
PHYSICAL REVIEW A VOLUME 35, NUMBER 12 JUNE 15, 1987

Cross thermotransport in liquid mixtures by nonequilibrium molecular dynamics
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We performed a nonequilibrium molecular-dynamics (MD) study of thermodiffusive cross cou-

pling in an argon-krypton liquid mixture, near the krypton's triple point. We carried out nonequili-
brium MD simulations, employing the MacGowan-Evans algorithm and subtraction technique with
two sets of values for the external fields, to locate the onset of the nonlinear region. We also
checked consistency with our equilibrium Green-Kubo calculations. Our results are in reasonably
good agreement with previous MD computations and show that nonequilibrium and Green-Kubo
methods have comparable efficiency, both yielding the same values for the cross phenomenological
coefficients, as in the direct transport case.

I. INTRODUCTION

In a binary mixture thermal and diffusive transport
properties are described by three independent phenorneno-
logical coefficients. Two of them govern direct
transport —i.e., particle flow induced by a diffusive gra-
dient and heat flow caused by a thermal gradient —as in
simple fluids. The third one is connected to the cross cou-
pling of diffusive and thermal phenomena.

In this work we are particularly concerned with this
cross-coupling property, which is generally somewhat dif-
ficult to reveal, being a rather weak effect. In a recent pa-
per' MacGowan and Evans presented a generalization of
the Evans-Gillan thermal-conductivity algorithm to
the case of a binary liquid mixture. Such an extension ex-
ploits a new microscopic definition of the heat current J~,
obtained by subtracting off the "trivial" diffusive part
from the total energy flux. This current satisfies a good
microscopic requirement, but it is not clear whether or not

J& is equivalent to the macroscopic heat flux J~ which is
found in literature. The problem arises due to the pres-
ence of partial enthalpy h —which has no obvious micro-
scopic counterpart —in the definition of J&. In the
present case of an equimolar Lennard-Jones (LJ) mixture,
however, the possible numerical discrepancy is likely to be
negligible.

The form of J& makes it possible to write down equa-
tions of motion perturbing J~ which preserve total
momentum and adiabatic phase-space incompressibility
(AIl ), while this is not achievable using J~.

Taking the MacGowan-Evans definition of the micro-
scopic heat current, we have explored the possibility to
detect cross correlations by subtraction technique in
nonequilibrium molecular dynamics (NEMD). In the
present paper we report a NEMD study of thermal and
diffusive transport properties of a Lennard-Jones equimo-
lar liquid mixture of argon and krypton near the triple
point of krypton. Our results are compared with known
data. This comparison proves good for direct properties
and satisfactory for cross properties. We checked con-
sistency with our own equilibrium results as well, finding
that equilibrium Green-Kubo (GK) technique is appropri-

ate for cross properties, too.
The plan of the paper is as follows. In Sec. II we dis-

cuss the connection between macroscopic and microscopic
definitions and the MacGowan-Evans extension of the
thermal-conductivity algorithm to binary liquid mixtures.
We present our model and our implementation of NEMD
in Sec. III. Section IV reports our results for two sets of
values for the perturbing fields as well as our equilibrium
results.

II. FORMALISM

A. Phenomenological relations

2

XL GATV
P= 1

(2.1)

where J is the flux of particles of species a relative to the
center-of-mass frame, J& is the total energy flow exclud-
ing convection and viscous dissipation, p~ is the chemical
potential of species f3 and the L;~ 's are connected to th. e
phenom enological coefficients of energy and particle
transport in a mixture.

Equations (2.1) correspond to the following expression
for the entropy production, ' excluding the transport of
momentum:

2

g JpTVT P l T
(2.2)

However, we can redefine the heat current in a more
convenient way, in order to get rid of the temperature
dependence in the diffusive gradient,

Jg ——Jg —gh J (2.3)

The macroscopic relations describing the transport of
matter and heat in a two-component mixture can be ex-
pressed in the following way:
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h being the specific partial enthalpy of component o..
Substituting Eq. (2.3) into (2.2) we get, exploiting the

fact that g J =0,
VT 1

Jg Jl(VTP1 VTi 2)T2 T
(2.4)

where VTpp=TV(pp/T)+(hp/T)VT means the gradient
of p~ obtained by subtracting off the temperature depen-
dence.

Thus by using (2.3) we are in principle able to separate
the flux induced by the purely diffusive gradient
VTp& —VTpz from the flux driven by the thermal gra-
dient VT, the thermodynamic forces in (2.4) being in-
dependent from each other.

We get the following phenornenological equations:

VT 1
Ji —— Lig —— Lii(V rjj—i —VTiL2)T2 T

,&p=q Qj p
—q jp= l

q', ip
2

PiaE-= +-. X X'~...'2m a p

(2.6a)

(2.6b)

c)P(q; jp)
iaj p

qia

d0(qiaj p) qia, jp
~qia,jp qia,j p

(2.6c)

where P(q; j~)=P; &p is the pair potential and the sum-
mation g,. is taken over the particles i belonging to
species o;.

The microscopic diffusive current of species u mea-
sured in the comoving frame is

p;, where e = 1,2 runs over different substances,
i =1,2, . . . , N over all particles belonging to species a.
Let q; jp be the relative position of particles i and jp,
E; the total energy of particle i, and F; jp the force on

j~ due to i, defined as follows:

VT 1
Jg ———Lgg — Lg i (V—Tp i

—VTpp) .
(2.5)

V,. m

N m
(u —u), (2.7)

An explicit microscopic expression for (2.3), however, is
still not available, since h is defined only in a thermo-
dynamic way —that is, (r)H/BN )p T iv .

Interpreting the definition of J~ as the operation of re-
moving all of the contributions due to the interdiffusion
of particles, MacGowan and Evans' carried out a micro-
scopic derivation of a new heat current J~ in which no h

appears. This J~ is invariant for any translation in the
relative velocities of the two species. The J terms which
appear in such a definition are multiplied by a dynamical
quantity whose average, in the thermodynamic limit,
behaves like the thermodynamic quantity h (see Sec.
IIB), which is similar to—but does not coincide with-
the partial enthalpy h

Using such a definition it is possible to write down
equations of motion which perturb J& and conserve both
momentum and AII, while this is not possible using J&.
Gillan, however, made a successful calculation of direct
and cross effects for Hydrogen in Palladium—
generalizing his nonequilibrium technique. He employed
non-AII equations of motion and calculated h from its
thermodynamic definition. This is rather a heavy task,
since an accurate calculation of the partial enthalpy in-
volves a number of runs at different concentrations and
temperatures to compute numerically the various thermo-
dynamic derivatives appearing in the definition of h

Taking Evan's definition for the microscopic heat
current we explored the possibility of obtaining by a
dynamical NEMD simulation the cross correlations and
cross coefficients in an argon-krypton mixture near the
triple point of krypton. Of course, the same simulations
can be used to obtain the direct-transport coefficients.
Details on the dynamical variables and on the equations
of motion employed are given in Secs. II B and II C.

where u is the mean velocity of species o.,

Pi a
Ua= N, . m

(2.8)

aIld

Nmu
N m

(2.9)

gJ =0. (2.10)

Let us define the "interdiffusive current" JD which we
will use in our equations of motion,

X2 X)
+ J),

m) m2
(2. 1 1)

where in the last passage we have made use of (2.10).
The microscopic heat current is defined, according to

Ref. 1, by removing from the total energy current
2

VJg ——g g —u
a i ma2

+ —'XX'&-, o
j

Pia —u
ma

is the instantaneous baricentric velocity. Note incidental-
ly that the usual Irving-Kirkwood' expressions for both
the energy and diffusive currents contain the average
value of u.

From expression (2.7) we see that

B. Microscopic currents

We consider a system of N particles, N~ of mass m
~

and Nq of mass m z, with coordinates q; and momenta

+ 2 P P P P qiajp iajp, ,
a p i j ma

(2.12)

all of the terms proportional to u —u. The resulting
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current J~ is invariant for any translation in the mean ve-
locities of the two species,

VJg ——gg E —u
a i ma

current —from now on we will drop the superscript and
refer to the quantity in (2.13) as J&—the four phenomeno-
logical transport coefficients Lj are connected to the mi-
croscopic currents given (2.7) and (2.13) by the following
Green-Kubo relations

Pia —Ua f (J„(t)J„(0))dt,
T k~T

(2.17a)

(2.13)

ma Pia
ia 2 ma

(2.14)

The different between J~ and J& is given by

Jg —Jg ——gJ . (E'1+VP )

ma&a

g m X (u —u) (u —u)'
2V

(2.15)

with

where E is the total energy of particle i measured in
the comoving frame

'2

Lgi
T Jg, t Ji, 0 dt=, 2.17b

k~T o ' ' T

Jg, s Jg, 0 dt.
T k~T

(2.17c)

These coefficients are related to the four effects which can
be observed in a binary mixture when applying a concen-
tration or a temperature gradient. L» is connected to the
matter transport due to a concentration gradient, i.e., or-
dinary diffusion; L&~ expresses the transport of matter
caused by a temperature gradient, thermal diffusion or
Soret effect; L& &

is related to heat transport induced by a
concentration gradient, Dufour effect, and L&& to the
heat transport due to a temperature gradient. "'

E' g E
C. Equations of motion

VPa =
z g g g qiajpFiajp, ,

i p j
The system of N particles q;, p; is described, in the

absence of an external perturbation, by the Hamiltonian

+m g ' —u
ma

Pia —ua
ma

2
PiaHO=X + z X «-, jt

ia iaj p

where we can neglect quadratic terms in u, u .
We expect that in the thermodynamic limit and within

linear regime the average of the microscopic expression
given in (2.15) will approach g h J, where

(2.16)

Pia

Pia=
—BHp

ia ~

Qia

generating the equations of motion

(2.18)

This quantity is not equal to the specific partial enthalpy
h . The difference lies in the fact that in defining h we
have attributed to each species 50% of the energy contri-
bution. This corresponds to the approximation of ideal
mixtures. The approximation is exact in the case of isoto-
pic mixtures, when the components only differ in masses,
the potentials being the same. In our case—LJ Ar-Kr
equimolar mixture —the difference 5 =h —h is likely
to be negligible. A rough estimate of 6 in the case of
equimolar Ar-Kr mixture has been made" on the basis of
McDonald's results. ' Though the computations of Refs.
11 and 12 correspond to slightly different state points, a
small percent difference of about 4% for a = 1 and of 9%
for o. =2 has been found, indicating that for such simple
systems the microscopic approximation for the partial
enthalpy is good. This result, i.e., the fact that the Ar-Kr
mixture may be regarded as quasiideal, can be simply un-
derstood given the similarity between the Ar-Kr interac-
tions and the Ar-Ar and Kr-Kr ones.

Taking (2.13) as the microscopic definition of the heat

q, = +C; F(t),
ma

p; =F; +D; E(t),
(2.19)

where C; =C; (I ) and D; =D; (I ) are suitable tensors
which are phase-space functions and which describe the
coupling of the perturbation to the system. If Eqs. (2.19)
are such that they preserve the phase-space incompressi-
bility we can apply linear-response theory in its standard
form' and get the linear response of a phase-space func-
tion B as

( B),= f3 f (B(t —s)O(0) ),&.E(s)ds, (2.20)

with the hypothesis that (B),~=0, O being the variable
that couples with the imposed perturbation, defined as

where F; = g&g~F;
When an external perturbation E(t), not necessarily

Hamiltonian, is applied to the system, the equations of
motion will modify as follows ' '
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a

pia
Dia —Fia &ia

m
(2.21) ( J,, )„=PF,

m1 m2
V( J;,(t)J„(0)),q,

(2.29)

OD ——gg .A 1=VJD .
a i

(2.23)

As for the thermally perturbed equations we applied the
MacGowan-Evans' extension of the thermal conductivity
algorithm for a simple fluid

We employed two sets of perturbed equations of
motion, obtained by applying a diffusive and a thermal
perturbation to the system. We applied a diffusive pertur-
bation by changing the equations of motion in the follow-
ing way:

~ pia
q; =

ma
(2.22)

p; =F; +A Fp(t),
with A1 ——x2, A2 ———x1„x =N /N being the number
concentration of species a. The dynamical variable which
couples to the external force FD(t) is then, within this for-
malism,

L;1 f (J;, )D,dt,
FD(X2/m1+X1/m 2)

(2.30)

(J,, )g,dt, i =l,g .
T F 0

III. MODEL AND IMPLEMENTATION

We have studied an equimolar (x, =x2 ———, ) mixture of
argon-krypton atoms, with masses m 1

——39.944,
m2 ——83.80 a.u. The system of N =N1+N2 ——256 parti-
cles is enclosed in a cube of volume V=L . The model
for interactions is basically a Lennard-Jones potential

12 6

ALJ(q) =4& p
aP

q =qia, jp

( J;, )g, PF——g V( J;,(t)Jg, (0) ),q, i =1,Q .

In the linear region the four transport coefficients (2.17)
can be obtained by direct integration of (2.29),

pia
qia=

ma

p; =F; +T; .Fg(t),

where we define the tensor T; as

(2.24)

with parameters e» ——119.8k', @22 ——167.Oker, o.
11

——3.405
A, o-22 ——3.633 A, and with cross parameters defined by
Lorentz-Berthelot' rules

~11+22
~12=

2

1
Tia=Sia — g Ska i

N
(2.25)

and

f3Sia=+ ial+ 2 g g iaj tiqiajp &

13 j
I

ia

2 2m a Pixa Piy a+ +
mama

+ —'XX'&-,jt
p j

Piza

ma
—9za

We note that when the perturbing field is directed along
the z axis F. ,' will coincide with E as defined in Sec.
IIB, the average currents induced being directed in the
same way as the imposed perturbation. Exploiting this
reasoning we obtain

Og ——gg T; =VJg .
a i

(2.26)

The external fields FD(t) and Fg(t) imposed to the sys-
tem are both impulsive forces directed along the z axis,
given by

FD(t) =(O, O, FD)6(t),

Fg(t)=(O, O, Fg)6(t) .

(2.27)

(2.28)

Substituting such expressions into (2.20) we get for dif-
fusive and thermal response to both kinds of imposed per-
turbations,

e'12 = 1/ el le22 .

(3.1)

Our units are o. for length, e for energy, and
r = (m tr /e) '~ for time, defined with respect to argon.
All of the quantities we use will be quoted in such units,
unless explicit declaration. The potential model is such
that pair forces

~
F; jti ~

go to zero in a continuous way
at the edge of the box. To obtain this, a spline is made
with a straight line, such as to satisfy the conditions

aO '(q, )

q1 =3.2
c)q Bq

ay ~(q )
=0, q2 ——

2

The potential iti ~(q) is the integral over q of the pair force
BP ~(q)/i)q with the condition that P ~(q) ~0 as q ~ ao.

We studied the diffusive and thermal response of our
system to both a diffusive and a temperature gradient, us-
ing the perturbations defined in (2.27) and (2.28) with two
sets of magnitudes FD ——0. 144&& 10, F& ——0. 114&& 10
and FD ——0.722, F~ ——0.043. The first set corresponds to
very small gradients, changing the temperature of the sys-
tem of less than 1 over 10 . The second set was chosen to
lie more or less at the end of the linear region, producing
changes in the temperatures of less than 3%%uo. Employing
the same criterion used in Refs. 17 and 18 to compare the
strengths of impulsive and stationary perturbations, we
define a quantity rt1 (rg ) which represents the decay time
of the normalized diffusive (thermal) autocorrelation
function. This is such that
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FD
=FD,

+D

Fg =Fg .
7

Ngg(t) =
(Jg, )g, , =o,

'

and that of the diffusive autocorrelation function by

&J„),,
Nii(t) =

&Ji.&D, =o,
'

(3.2)

(3.3)

The values utilized for FD and F& in our case—for impul-
sive external fields —then correspond approximately to
stationary perturbations FD ——2.0 X 10, F& ——1.4 &( 10
for the first set, and FD ——1.0&10, F& ——4. 3&&10 ' for
the second set. The perturbations of the second set are
thus comparable in strength to the ones employed in Ref.
1.

The thermodynamical point is N / V =p =0.7138,
T=0.987. This point differs from the one studied in Ref.
1 (and in Refs. 19—22 for diffusion) because our tempera-
ture is slightly larger (-2%), a seemingly irrelevant fact.
Our boundary conditions are periodic in all directions.

We employed the subtraction technique and integrated
the equations of motion (2.22) and (2.24) using the stan-
dard Verlet algorithm, with a slight modification at the
beginning of each segment, due to the impulsive perturba-
tion employed. The time step is h =0.462&10, cor-
responding to 10 ' sec.

With the use of a 5-like external field we were able to
observe the decay of the diffusive current driven by FD,
(J~, )D „and of the heat current induced by the thermal
perturbation Fg, (Jg, ) g „as well as the behavior of
the cross currents, (J~, )g, and (Jg, )D „as a function of
t—the time elapsed since the switching on of the pertur-
bation.

We computed the decay of the thermal autocorrelation
function by

K)) ——

X2 X)
FD +

m& m2

T&Jg, )g, o

Fg

(3.8)

(3.9)

and the quantities I;~ are the weighted averages of the in-
tegrals over times t;„(t(tMAx, corresponding to the
stationary part of the integral response. The averages are
weighted with the inverse of the variance of the integrals.

IV. RESULTS

A. Low perturbations

We present in Figs. 1—4 our results for the direct and
cross responses at very low perturbations—
FD ——1.443 && 10, F~ ——1.443 & 10 . Such values corre-
spond approximately to gradients FD ——2.0 & 10
Fg ——1.4~ 10

As regards the direct effects —diffusive response to FD
and thermal response to F&—we see in Figs. 1 and 2 that
a well-defined asymptotic value is reached in both cases
before 1 ps. From appropriately weighted averages of
such values we get, via Eqs. (3.5) and (3.6), the direct coef-
ficients L» =0.0174+0.0004 and L&& ——4.375+0.086.
We computed such coefficients by equilibrium Green-
Kubo technique too, obtaining L» ——0.0173+0.0001 and

L~~ ——4.280+0.001, in very good agreement with our
NEMD values.

Our results for the cross currents —thermal response to
FD and diffusive response to F~—are affected by a larger
statistical noise, as we can see in Figs. 3 and 4. This is not
unexpected, since both the cross responses are rather weak
with respect to the direct ones. Their negative minimum
is 10% lower when compared to the initial values of
direct currents. In both cases, however, a plateau value is
attained. Comparison between the two NEMD responses

C,g(t) =

(3.5)Cg, (t) =

while for the cross currents we employed the non-
normalized quantities

~(J,.&, (3.4)
Fg

~& Jg. &D~

1.0

0.5

I ~ I I

I

f I 1 I

I

I I I I

I

'I v I I

FD
Xp X)

+

The corresponding phenomenological coefficients are then
given by

0.0

L;;=K;; N;; tdt=K I;;, i=1, (3.6)
I I I I I I I

50
I

100 150 200
Time step (tr(10 I)

T +~ T
L,„= C,„(t)dt = I,„, j,k =1,Q, j&k;—

(3.7)

where

FICx. 1. Normalized average relaxation of the heat current
N~~(t) (solid curve) and of the particle current Nil(t) (dashed
curve). Average over 400 segments. FD ——1.443 )& 10

Fg ——1.443 ~ 10
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-Kubo results —igs.F' 3(a) and 3(b)—showsand with Green-K
hods are in very goo agd reement andthat the three method
es for the cross coe icien s, wff' '

t within thegive identical values or
= —(0.0249+0.0040),statistical errors. gWe get L~ ~
———

L ~
———(0.0267+ 0.0032) and, rom

( =L ig) = —(0.0268ig = — 268+0.0013).
NEMD responsesFrom ig. aF 3( ) we see that the two

t from zero, reach a negative minimum after
about 0.2 ps an

t t tical noise affects then er times the larger statis ica.„. ,h, NEMD ..„....,.,h, GKpo o p 'g
3 a —we conclude t at t e cfunction —Fig. 3 a —w

W note that the GKnegligible at times arglar er than 1 ps. e no e
On the otherd s not start from zero.cross correlation oes

0.10 I I II ft t I

J

I I I I

( )

0.08

0.06

0.02

0.00
100

Time step (I 10
' I)

I

15050 200

0.14

0.12

I I II I I I I I I I f
~ l I I

(b)

0.10

0.06

0.04

0.02

0.00 I I I I

50
I I I I I I I

150100
Time step {I 10

'
s)

200

t: F =1.443& 10 . (b) Integral of the nor-article current Nl ~
t: FD ——1.

d averages
g

lo ed in the average. The outer (dotted) curves e
'td li it th(a) Il 1, gg(b) I (see text). The solid part de hami s

rors.
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hand, from the very definition of J~ and Jg—Eqs. (2.7)
and (2.13)—,we see that the initial value of the cross
correlation should be zero for symmetry. The behavior of
the GK correlation is not astonishing, since at small times
the NEMD results are more reliable than the GK ones.

In Tables I—IV we report our results for the L,z, to-
gether with the values previously obtained by other au-

thors from equilibrium simulations for L&&, and with the
MacGowan-Evans results for all L;~. As regards the dif-
fusive coefficient L&~, for which other data are available,
we are in better agreement with the results of other au-
thors than with those of Ref. 1. As for the other coeffi-
cients there is, broadly speaking, consistency, though a
weak numerical discrepancy. However, it seems to us not

100

0

—100

y/

5/

-200 I I I

100
Time step (t III

' I}

I I I I I I I I I I I I

50 150 200

10 I I I I I I I I I I I I

0

—10

—30 I I I I

100
Time step (1 10 s)

I I I I I I I I I I I I

50 150 200

FIG. 3. Comparison among different cross correlations (a) and their integrals (b). Solid curve: diffusive response to
F~ ——1.443 && 10 . Dashed curve: thermal response to Fz ——1.443 && 10 . Dotted curve: Green-Kubo results. The perturbed
responses are averaged over 400 segments. For the Green-Kubo correlation 330000 averaging steps are employed.
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I I f I 1 I I

i

I I r 10 100 I I I

I I

I

l

0

-10

—100

—10

—20

-200 I I I I I I t I I I I I I I

50 150100
Time step (t]% I)

200

—30
50 100

Time step (tj10 I)
150 200 100 r

~

I e y ~

(b)

FIG. 4. Upper plot: integral of Ci~(t), diffusive response to

F~ ——1.443 )& 10 . Lower plot: integral of C~ 1( t), thermal
response to F& ——1.443)&10 '. The outer curves delimit the er-
rors.

—100

a serious one, especially for what concerns the cross-
coupling coefficients, for which the statistical error is
quite large since we are dealing with very weak responses.

200
50 100

Time s tep l &/ IO

a i a I

150 200

B. High perturbations

In Figs. 5(a) and 5(b) our results for the cross currents
obtained using high perturbations —FD ——0.722,
F& ——0.0433—are shown. With such values of FD and

F~—corresponding approximately to FD ——1.0 &( 10,
F~ ——4.3X10 '—we detect a change in the temperatures
of the perturbed systems of about 2%. With this choice
for the perturbation strengths we lie more or less at the
end of the linear region, since we expect' that a change in
the temperature of a few percent will correspond to the
onset of nonlinearity.

As the external fields are rather high, the responses will
be somewhat larger than the typical fluctuations of the
corresponding equilibrium currents. In fact the direct
responses are about five times larger than the equilibrium
fluxes. In this region the subtraction technique loses effi-
cacy at large times, since the difference only introduces
another source of noise without improving the response. '

Thus we analyzed our high-field runs both by subtraction
and by taking only the perturbed response. In both cases
we can see from Figs. 5(a) and 5(b) and Tables III and IV
that the results are very noisy —though still consistent
within the large errors with the GK values —with a slight
gain in statistical accuracy in the nonsubtraction case—as
we see in Tables III and IV. From Tables I—IV it is ap-
parent that the error bars on the direct coefficients L»
and L&& are less affected by the increase in the perturba-
tion strengths than the ones on L && and L~~. Approxi-
mating the generic perturbed response J+ at t =0+ with
the expansion

FIG. 5. Comparison between different analysis of the cross
responses at high perturbations. (a) C& &(t), FD ——0.722. (b)

C&&(t), F~ ——4. 33)& 10 . Solid curve: subtraction technique.
Dashed curve: no subtraction (see text). The errors on the
curves are plotted just on some representative points.

J =J +Fg(I )6t(V J)+F h(I )(5t) (V J), (4.1)

—where g (I ) and h (I ) are phase functions —and substi-
tuting (4.1) into the formula giving the variance of the
response with the subtraction technique' we get

J+ —J+ =g'(ot) v(V+J)+F h (5t) v(V+J)

+2Fgh cov(V+ J,V+J) . (4.2)

In the direct case only the first term in the right-hand side
is important at not very high perturbations, so the error is
nearly independent on the field strength. In the cross
case, however, it seems reasonable to think that this term
plays a minor role with respect to higher-order terms—
V+J being zero almost mechanically —thus producing a
statistical indetermination that grows with F. This
reasoning might explain the apparent instability in the
cross-correlation results at high perturbations quoted by
other authors.
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TABLE I. Results for the diffusive direct coefficient L [[. Np ——256; x] ——x2 ——~, p=0.7138; o.=o.]],' e=e», m =m]. T, tempera-

ture; FD, diffusive perturbation; K&[ and L» are defined in Sec. III. ST: our results via subtraction technique; NST: our results
without subtraction; GK: our equilibrium results. The length of each NE run is N =80000 (400&&200). For GK 165000 averaging
events are employed. ME: data from Ref. 1, zero field extrapolation; JM, JB, SH, data from Refs. 22, 19, 21, respectively.

T
(p/k, )

0.987
0.987
0.987
0.987
0.965
0.965
0.965
0.965

FD
[( me)'~']

1.443 && 10—'
0.722
0.722

extrapolated

tmin -tmax

90.200
90.200
90.200
90.200

k][+6k»
[( m e)/(o'kg ) ]

0.239+0.000
0.237+0.000
0.239+0.000

L][+AL
[( m 'e)'~'/(o'kq ) ]

0.0174+0.0004
0.0172+0.0007
0.0178+0.0003
0.0173+0.0001
0.0145+0.0010

0.0170
0.0165
0.0174

Source

ST
NST
ST
GK
ME
JM
JB
SH

TABLE II. Results for the thermal direct coefficient Lgg, Np =256; x] =xp =
~

', p=0.7138; 0 =0», 6= e»', m =I ]. T, tempera-

ture; Fg, thermal perturbation; Kgg and Lgg defined in Sec. III. ST: our results via subtraction technique; NST: our results without
subtraction; GK: our equilibrium results. The length of each NE run is N =80000 (400)&200). For GK 165000 averaging events
are employed. ME: data from Ref. 1, zero field extrapolation.

T
(e/kg )

0.987
0.987
0.987
0.987
0.965

Fg
[(m/e)' ']
1.443 &&

10-'
0.433 && 10
0.433 && 10- '

extrapolated

tmin. tmax

90.170
70.200
70.200
90.200

kgg+Akgg
[e'/(m o'kB ) ]

(4.215+0.003) K 10'
(4.196+0.005) ~ 10'
(4.230+0.003) Q 10'

Lgg+~Lgg
(e'/[(me)'~'o'k ])

4.375+0.086
4.450+0.148
4.309+0.082
4.280+0.001

3.95+0.05

Source

ST
NST
ST
GK
ME

TABLE III. Results for the cross coefficient Lg&. Np ——256; x& ——x& ———, p=0.7138; a=o[[,' e=e[], m =m[. T, temperature;

FD, diffusive perturbation; Ig[ and Lg] are defined in Sec. III. ST: our results via subtraction technique, NST: our results without
subtraction; GK: our equilibrium results (the same for the two cross coefficients). The length of each NE run is N =80000
(400)&200). For GK 330000 averaging events are employed. ME: data from Ref. 1, weighted average at low fields.

T
(e/kg )

0.987
0.987
0.987
0.987
0.965
0.965

F
[(me)'~ ]

1.443 X 10—'
0.722
0.722

tmin tmax

74.160
70.200
70.200
80.200

Ig )+AIg [

[( m eo')'~']

—(9.054k 1.470)
—(6.333+3.855)

—( 14.218+5.098)
—(9.743+0.485)

Lg [+ALg [

[(me )'~ /(o k~)]

—(0.0249+0.0040)
—(0.0174+0.0106)
—(0.0392+0.0140)
—(0.0268+0.0013)
—(0.0168+0.0013)
—(0.0164+0.0013)

Source

ST
NST
ST
GK
ME'
ME

'Run with Np ——108.

TABLE IV. Results for the cross coefficient L]g. Np =256; x[ =xq ——2,' p=0.7138; o.=o.», e=eI], m =m]. T, temperature; Fg,
1

thermal perturbation; I]g and L]g are defined in Sec. III. ST: our results via subtraction technique; NST: our results without sub-

traction; GK: our equilibrium results (the same for the two cross-coupling coefficients). The length of each NE run is N =80000
(400&(200). For GK 330000 averaging events are employed. ME: data from Ref. 1, weighted average at low fields.

0.987
0.987
0.987
0.987
0.965
0.965

'Run with Np ——108.

Fg
[( m /e)'~']

1.443 X 10-'
0.433 x 10
0.433 ~ 10- '

tmin ~ tmax

78.180
70:200
70 200
80.200

I[g+ AI [g
[(mao )' ]

—(9.700+ 1.166)
—( 10.418+3.050)
—(4.215+5 172)
—(9.743+0.485)

L]g+AL]g
[( mE')'~'-/(o'k~)]

—(0.0267+0.0032)
—(0.0287+0.0084)
—(0.0116+0.0142)
—(0.0268+0.0013)
—(0.0155+0.0005)
—(0.0168+0.0005)

Source

ST
NST
ST

GK
ME'
ME
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V. CONCLUDING REMARKS

We have carried out some NEMD and equilibrium GK
calculations of thermal and diffusive transport coeffi-
cients in a Lennard-Jones mixture of liquid argon and
krypton near the krypton's triple point. The main result
of this work is that cross-coupling effects in mixtures can
be obtained with satisfactory statistics by NEMD. More-
over, we show that NEMD and GK techniques have com-
parable efficiency and yield results which are in very good
agreement with each other and in reasonable agreement
with previous MD results.

As regards thermotransport, there still remains the
question of the equivalence between the microscopic heat
current J~ and the phenomenological one J~. As we
mentioned before, this is not a problem for what concerns
equimolar and isotopic mixtures.

However, since direct and cross effects are obtainable
by MD, either by a straightforward simulation or by
reconstructing the different contributions to the thermal
coefficients, the study of transport in mixtures is in the
realm of molecular dynamics simulation.

We believe, however, that the question of a suitable mi-
croscopic definition of J& is not settled and deserves fur-
ther investigation.
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APPENDIX

Inserting Eqs. (2.3)—(2.5) into (A3) we find the relations
which tie the L;~ to the L;~,

L,g L,—g L„(—h, h,—),
Lg, Lg——, L,—)(h )

—h2),

Lgg —Lgg —2L,g(h, —h~)+ L, , (h, —h~)

(A4)

L i g Lg i I (
——J i, J——g ), (A5)

LQQ=I(JQ Jg»
where I(J,Jtt) = V/k~ f ( J (t)J~(0) ),qdt, the same
description holds true for tke L;~,

L ig ——Lgi I(Ji, JQ )—,

Lgg I(Jg, Jg)——.

Let us now introduce the variable J& defined as

(A6)

Jg ——Jg —gh J
a

(A7)

where h is given by Eq. (2.16).
This is the current that we excite via our equations of

motion (see Sec. IIB). According to (2.3) we can rewrite
expression (A7) as

We notice from Eqs. (A4) that the Onsager reciprocal re-

lations still hold for the L;z-. Moreover, if we express the

L;~ in terms of time-correlation functions involving J&

and Jg,

In this appendix we derive the linear relation between
the transport coefficients L,z given by Eqs. (2.5) and the
results of our calculations, in the hypothesis that h &h

Equations (2. 1) express the phenomenological relations
which describe transport in a binary mixture. Within the
local equilibrium assumption —expressed in the variables
P, T—we have

Jg ——Jg+[(h) —h)) —(hq —hg)]J) .

Then (A6) gives

L )Q ——I (J),JQ) —[(h )
—h, ) —(h2 —h2)]I (J, ,J)),

(A8)

BPp
aP

BPpVP+ VT .
(3T p

(A 1)

We define Vrp~ ——(r)p~/r)P)rVP as the gradient of p~ ob-
tained by subtracting from (Al) the temperature depen-
dence. Then the following relation holds

pp hp
TV =Vz pp — VT,T T (A2)

where h p is the thermodynamic specific enthalpy of
species P. Substituting Eq. (A2) into Eqs. (2.1) and taking
into account the fact that J]———J2, we get

VT
J) ———[L (Q L), (h, —h2)] — L)—t(Vrp) —Vrpp)—,T2 T

(A3)
VT 1—

Jg ———[Lgg Lg, (h, —hp)] —— Lg, (Vrp, —Vrltt2) .
T2 T

Lg, I(Jq, J, ) —[(h, —h, )
———(h, —hp)]I(J), J)),

LQQ —I(Jg,Jg) —2[(h, —h, ) —(h2 —h2)]I(JQ, J&)

+[(h, —h)) —(h, —h, )] I(J),J)) .

Thus the difference between the physical cross coefficients
and the I(J~,JQ)—which are the results of our MD
calculations —depends linearly on the difference between
the microscopic" h and the thermodynamic h

It is apparent from Eq. (A9) that the second term on
the right-hand side is a correction to the cross response we
measure. This quantity has a sensible statistical uncer-
tainty, therefore either we measure with great accuracy
both [(h, —h, ) —(hz —hz)] and the cross response
I(J~,JQ ) or the final result is likely to have little signifi-
cance. Thus we limit ourselves to the evaluation of the
order of magnitude of the cross effect.
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