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Quasistationary structures on a class of forced Burgers turbulence between walls
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The temporally stationary state of Burgers fluid between walls is discussed in the inviscid limit
under a class of external, random forcing. The force and the fixed boundaries are shown to pose
determinate restrictions on the fluid motion in the large, and drive the Burgers fluid to construct,
and to alternate between, a few characteristic structures for dissipation. A mean-field approxima-
tion is presented with its inviscid-limit closed solutions for average profiles in the stationary state.
The solutions are not unique and reproduce, though with varying accuracies, the mentioned struc-
tures of the fluid motion. Results of numerical runs are also reported, and their statistics is shown
to admit reconstructions on this picture, confirming further the existence of these quasistationary
structures and the itinerant motion of the fluid among them.

I. INTRODUCTION

We discuss the motion of Burgers fluid' between walls
with small viscosity coefficient v. The fluid is supposed
to undergo random excitations due to a simple class of
external mechanisms. The aim of this work is in the tem-
porally stationary, stochastic motion of the fluid. The
basic equation takes the form

Bu (x, t)/Bt+ —,Bu /Ox =vs u /Bx +o(x)f(t),
x EX—:[O, n] (1)

u„(x,t)
~ sx ——cr(x)

~
ax=0,

u (x,s)=P(x) given, v&0

with
~ ~x for values at the boundary of X. The nonran-

dom function o(x) represents specifically a large-scale
Fourier mode such as (2/n)'~ sinx, and is assumed to
satisfy the normalization condition

f cr (x)dx= 1 . (3)

f(t) is always taken to be a Gaussian white noise with ex-
pectations

(f(t))=0, (f(t)f(t+r))=o(r) .

Equations (1)—(4) arise as a normalized, central-limit
form of a class of forced Burgers turbulence problems,
and stipulate that the energy E(t) = —,

'
u (x, t)dx of

X
u„(x,t) undergoes random injection at the average rate —, .

For Eq. (1) with possibly more general forms of its force
term cr(x)f(t), several ruling conclusions are known '5 on
(especially x- and t-local) behaviors for. v)0 of u (x, t). If
o "(x) is Holder continuous, the solution u (x, t) for any
initial data P(x)HL (X) is twice differentiable in x and
converges samplewise as vlO in the space L'(X) of func-
tions of x, b't ~s. In particular, if v~O but small, there
can arise on a sample of u (x, t) steep downward steps in
a range

~

x S(t)
j

&O(v) —around S(t) (say) with the
form

u„(x,t)=-S'(t) ——,
' D(t)tanh[D(t)[x —S(t)]/4v] . (5)

This represents the sole possible form of balance of terms
of O(1/v) in (1) for v-+0, —,

'
c)u 2/aX =va'u. /ax ' with

u—:u S'( t )—and x =x S(t). —Consequently, any
tt(x) HL (X) gives for 9 t & s sample functions of
u(x, t) = u+o(x, t), the suitable representative of the L '(X)
limit for vlO of u (x, t), that have bounded variations in
x; they satisfy the entropy condition ' u (x —0, t )

& u(x +O, t), Vx HX, and can have shock discontinuities
[as before at x =S(t), say] that move according to

dS(t)/dt= , [u(S—(t) O, t)+u—(S(t)-+O, t)] .

If cr(x) and P(x) are regular functions of x HX, u (x, t) is
further restricted to having samples consisting of finite
numbers of shock discontinuities and interpolating regular
segments with probability 1, Vt &s. Thus the small scale
(hence large wave-number) structures of the forced field
u (x, t) for v & +0 are known to some extent of universal-
ity, if only o(x) has a sufficient degree of smoothness.

In comparison, our sights have remained dark on the
temporally stationary states to be established on u (x, t) as
s& —op. It has not been known what types of large-scale
structures arise on samples of u(x, t), not to mention typi-
cal values associated with average profiles. As a matter of
course, numerical simulations of (1) were performed for v
small but positive as described fully in Sec. V, taking ad-
vantage of the known L'(X) convergence for vlO. Runs
revealed very simple behaviors of u (x, t), which were
partly anticipated theoretically, but still surprised us in
various respects. For the case of o.(x) =(2/vr)' sinx, the
tendency may be summarized as follows: A sample of
u (x, t) for v small invariably takes a smooth profile, in-
creasing to the right without recognizable wiggling or
shock fronts on its central portion; it shows erratic
motions which are centered around three typical profiles
depicted in Fig. 1 keeping the mentioned simple forms;
there are occasional transitions among these groups of
profiles to which unexce tionally correspond signs of the
total momentum P(t):— u„(x, t)dx.

X
The theme of the present work is this behavior of (1)

which we would like to comprehend analytically as a pos-
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sible facet of turbulence phenomena. The work will show
the following.

[1] There exist some basic restrictions, imposed on the
large-scale structures and their time-local kinematics of
u (x, t) for small v&0, that arise from the presence of
walls and the force. These restrictions in particular drive
zeros on a profile of u„(x,t) to a few, nearly fixed points,
and force the velocity field to construct some large-scale
structures for dissipation around profiles of Fig. 1.

[2] However, these respective structures in isolation
cannot form stationary states. The stationary state of
u (x, t) for v& +0 should be unique, suggesting that it
will be constructed as random itinerations stated above,
from one of these structures to others.

[3] A mean-field approximation of (1), to be called a
model, exists with its closed solutions for the stationary
state in the inviscid limit. The solutions are not unique,
reproducing separately the global structures described in

[1] though with varying degrees of accuracy.
[4] The model closed solutions and some further devices

construct a statistics on the picture of [2], reproducing the
tendency of numerically obtained moments of u (x, t) up
to the fourth degree. This [4] would give a conclusive,
analytical evidence for the existence of the structures on
(1) as stated in [2].

Section II gives analyses on some local and global struc-
tures of sample fields of (1) from viewpoints pertinent to
(2)—(4). Section III introduces the model. Its solutions
are described in Sec. IVA, and the reconstruction of the
statistics of u is presented in Sec. IV B. Section V ex-
poses the details of numerical simulations of (1). Con-
cluding remarks will follow in Sec. VI.

II. LOCAL AND GLOBAL STRUCTURES

We discuss some analytical implications of (1) that are
pertinent to local and global structures of u (x, t) proper
to the existence of forces and fixed boundaries. If no oth-
er inference is made, we take such cr(x) that has no zero
on 0&x & m with a sufficient regularity.

the limit v&0. In order to explain this with the explicit
form of the limit, we assume regular o'(x) and P(x). Let
(S~—=0& )S,(t) & . & S„(t)(&S„+~=7r) be shock fronts
on a sample of u(x, t) =u+0(x, t) W. e have

n

dP/dt= g [ ——,u (x, t)
~

~"(+,)'

k=0

+u (Sk+ )(t) 0, t—)Sk+ ) ( t)

—u(S„(t)+O, t }Sk(t)]+Xf(t) .

The Rankine-Hugoniot relation (6) gives the desired
inviscid-limit form,

dP/dt = ,
' u'—(+O,t) —,

' u'(—~—O, t)+Xf(t), v=+0 .

(8)

Since walls x =0 and x=~ can have only stationary
shock discontinuities with S (t)=0, u(+O, t) &0 and
u(n O, t) &0—hold by the entropy condition. A portion
on the profile with u(x, t) &0 (or & 0, respectively) is self-
convected to the left (or the right). Therefore, terms
—,u (+O, t) or ——,

'
u (rr O, t) on the—right-hand side of

(8) represent, respectively, the draining of negative or pos-
itive momenta into wall shock discontinuities. Other
shock fronts in the fluid conserve the momentum by (6).
Thus (8) remains valid for Vg(x) EL (X) at r't &s.

Similarly, the total energy E(t) is also dissipated at
v=+0, now at alj' shock fronts on a profile. We quote
the Ito-type form of E'(t) for v=+0:

n

dE(t)/dt= ——,', g [u(Sk(t) O, t) —u(Sk—(t)+O, t)]
k=1

+ —,u'(+O, t) —,u'(~ ——O, t)

+ —, + uxtoxdx t

A. Momentum and energy dissipation

If v&0, (1) and (2) give the following for the total
momentum P(t) of the fluid at Vt &s for Vg(x) EL "(X):

au. (xt) „.dP/dt=v ~,"=o+Xf(t),
Bx

X—=j cr(x)dx .

By the assumed 2&0, Xf(t) in (7) gives a divergent
behavior ca X(t —s)'~ for P(t)-XB(t) with the Wiener
process B(t)= f(r)dr This tendency . is opposed by the
first term on the right-hand side, which persists even in

B. Motion of zeros on regular segments

Let Z(t) denote a zero on a regular segment of u(x, t)
We need the tendency of the motion of Z(t). To this end
we denote u'(x, t)—:Bu (x, t)Idx and u,"—= ci u /cix, and
state the following.

Given a profile u (x, t) of (1) with v& 0 for regular cr(x)
and P(x), the conditional average velocity

( dZ(t) Idt ),= (Z'(t) ),
of Z(t), defined by u (Z(t), t)=0 together with the re-
striction u

' [Z(t), t ] & 0, has the following expression:

( Z'(t) ), =F(Z(t), t),
F(x, t) = —vc}[lnu „'(x,t)]/c}x

+[2u'(x, t)] 'd[cr (x)/u'(x, t)]/ax .
(a) (b)

FIG. 1. Schematic profiles of u„(x, t) for (a) P(t) &..0, (b)
P(t)-0, and (c) P(t) ~ 0 for the case o.(x) ~ sinx.

Define U(x, t):—u (x, t) —o(x)B(t), B(t)=—J f(r)dr.
This v(x, t) is continuously differentiable, twice in x and
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once in t with probability 1, and obeys

a Uyat =~a'u. r ax' ——,
' au'. Zax .

There holds 0=u(Z(t), t }+cr(Z(t)}B(t). Assuming the
Ito-type stochastic differential dZ(t) =cr(Z(t))B(t). As-
suming the Ito-type stochastic differential dZ(t)
=a(t)dt +13(t)dB(t) and applying Ito's formula'o on
u(Z(t), t) and o(Z(t))XB(t), we have a stochastic dif-
ferential equation in Ito's sense:

dZ(t)ldt=E(Z(t), t) —[cr(Z(t))lu'(Z(t), t)]f(t) . (11)

The first term on the right-hand side proves (10). Sorry to
say, u(x, t) is not a deterministic function, and this appli-
cation of Ito's formula seems not justified in the strict
sense. Therefore, a heuristic derivation of (10) is present-
ed in Appendix A.

On the right-hand side of F(x, t), the first term
represents the nonforced case cr(x)—:0. It vanishes as v&0
for Z(t)'s of our concern, though in shock fronts with
u„'(Z(t), t) &0 it converges to S'(t) of (6) by the equation
of O(l/v) terms, vu„"=[u„—S'(t)]u'. As to the second
term of F(x, t), we note that profiles shown in Fig. 1 give
similar u' (x, t) s, putting aside their behaviors near walls.
Therefore, this term [hence F(x, t)] for v-+0 in (10) de-
pends not much on these conditioning profiles of
relevance. Assuming cr(x) = (2/vr )

' ~ sinx, we depict
F(x, t) for v-+0 in Fig. 2, corresponding, respectively,
to u„(x,t) of Fig l. It. should be noted that only portions
of these curves drawn in solid lines (not in dotted lines)
can exhibit the tendency of (Z'(t) }„because there must
hold u„(Z(t), t) =0 and u„'{Z(t),t) &0 in (10).

The above statement assumed the existence of Z(t) and
gave its tendency in motion. As to the way of the birth of
such a Z(t), numerical runs reveal a simple circumstance
again: Throughout runs which are up to t —40 (cf. Sec.
V), a new zero on u„(x,t) for small v was observed to be
born only through the process (a)~(d) shown in Fig. 3 or

(a)

Ii

I
(I

I
(

t

I

I

I(

(b) (c)

II

I

I,
I
I

I
I

s I
Il i I

II

FIG. 2. Schematic graphs of (Z'(t) ), vs Z(t) H [O, vr]

corresonding to conditioning profiles of Fig. 1 (a)—1(c), respec-
tively.

their inversions u „(x,t )~—u (rr x, t—), despite many
other conceivable processes. The birth notably occurs
only at those x's with u' (x, t)=0, as shown in Fig. 3(b)."
We may thus conclude the following. Zeros on u „(x,t)
for v-+0, among which we exclude the trivial ones at
x =0 and x =m, are at most unique throughout the histo-

ry, and it tends on the average to three nearly fixed points,
one at x -vr/2 and others at x -0 and ~. The attraction
to x -0 or m is stronger in comparison to x -m/2. These
attraetors, however, are mirages formed by the profile
u„(x,t) itself that appear only when u (x, t) is sustained to
some level (i.e., when v is small ) by the energy injection
due to the force.

C. Global estimates and structures

In this subsection we use the notation u, (x, t;g) for the
solution of (1)—(4). Denote

D(x, t) =u„(x,t;g) u, (x,t;P*), —
where both u, 's on the right-hand side refer to the same
realization of f(t). By (1) and (2) we have' for v & 0

(dldt) f sgn[D(x, t)]D(x, t)dx = f sgn[D(x, t) JD, (x, t)dx

=v J sgn[D(x, t)]D„„(x,t)dx

& v[sgn[D(rr —O, t)]D„(n., t) —sgn[D(+0, t)]D„(O,t) I

(0

(12a)

(12b)

(12c)

In the transition from (12a) to (12c) we have gradually dropped some of the contributions from points at which D(x, t)
changes its sign; such a contribution is seen to be negative by examining possible local profiles of D(x, t). The above
(12c) implies L '(X)-contracting character of the motion of u„(x, t) for Vv& +0,

i
u„(x,t;P) u(x, t;P*)

i
d—x & f i

g(x) —g*(x)
i
dx .

A more detailed form (12b) gives the following information for v « 1:

(13)

(dldt) f ~

u (x, t;g) u(x, t;P")
~

dx & ———,
'

~

u (+O, t;P) —u (+O, t;P*)
~

~

u (n O, t;g) —u (rr O—, t;P*)
~
+O(v) &0, — (14)
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(a)

FICx. 3. The process of birth of a new Z for o(x) ~sinx.

where u(x, t;g) stands for u+o(x, t;f) and use was made
of the following obtained from (5)

vu'(~, t)= ——,
'

u (n.—O, t)+O(v),
u'(O, t)= —, u (+O, t—)+O(v) .

There hold

—,'d[U„(x)+(u (x,t))]/dx=vd U Idx

au. (x,t)/at+a[U, u. +-,'(u „—(u ', ) )]/ax

=va'u„/ax'+o. (x)f(t) .

(17)

(18)
In view of the effect of self-convection, we may safely as-
sume that any difference u„(x,t;g) u„(—x, t;g*)& 0 will
eventually be convected to walls (or to internal centers of
antisymmetry' ). Thus (14) implies

We approximate (18) by discarding the self-convection
term —,

' a(u „—(u „))/ax of the fluctuation. Since the re-

sulting equations give solutions different from {U, u

we write

lim f ~
u„(x,t;g) u„(x,t;g—* )

~

dx =0,
Sg —m

Vv + +0, Vg, g* HL "(X), (15)
U„(x,t) = V,(x)+u„(x,t),
—,'d[V'„(x)+(U '(x, t))]/dx =vd'V, /dx',

(19)

(20)

the uniqueness of the stationary state of u (x, t). Equa-
tion (1) poses an ergodic, Ljapunov stable motion in
L'(X); for this stability (13), cf. Sec. VI further. Note
also for general o(x) that the inversion
u (x,t)~ u(vr x, t)—leaves —(1) invariant (or statistically
invariant) if cr(rr x)= tr(x)——[or =o.(x)] holds; in these
cases, therefore, stationary averages of u „(x,t) must be in-
variant under the inversion by the uniqueness of the sta-
tionary state.

Assume o(x)=(2/m)'r sinx again. By the motion of
zeros discussed in Sec; II B and by the correspondence be-
tween (signs of) P(t) and groups of profiles shown in Fig.
1, the random motion of u (x, t) for v-+0 may be
grasped as separating into three clusters (structures) of
profiles, each cluster being centered around the one de-
picted in Fig. 1. The birth process of Z(t) mentioned in
Sec. II B and the above-concluded ergodicity further indi-
cate that the global structure of the motion of u (x, t) for
v- +0 consists of random but unbiased itineration among
these clusters, which may schematically be denoted as (b)

{(:)] (b) {(:)]
It is now our aim to draw more quantitative con-

clusions from this picture and question how the picture it-
self can be extended to more general cases of cr(x). To
this end we turn in Secs. III and IV to an approximation
on (1) that admits analytic forms for its solutions.

III. THE MODEL

Consider the temporally stationary state of u (x, t) for
st —oo, and let ( ) denote the average in this state. In-
troduce

a U„/at+a( V„U„)/ax =va'u, /ax'+~(x)f(t), (21)

E„(x)=C (x,x), C (x,y)—= (U (x, t)U„(y, t)) . (22)

=va U /ax +(r(x)f(t) . (23)

Thus U (x, t) gives a mean-field approximation of (1) that
resembles the Weiss approximation in the Ising problem
in some respects. It was derived as the first nontrivial
truncation of Wiener-Ito decomposition of u (x, t) by
multiple Wiener integrals over {f(t');s & t' & t ].' '

As already mentioned, the self-convection constructs on
the field u(x, t) = u+0(x, t) shock discontinuities that
satisfy the entropy condition, and we should look for typi-
cal samples of the t-homogeneous u(x, t) in the class of
functions of x with bounded variations. Such a gen-
eral guiding rule is not known for the inviscid limit of
(23). We therefore define the model in the spirit of the
boundary layer approximation. Equation (23) will be con-
sidered first with small but positive v that will give
v (x, t) with all differentiabilities in x. Consider the tem-
porally stationary state of this U„(x,t) for st —co. By the
linearity of (21), u (x, t) has the form

u (x, t) =f K(x, t —s )f(s)ds, (24)

aK(x, t)Iat+a[V (x)K(x, t)]/ax =va K/ax

K(x, +0)=cr(x) . (25)

This approximation enjoys solvability in the limit v10.
In this sense we call u„(x, t) a model of u, (x, t). There
holds

au„/at+a((U„&U„+ —,
' (v'. &

—(v.&')/ax

U„(x)=(u„(x,t)), u„(x,t)=u (x, t) —U„(x) . (16) These yield
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C„(x,y)= J K(x, t)K(y, t)dt,

B[V„(x)C„(x,y)]/Bx+B[V (y)C„(x,y)]/By

K(x, t)= V(X(x, t )—)tr(X(x, t )—) /V(x),

BX(x,t)/Bt= V(X(x, t)), X(x,o)=x .

(31b)

(31c)

6=8 /i3x +8 /By

=v b C (x,y) +o (x)cr(y), (26)

Equations (20) and (26) form an elliptic system with boun-
dary conditions

V (x)
I
ax=C (x y)

I a(xxx~=0. (27)

Elliptic boundary value problems with small coefficients
in the highest order derivatives often yield solutions with
boundary layers. ' Therefore, V (x) and C (x,y) for
v-+0 will consist of parts well approximated by the
inviscid solutions of (20) and (26) without terms
vd V /dx and vhC . These inviscid solutions will cov-
er the most parts of spaces X and XXX. However, not
all of boundary conditions (27) can be satisfied by inviscid
solutions. There will arise thin boundary layers in which
[as in shock fronts (5)] v d V„/dx and v b, C show
recognizable magnitude even for v-+0. The whole solu-
tion [V„,C„} will be determined without ambiguity by
matching inviscid and boundary layer solutions so that
(27) is fulfilled.

IV. STATIONARY SOLUTIONS OF THE MODEL

A. Closed solutions of the model

The above type of solutions for (23) with v-+0 exist
in closed forms for the stationary state. Their forms are
summarized below.

Theorem. Let o(x) fulfill (2) and (4) with Holder con-
tinuous o"(x). Temporally stationary solutions of (23)
with boundary layer structures for V„(x) and C,(x,y) ex-
ist for v-+0. The solutions are not unique, with their
multiplicities depending on o(x). Denote V(x) = V+o(x),
E(x):E+o(x) C(x y) —=C+o(x y), and u(x, t) =—u+o(x t)
limits for v&0 being defined as inviscid solutions deter-
mined by the boundary layer matching. All solutions
satisfy

( u (x, t) ) = (v (x, t) ) T ——V (x)+E(x)==y„,

Possible values of (n, A. ) are exhausted by the following
statements (a)—(c).

(a) The states with n = —, arise with any o(x) in doub-

let, with two possible values A, =~ and A, =O.
(b) Let A. be so defined that the ordinate x =A, bisect the

area below the graph of o (x) on X. For any o.(x) there
exists the state (1,A, ).

(c) If o.(x ) has zeros on 0 & x & ~ and if these zeros
satisfy some further restrictions, there arise other station-
ary states. Any of them consists of pieces of solutions
(28)—(3lc) on subintervals of X, all with the same n &1
but corresponding to different A, 's for this n.

We shall use a running index i and its symbolic values

[a,b, c, . . . I to denote pairs (n, A. ), (n', A, '), . . . . The deriva-
tion of these solutions in the theorem requires some length
for its description. We defer the details to Appendixes B
and C for the compactness of the text. The above
theorem refers only to pure states, so to speak, of the sta-
tionary solutions of (23). Since there exist at least three
such pure states a =—( —,',~), b =(I,A, ) with A, of (b), and
c—:( —,',0) for any o.(x), mixtures of states may always be
constructed. The following gives their description in an
obvious way.

dP(i, tu) =p; dP;(co), (32)

for any such [p; } defines a stationary solution of the fol-
lowing version of (23):

Bv /Bt+B((v, ) Tv„+ —,
' (u,') T —(u, ) r)/Bx

=vB v„/Bx + tr(x)f(t),
as a mixture of pure states.

(23')

Corollary. Let i EI:[a,b, c, . .—. } specify pure states in
the theorem, respectively, with the probability measure
dP;(tu) on the probability space Q (&co) of the Gaussian
white noise. Let IXII be the product space of (i,co), and
let p; &0 satisfy g,. ~tp; =1. The probability measure on
I~A,

—(3/n )1/3 + 2
—5/6 (28)

B. Statistics

E(x):(u (x, t)) =(u (x, t—))T——y„—V (x),
u(x, t) = f K(x, t s)f(s)ds, —

(30)

(31a)

where ( A (t) ) T is the time average,

j(A(t))z. = lim I A(r)dr,
s& —~ t —S

and nH [ —,', 1,—,,2, . . . } takes values proper to o(x). Ex-
plicit forms of V(x), E(x), and v(x, t)—= u+o(x, t) for a
possible value of y„are given as follows with another
proper value kHX associated with cr(x),

V(x) =2'/ y„sin —,sin ' 3X2 y„j o (y)dy

(29)

We take o(x)=(2/~)' sinx as the representative of
o(x)&0 on 0&x &a. By (a)—(c) of the theorem there are
only three pure states, I = [a,b, c } in the previous nota-
tion. The symmetry stipulates that a = ( ,', vr ) and-
c =( —,', 0) are inversions u(x, t)~ u(rr x, t) of each ot—h-—
er, with b =( l, n/2). Figure 4 gives the average V(x) and
the variance E(x) of these pure states, respectively, with
ordinates exhibiting +1 by their length. For the rest of
this subsection, we shall use notations V~(x) = (v(x, t) );
and E;(x)=—(v (x, t));=—([u(x, t) V(x)] ); wi—th i HI,
where ( ); specifies the expectation in the pure state i

Average profiles V, (x)—V, (x) in Fig. 4(a)—(c) are rem-
iniscent of the centering profiles of Fig. 1(a)—(c), respec-
tively. We naturally inquire on the construction of a mix-
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aver age

1

1

1

L 1 variance

(a) (b) (c)

FIG. 4. Average and variance profiles of pure states of the
model for o.(x)=(2/~)' sinx.

ture of these pure states, choosing hopefully p, —p, of the
corollary for relative sojourn times of u in these struc-
tures and aiming at the reproduction of the statistics of
u . To proceed, we first compare profiles in the pure
state b with numerical results for (1), taken from a run for
the same o (x ) with v= (2/m. )'~ /50=0. 0172 up to
t=73.74. Further details of this numerical process are
given in Sec. V.

Figures 5 shows Vb(x) and U (x)=u„(x,t))r, Eb(x),
and E„(x)=(u (x,t))r, skewness factors

Sb(x)—:( u (x, t) )b /Eb (x):0, —

S (x)=—(u )r/E (x)

and normalized flatness factors

Fb(x)—:—, (u )b/Eb(x) = 1, —

F (x)= —, (u )r/E (x) .

All ordinates stand for the interval [—1,1]. The diver-
gence of S (x) and F„(x) is due to the rapid decrease of
normalizing E (x) as x ~0 and x ~m, and goes closer to
walls as v&0. Though this pure state b in isolation can
never reproduce non-Gaussian behaviors of u (x, t), (23')
is kinematically a natural approximation of (1) insofar as
we collect only motions of u around the centering profile
of Fig. 1(b) with small deviations. We thus turn to the
question of how the other two pure states can be mixed
to fill up the remaining motions of u„(x, t). In passing
we note the following. There holds Eb(m 0)=y~/2—
= Vb(vr 0) &0. Th—erefore, 15.9% of (Gaussian) samples
of u(x, t) in the pure state b with u(m. —O, t) & —y&/2'~
violate the entropy condition u(m. —O, t) &0. The matter is

/
C

J

/

/l

skewness

r
/

/

I

'~

flatness/3

FICx. 5. Profiles of numerical results and the model pure state
b for o.(x)=(2/~)' sinx.

the same at x =+0. This figure 0.159 will give a measure
of quantitative accuracy of this state b as an approxima-
tion of the mentioned portion of samples of u„(x, t).

For convenience we next take the mixture, to be denot-
ed ac, for p, =p, = —, and pb ——0 in the corollary. Denote
( )„for the average with respect to (32) of this mixture
ac, and define u

—= u —V„with V„(x)—= ( u(x, t) )„. Fig-
ures 6 shows, with the same numerical results as Fig. 5,
profiles of the average V„(x), the variance
E„(x)—:(u (x,t))„, and skewness and normalized flat-
ness factors S„(x)= ( u )„/E„(x) and F„(x)—= —, ( u )„/E„(x) The accu.racy of this solution will be
discussed shortly.

We are now in a position to examine a further mixture,
to be called the e mixture with its expectations to be
denoted ( )„giving the probability e to Fig. 5 and 1 e-
to Fig. 6; this is just the mixture p, =p, =(1—e)/2 and

pb ——e of the corollary. Denoting V,(x), E,(x), S,(x), or
F,(x) for the average, the variance, the skewness factor,
or the normalized flatness factor in this mixture, respec-
tively, we have

V, (X)=e Vb(x) +(1—e) V„(x),
E,(x)=eEb(x)+(1 e)E„(x)+e(1——e):- (x), :-(x)—= Vb(x) —V„(x),

(33)

(34)

(36)

(37)

S,(x)=(1—e)S„(x)e„(x)+e(1—e)g(x)[3eb(x) —3e„(x)+.(1 —2e)g (x)], (35)

g(x) =:-(x)/E,' (x), eb(x) =Eb(x)/E, (x), e„(x)—:E„(x)/E,(x),
F,(x)=eeb(x)+(1 e)F„(x)e„(x)+—e(1 —e)g(x) t(1 3e+3e )g—(x)+6[(1 e)eb(x)+ee«(x)]g(x) 4—S„(x)e„—(x) I.

Figures 5 and 6 show the ordering V„(x)& U„(x) & Vb(x)
on the main portion of 0&x &~. Therefore, V,(x) of (33)
can be made very close to U (x) by a suitable choice of
e&0. As to the variance E,(x), however, the matter is

not prosperous. From figures we see E (x) &Eb(x)
«E„(x); E,(x) of (34) can never be closer to E,(x),
even at x =m/2 that gives = (x)=0, than Eb(x) whatever
0 & e & 1 may be.
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FIG. 6. Profiles of numerical results and the model mixture
a +c for o.(x) =(2m. )' sinx.

and c can in fact give consistent statistics that reproduce
higher degree moments of u„(x,t), at least where one-time
expectation values are concerned. Consider the simple
case that model pure states a and c consists of determinis-
tic samples u(x, t) = V;(x), i =a or c. Their even mixture
gives V„(x)= [ V, (x)+ V, (x))/2, E„(x)= [V, (x)
—V, (x)] /4, S„(x)—:0, and F«(x):——, . Assume'

V«(x) & Vb(x) on tr/2&x &m and E„(x)&Eb(x). Equa-
tions (33)—(37) assure that V, (x) can be close to U (x),
and that E,(x) is diminished from Eb(x) at x =sr/2 and
flattened for x~0 or m by E„and:" terms. There also
holds

S,(x)=e(1—e)j(x) I 3[eh(x) —e«(x)]+(1—2e)g (x) I,
which is positive on ~/2 &x &~ for e & @& with certain
e~ ~ —, . The matter is intricate with F,(x), but it is con-
tinuous in e with F,(x)

~ & p=F (x) =
3 &&1. Thus

S (x)= —S (m —x) &0 on n/2&x &vr and F (x) & 1

hold for e & ez, with certain e2 ~ 0. These are the tenden-
cies of numerical results shown in Fig. 5 or Fig. 6.

Since Eb(x) is expected to represent a definite portion
of the reality of u (x), the above observation stipulates
that E„(x)&E„(x) must hold, if the mixture ac should
approximate the remaining portion of u „(x,t). This
necessity is also seen from other respects: The existence
of a centering profile of the type of Fig. 1(c) implies that
fluctuations given to the fluid at x —a/2 are more
promptly convected and deposited than the case of Fig.
1(b), while the entropy condition prohibits stringently pos-
itive fluctuations at the stagnant portion x-0. In con-
trast, the model has E, (+0)=y&~2&0 with V, (+0)=0;
50% of samples of u(x, t) in the pure state c violate the
entropy condition at x -0. The reader is asked to refer to
Appendix 8 for the origin of this fault. Unluckily, these
samples of u (x, t) of poor quality, which occupy the shad-
ed portion at x -0 in the schematic Fig. 7, give the larg-
est values to u(x, t)=u(x, t) —V„(x). The matter is the
same with the pure state a at x -vr.

The above observations suggest a direction' to which
pure states a and c should be improved. %'e circumvent
this difficult way, however, and close this section prompt-
ly by presenting a prospect: The modification on states a

FICs. 7. Schematic distributions of profiles in the model pure
state e on 0&x &vr.

U. NUMERICAL RESULTS

Some details are now described on the adopted numeri-
cal procedures and their results. In solving (1)—(4) nu-
merically, advantages were taken of the known L'(X)
convergence of u „(x,t) for v (0 by choosing small but pos-
itive v's that facilitate the processes. The spatial mesh
size was chosen exclusively as M=~/500. The time
steps were ht =O(~/10 ), varying slightly with runs. The
explicit difference scheme of Lax' was adopted by its two
merits: [1] It gives a stable discretization of the linear dif-
fusion term, and [2] the explicitness of the scheme enables
nonanticipating' construction of solutions. This scheme
gives' v=(bx) /(2bt)=O(n/50), which implies that a
shock front of (5) of a width of O(v) contains at least ten
mesh points of x, and cannot be overlooked. Runs were
in double precision. For the free decay o(x)—:0 it was
confirmed with the initial data P(x) = —sin(2x) and
At =sr/10 (i.e., v=vr/50) that the momentum is con-
served [P(t)=0] and the half-life T of the profile is
T=3 0030,t=0(1), T being defined by the half-decay of
the total energy E(t)

The main runs were performed with cr(x)
=(2/vr)'~ sin(2x) for' P(x) = —asin(2x), a=(2/~)'~,
At =m/(10 a), and v=avr/50. As already mentioned,
the evolution of profiles showed the simple correspon-
dence between P(t) &0 and the types of profiles of Fig.
1(a)—1(c), respectively, and also the sole possible way of
birth of new zeros on a profile as depicted in Fig. 2 or its
inversion. As the typical and outright data showing this
appearance of distinct clusters of profiles, we give in Fig.
8(a) sample behavior of the total momentum P(t) in a
long run up to t=44. 17, together with the total energy
and its time average, and the momentum input
W(t) =KB(t)=Xf f(s)ds. Here W(t) is chopped at

0
equal time intervals and recommenced from 0 in order to
avoid its divergence ~ Xt ' . All ordinates of these
graphs show 3 or 3 in respective units. The distribution
of values of P(t), taken at every ten time steps, is drawn
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momentum
input

of inversion invariance, a perturbative approach will be
adequate, starting from the case of complete antisym-
metry.

VI. CONCLUDING REMARKS

We have discussed, both analytically and numerically,
the forced motion of Burgers fluid between walls in the
inviscid limit. As regards the case cr(x)&0 on 0&x &w
for the problem (1)—(4), the motion shows a strong resetn-
blance to Brownian motion in triply bottomed potentials.
This has long been speculated by the discovery of the
model and its closed solutions. Sorry to say, a misconcep-
tion has intervened on the basic role of the pure state b in
these works, and the point was appreciated correctly only
after the very recent numerical runs.

For a slightly more general problem with cr(x) that can
have points of approximate antisymmetry, ' numerical re-
sults suggest the general tendency that shock fronts can
continually be formed in (selected sets of) vicinities of
these points, giving spatial configurations for the dissipa-
tion among which the system will itinerate. A sojourn
time of u in such a quasistationary structure can be very
long, but it can also be only transitory, as seen in the
P(t) graph of Fig. 8. This causes another inaccuracy in
(23'), as an approximation for (1).

The L '(X) stability (13) of u (x, t), which persists even
at v=+0, shows apparently a distance from the usual
turbulence phenomena that are stochastic not only by the
randomness in the force but by instabilities in their
dynamics. In (1), however, not all instabilities are ruled
out by (13). In order to have perspectives on this point,
we consider the BV norm

i
iq(x) iBv defined by the total

variation of q(x) on X. Assume' by (2) that all func-
tions of x are centered at their discontinuities,
q(x)—:—,[q(x —0)+q(x +0]. Let f(x) be in the space
BV(X) of (centered) functions of bounded variations
equipped with the BV norm: BV(X) forms the dual space
of C (X). For any 0&v& 1 and s &t & AT & ~ there
hold (v, t)-independent estimates on ui, ( xt;g) iiBv and
the L (X) modulus of continuity of u (x, t;g) in t;
cf. Ref. 4, Sec. 2, lemma 1. These facts and L '(X)
convergence for vlO of u, (x, t;f) assure
that u (x, t;g) E[C (X)]' is weakly* continuous in
(v, t ) H [0,1]&& [s, T). In other words, an arbitrary
q(x) H C (X) gives a (v, t )-continuous Stieltjes integral

f xq(x) du, (x, t;P), which is —f q'(x)u (x, t;P)dx for
q(x) C C'(X) by (2).

The motion of u(x, t;P) in BV(X) is not norm-
continuous for general P(x) HBV(X), as seen in the second
example below. Correspondingly, u(x, t;tt ) in BV(X) can
show behaviors which are qualitatively quite different
from the indication of (13). As the first example showing
this, we take P and f* of Fig. 9 and define
d(t;g, P*)—=

i iu (x, t;P) —u(x, t;g*) iBv. In the free evo-
lution for cr(x)—:0 we have d(s+r;g, g*)=2e/( —, —r)
for 0 & r & —, —e. However small d(s;g, ttt*) =4@ may be,
it attains the value 2 independent of e after a finite lapse
of time at which a shock discontinuity is built on
u( t;xP'*'). As the second example, we consider ttt(x)
with a shock discontinuity at x=S that is not a center of

total
energy

FIG. 8. Realized time evolutions of a long numerical run for
~(~) ~ si~.

as a density on the left of the P(t) graph in the same
scale, showing three peaks at P=0.8, 0, and —1. This
confirms, along with the correspondence between P(t) and
Fig. 1(a)—1(c), the existence of three clusters of profiles as
discussed from analytic viewpoints in Sec. II.

The distribution of P(t), however, shows scatter with
runs. In another long run up to t=73.74, peaks were at
approximately 0.8, 0, and —0.4. Both of the mentioned
distributions of P(t) show asymmetry at P=O. These im-
ply that the convergence of time averages is not yet at-
tained, indicating the slowness of convergence and also
the strength of the lingering property of profiles in quasi-
stationary structures. By the inpracticability of longer nu-
merical runs, ' Figs. 5 and 6 show time-average profiles
that are (anti-) symmetrized at x =7r/2.

Finally we note the following. If cr(x) cc sin(2x) holds,
(1) admits solutions that are inversion invariant for ctt s.
The unique stationary state of (1) should thus be com-
posed of such samples. For the same cr(x), the model (23)
can have three pure states, a'=(l, vr2), b'=(2, ~/4), and
c'=(1,0), which represent (a) and (b) of the theorem for
the problem on 0 &x & ~/2 and which should be extended
antisymmetrically (by inversion) to vr/2 &x &rr Besides.
these, the model also has pure states a = ( —,', n) and
c =( —, , 0), b =( l, m/2) being identical to a'. These a and
c break the antisymmetry of the problem at x =~/2, and
they are spurious as approximations of (1). When
cr(x) cc sin(2x)+esinx holds with small

i
e, however, the

model (23) can have only pure states a —c, lacking solu-
tions that correspond to b' and c'. Therefore, a question
arises what will occur on (1) for this cr(x)
A numerical run was thus performed with o.(x)
=(1.09vr/2) 'r [sin(2x)+0. 3 sinx] for At =sr/(10 /3)
and v=P7r/50, where /3=(1.09~/2. 06) r . The result
was simply that u (x, t) shows behaviors that are inferable
continuously from the case of cr(x) ~sin(2x). The model
fails to reproduce moving shock fronts, which show up on
samples of u (x, t) at x —tr/2 continually. Luckily, this
fault of the model was of little relevance with cr(x) cc sinx
for which such a moving shock front appears only rarely
and only near walls associated with the process sketched
in Fig. 3. If we should construct approximations of (1)
with the model for problems that are slightly off the case
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APPENDIX A

1 —2c Let e(r) be a rapidly decreasing function for r~+ ()(),

and introduce the smeared Gaussian white noise f~(t):

f,(t) = f e(t —s )f(s)ds, (f,(t) ) =0,
(A 1)

1 —E: 1
2

FICx. 9. Two initial data showing time-local BV(X) instabili-

inversion invariance. If P (x) has the same location x =S
for its own discontinuity with g (S —0)=g(S —0)—e
and P*(S+0)=P(S+0), d(s;P, g*)=O(e) jumps to a
different, essentially e-independent value at t't &s by (6).
These space-time local behaviors persist in the forced
case.

If cr(x) admits points of approximate antisymmetry, the
force will continually generate moving shock discontinui-
ties on a typical sample of u(x, t) in the stationary state.
Further, quantities of the type of

~

Bu(x, t)/(3x
~

are
often the objects of physical concern —for example, as the
enstrophy in Navier-Stokes problems. The circumstance
suggests not only that Burgers fluid for v=+0 can serve
as models of some turbulence phenomena despite (13), but
also that the motion of Burgers or more general fluids can
be chaotic or orderly depending on what quantities we
aim physically, and are in fact able, to observe on it.
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(f,(t)f,(t+r)) =f e(r+r')e(r')dr'=5, (r) .

Samples of f,(t) may be taken differentiable any number
of times, and Eq. (1) with its f(t) replaced by f,(t) may
be defined samplewise as a usual (nonstochastic) forced
Burgers equation. This gives that samples of u (x, t) have
all differentiabilities in x and t, and u (Z(t), t ) =0 implies

Z'(t) = vG„(Z(t—),t) f,(t)H—(Z(t), t),

G(x, t) —=lnu' (x, t), H(x, t) =cr(x)/u' (x, t) .

For simplicity we take that the conditioning is given at
t =0. We also use momentarily the abbreviated notations

G (t)=G„(Z(t), t), H(t)=H(Z(t), t),
H„(t)=H„(Z(t), t), H, (t) =H, (Z(t), t),
U„(t)= u „'(Z(t), t ), U (t) = u "(Z(t), t ),
U „„(t)=u'"(Z(t),t), X(t)=a(Z(t))
X'(t)=o'(Z(t)) .

The author thanks Hideki Takayasu for helpful discus-
sions on, and for some facilities in, numerical procedures
in this work.

Finally, we choose a small but finite ~~ 0, and evaluate
the time average r ' (Z'(t) ),dt, toward the limit rt0.

Q
The following iteration is useful to this end:

H(t)=H(0)+ f H'(s)ds
0

=H(0)+ f [H„(s)Z'(s)+H, (s)]ds

=H(0)+ f ds f,(s)[—2X(s)X'(s)/U„'(s)+X'(s)U„„(s)/U„'(s)]

+ f ds[ —vX'(s) U„„(s)/U (s)+vX(s) U„„(s)/U (s) —vX(s) U„„„(s)/U„(s)+X(s)]. (A2)

Finally, we observe the general relation

f,(&) f dk J„deaf, (r))=O & f ('!,(&')d&', 0&@!&&,

~ ~ ~f, (&) f dt). . . f d!2„,f,(t, !.. . f,(t~„,))=(2n —()!! 0 & J 5,( )d& n —12

In total, we have

(Z'(t)), dt= vr ' f (G„(t)),dt —r ' f—dt f ds(f, (t)f, (s))

X ( —2X(s)X'(s)/U„(s)+X (s)U (s)/U„(s)), ds+O(r),
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which in the limit 5,(r)~6(r) tends to the following by
5,( r—) =&,( r):

' f {Z'(r)),dr=r ' f {F(Z(r),t)),dt+O(r) .

Since the limit rtO gives {F(Z( t), t) ),~F(Z(0),0), we
have the assertion.

APPENDIX B

Take v&~1. We look for the solutions of V, E, and
C with boundary layer parts and inviscid parts. We first
discuss the forms of inviscid parts which are denoted as
V, E, and C. Omitting the viscous term in (20), we obtain

V*(g)—= V„(~+vg),

K*(g, r )=K(sr+ vg, r ),
E*(g):E—(~+vg) .

Equation (25) for K(x, t) gives a'K*/ag'=a( V*K*)/r)g
for the leading terms. For K*(O,t)=0 and for vanishing
dK*/dg=vr)K(x, t)/r)x as gt —oo, this has the following
solution:

K*(g,r)=k(t) f dgexp f V*(g)dg

Here k(t) is an arbitrary function. Putting this into
C (x,y) of (26), we obtain

V (x)+E(x)=const—=y, y&0. (B1)
C*(g,g):C„(m—+vg, rr+vri) =P(g)P(rI), E*(g)=P (g),

(B6)
Similarly, (26) with x =y and without the viscous term
yields

1/2
p(g) = f k (t)dt f dry exp f V*(g)dg

2 V'(x)E(x)+ V(x)E'(x) =o (x) .

These two equations are integrated to

J( V(x) ) =J( V(A. ) ) +X(k,x ),
J(V)—=2y2V ——, V', X(k.,x)= f o (y)dy .

(B2)

(B4)

By (B7) and by (26) for x =y, we have

Equation (20) implies

d V*/dg = —,'d[(V*) +P ]/dg .

(B7)

(B8)

V(~) & y/2'i (B5)

Now we turn to the boundary layer needed for V(x) of
c, which fulfills V(0)=0, to fulfill the other boundary
condition at x =sr. Define the stretched coordinate g by
x=~+vg with /&0. Put

z(v)

Figure 10 shows the form of J( V), together with a graphi-
cal way to obtain V(x) with given values of X and V(X).
We restrict the arguments, for the time being, to the
derivation of the solution c = ( —,',0) with k =0 and
V(A, )=0 assigned. From (B3) we obtain a third-degree
algebraic equation for V(x). The well-known method of
solution with sin(g/3) gives the form of V(x) in (29) for
A, =O; (29) may also be confirmed by putting it into (B3),
and it is valid generally for any pure states as well as
c=(T,O). Since X(k,x) is monotonically increasing in x,
Fig. 10 manifests the existence of the restriction

Addition and subtraction of (B7) and (B8) yield the fol-
lowing:

O'P~(g)/dg'= ,
'

dP'+(g)/d—g, P+(g)—:V'(g)+P(g)

(B9)

V'(g) = —v tanh(I~(') —v' tanh(v'g),

E*(g)= [tc tanh(xf ) —x' tanh(a'g)]
(B10)

where ~ & K' & 0 are constants. The matching conditions

V'( —co ) =~+~' = V(~ —0) & y/2'

E*(—ca ) = (~ ir') =y V—(vr 0) & y—/2—
imply the unique set of values ~=@/2' and ~'=0. Thus
we have

Take g'= —v '~
&& —1. This corresponds to

x =7r v'~ =n 0. Th—erefo—re, V*( —oo ) and P ( —ao )
must be matched to finite values V(vr —0) and E(vr 0), —
respectively, of the inviscid solution. Examining
d &0/dg = —,

' d@ /dg under the boundary conditions
C&(0) =0 and &0( —oo ) finite, we conclude that the possible
form of @(g) on —oo &/&0 is unique and given by
N(g) = —x tanh(ling/2), where k & 0 is arbitrary. Thus we
have the unique forms for V"(g) and E*(g),

V(m —0)—= V+0(m —0) =y/2'~ (B1 1)

FIG. 10. A graphical method for the evaluation of V(x).

This and (B3) give J(y/2'r )=X(O,m)=1, which deter-
mines y =y~&z given in (28). Using this value in (29) and
(30), we complete the derivation of the temporally station-
ary state c=( —, ,0) for V(x) and E(x)=E+0(x), except
for the point that E(0)=(y»2) —V (0) &0 seems to
violate the fixed boundary condition for E (0) without
any boundary layer at x =0. In order to give some useful
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view into the structure of the model solutions, we now go
a little into this problem.

We observe (25) for the kernel K(x, t) in the inviscid
case:

aK/at+ a[V(x)K]/Bx =0, K(x, O) =cr(x) . (B12)

The mean field V(x) is monotonically increasing in x for
the case c =( —,,0), as shown in Fig. 4(c). The solution of
(B12) is found by its characteristic equation (31c) for X,
and we obtain the form of K in (31b) which remans valid
for any states other than c. At x =0 of the present case
there holds K(O, t)=0. Therefore, the fluctuation v(x, t)
constructed with this K(x, t),

v(x, t)=v(x, s)+ f K(x, t t')f(t')d—t', (B13)
S

fulfills the boundary condition at x =0 if v(x, s) does. As
the limit s &

—oo of this expression, however, the integral
for E(x),

E(x)= f K (x, t)dt = f V(X)o (g)dX/V (x),
x)0

converges nonuniformly near x =0, and yields E(+0)
=(y]r2) while E(0)=0. This implies that the limit
st —oo of v(x, t) of (31a) has a discontinuity, v(O, t) =0,
while v(x, t)&0 for x &0 with probability 1. We admit
this type of discontinuous solution. See also some related
descriptions below Fig. 7 in Sec. IV B for further implica-
tions of this feature of the model solution c as well as a.

The other stationary state a =( , ,vr) is obta—ined by the
same procedure starting from A, =m and V(n ) =0. Finally
we note that v(x, t) of (24) at a fixed x HX forms a sta-
tionary Gaussian process with mean zero and mutually in-
dependent v(x, t) and v(x, t+T) in the limit T~+ oo by
the integrability of K (x,t) in t. Thus v(x, t) is mixing.
This justifies the replacement of the average of f ( t) with
the long-time average, as in (28) or (30). This proves (a) of
the theorem.

APPENDIX C

For the proof of (b) and (c) of the theorem, we first give
a complete tabulation of the states referred to in theorem
(c).

Theorem (c*) Let x. p=0& x] &x2 ( ~ ~ ~ &xt, &x],+]
=m be zeros of ]r(x) realizing one of the following four
cases Cz+], Cz+]rz, C~+]r2, and Cz, with X(k.,x) of
(B4):

C~+]. X(x;,x;+])=1/(p+1), i=0, 1, . . . ,p, with the
definition X(xi,l j )

—= 1/[2(p + 1)] for Ai, j=0,1, . . . ,p,
where p=0, 1, . . . .

C&+]rp.' X(xp, x] ) = 1/(2p + 1), X(x],x2) =. . .
=X(xz,xz+]) =2/(2p +1), with the definition
X(xj,iJ. ) = 1/(2p + 1) for j= 1, . . . ,p where p =0,1, . . . .

Cp+]r2: X(xp x])= =X(xq —] xq)=2/(2p+1)
X(xz,xz+])= 1/(2p+ 1), with the definition X(x,A, .)—:1/
(2p+1) for j=0,1, . . . ,p —1, where p=1,2, . . . .

C~: X(x]],x, ) =X(xp,xq+]) =1/(2p), X(x;,x;+])= I/p
for I= 1, . . . ,p —1, with the definition X(xj., l~ ) = 1/(2p)
for j=1, . . . ,p —1, where p=1,2, . . . . Assume further

Proof. We note that Theorem (b) corresponds to the
case C&+] with p =0. Assume that a boundary layer is at
0 & x* & ~, and define

x —=x *+vg, V*(g)= V (x *+vg),
E*(g):E„(x+—vg), K*(g, t) =—K(x*+vg, t) .

By the arguments given in Appendix B we have the gen-
eral form

K*(g,t) =k(t) f dry exp f V*(g)dg
'9

—oo & g & oo (Cl)

for the kernel in the boundary layer. The form of K'(g, t)
is again separated in t and g; this fact implies (B6)—(B8).
One point to be noted is that K*(—oo, t) and K*(+oo, t)
must have different signs at all t &0. Therefore, o(x)
must change its sign crossing x =x, which necessitates
that x* is a zero of cr(x) with alternating signs on both
sides. Another point is that the matching conditions give
restrictions that V*(+ oo ), E*(+oo ), and K*(+oo, t ) be
finite. The solution of (B9) under

~

P+(+ oo)
~

& oo has
again the unique form ]]]]+(g)= —]~tanh[~(g —gp)/2] with

0. This fact binds again the inviscid solution V(x)
obeying (B3) to be increasing within the range

—y/2' & V(x) (y/2' (C2)

Otherwise, V(x) (assumed to be continuous in x until it
meets a boundary layer) has a constant sign so that one of
the ends of this segment of the inviscid solution cannot be
matched to a boundary layer or cannot fulfill by itself the
boundary condition. Let two consecutive boundary layers
be located at x& &x2, with respective characteristic con-
stants v] &a']&0 and a2&a2&0 of (B10). At x =x]+0
we have for the inviscid solution with y of (Bl)

—y/2' ( —(a]+v']) = V(x] +0) & 0,
(~]—x] ) =E(x, +0) & y /2 .

Thus we have ~]——y/2' and ~& ——0. The arguments
proceed in the same manner at x =x2 —0 yielding
~2 ——y/2', ~z ——0. These prove: All of the segments of
inviscid solutions on x EX have one and the same y&0,
and all of the boundary layers have the same ~=y/2'
and v'=0.

Suppose 0&x& &x2 «. . . x„&~ be the locations of
boundary layers which must all be zeros of o(x) with al-
ternating signs. By V(x;+0)=+y/2'r and by (B4) there
holds (cf. Fig. 11)

that o(x) changes its sign at all of x =x;, i = 1, . . . ,p. In
the case C~+& the stationary solution on x; &x &x;+ &

is
given by (p+ I, A,;) for all i =O, l, . . . ,p. In the case
C~+]rz the solution on xp (x (x] is (p+ —,,0) while on
x; &x &x;+] it is (p+ —,, A,;) for i= l, . . . ,p. If Cz+]r2 is
the case, the solution on x; &x &x;+] is (p+ —,', A,;) for
i=0, 1, . . . ,p —1, but on xz &x &xz+] it is (p+ , , rr). —
Finally, if Cz is the case, the solution on x; &x &x;+] is
(pA) for i =1, . . . ,p —1 while on xp &x &x] and
x~ & x & x~+] they are (p, O) and (p, m. ), respectively.
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X(x;,x;+ i) = (2 r /3)y

Taking into account the complications that x =0 or m.

may be either a boundary layer or a zero (the center of an-
tisymmetry' ) of the inviscid V(x), we obtain the possible

values of y in (28) from (3), together with respective
forms of stationary solutions stated in (c*). The replace-
ment with long-time averages is justified by the same
reasoning as in Appendix B.
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Iq(x) lsv= I I

q'(x)
I
«.
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stantiates, verbally, the subjectivity of turbulence phenomena
and their organized structures stressed recently by A.
Hasegawa, Adv. Phys. 34, 1 (1985), on the basis of (inverse)
cascade mechanisms considered to be installed in various
fluids and plasmas. However, no Kolmogorov-type spectrum
shows up on (1), and its energy never cascades to wave num-
bers smaller than n for o.(x ) ~ sin( nx ) with n ~ 2, as described
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tures on (1) is different from cascade processes, and still
awaits for physical interpretations.


