equilibrium.
Haake and Reibold (Ref. 6) have also discussed these two dif-
ferent initial conditions (Secs. III and IV in Ref. 6: "thermal
equilibrium" and "partial equilibrium" ). Furthermore, they
defined a "constrained equilibrium, " which roughly corre-
sponds to the "conditional thermal average" of Lindenberg
and West (Ref. 7). Of course, the various initial conditions
are irrelevant for t~ ~.
A qualitative discussion of this point is given in Sec. VB of
Ref. 7.

~~The solution of the initial-value problem in Ref. 7 is based on

the application of the Laplace-transformation method to Eq.

The conditions (3.2) and (3.3) differ from the corresponding
conditions in Ref. 13(a) [formulas (23) and (24)]. In our
model the renormalized frequency 0 becomes smaller than coo

[see (3.16) and (3.17)], whereas the renormalized frequency of
the harmonically bound electron becomes greater than coo.

This different behavior is due to the A term in the minimal
coupling Hamiltonian.
With respect to the electron-photon coupling in the dipole ap-
proximation, the high-frequency cutoff y can be related to a
finite extension of the electron. ' '"'

In Ref. 8 an example is discussed for which the conditions (ii)
and (iii) are no longer valid.
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M) ——[trd(to) lrr]' '
~

Xd(co)
~

M„=
~

Xd(CO)
~

[[Kd(co)Kd(v)/77]' 'P

—Xd(to)
~

Xd(co) 6(co —v)]

'In Ref. 7 the solution for a(t) in the rotating-wave approxi-
mation is represented as an inverse Laplace transformation.
The corresponding decay process is strictly exponential ~ For
example, the formula (4.22) in Ref. 7 leads for T =0 to the
exponential decay (Resj & 0)

( a (t)a (t) ) '= (a (0)a (0) ) g exp[(sj*+sq )t]BJ*Bq .
j,k


