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As a continuation of a previous paper [J.-M. Liu, Z. Phys. B 57, 85 (1984)], the present paper is

about the dynamical threshold phenomena in the system of a single-mode one-photon laser driven

by an external coherent field. The values for the dynamical threshold exponents and amplitudes
near the various thresholds are theoretically predicted. As shown, the characteristic time goes to in-

finity as the control parameters of the system approach each of these thresholds, and the influence
of the existence of the absorbing atoms in the laser cavity on the dynamical threshold phenomena in

the system is definite.

I. INTRODUCTION

A laser is a system far from equilibrium. Identifying
the order parameter with the laser-field amplitude, the
temperature with the unsaturated inversion, and the exter-
nal magnetic field with the external coherent field, we dis-
cussed the critical phenomenon analogies, namely, the
static threshold phenomena in the system of a single-mode
one-photon laser driven by the external coherent field in
Ref. l.

We defined the static threshold exponents and ampli-
tudes in parallel with those in critical phenomena of the
equilibrium systems, and estimated the values for them.
It turned out that these threshold exponents and ampli-
tudes obey the same scaling laws in critical phenomena,
and that the well-known scaling hypothesis holds for the
threshold phenomena.

The results support, from a viewpoint of critical ex-
ponents, the words about a deep similarity between the
phase transitions in equilibrium systems and the abrupt
transitions of steady states in nonequilibrium systems.
In other words, this similarity occurs not only in their
transitions, but also in their scaling behaviors.

The present paper is just the continuation of Ref. 1. It
is about the dynamical threshold phenomena in the sys-
tem of a single-mode one-photon laser driven by an exter-
nal coherent field. We would like to investigate how the
characteristic time changes with the control parameters as
they approach the threshold, and how the existence of ab-
sorbing atoms in the laser cavity influences the dynamical
threshold phenomena. Similarly, the dynamical threshold
phenomena are shown by means of some dynamical
threshold exponents and amplitudes.

The plan of this paper is as follows. In Sec. II, we first
briefly recall the time-evolution equation for the system of
a single-mode one-photon laser driven by an external
coherent field in the presence of absorbing atoms in the
laser cavity and the asymptotic (ASY) time-evolution
equation near the threshold at o.=o.o, where o is the
pump parameter of an absorbing atom, then make defini-
tions for the dynamical threshold exponents and ampli-
tudes. Section III is devoted to estimating the values for
two couples of the dynamical threshold exponent and am-

plitude, q, and p„and q,
' and p,', while Sec. IV is devot-

ed to estimating the values for another couple, q and p .
We discuss the corresponding calculation when F7&0.o in
Sec. V, omitting the details of derivation. Finally, some
conclusions are drawn in Sec. VI.

II. ASYMPTOTIC TIME-EVOLUTION EQUATION
FOR THE SYSTEM

Making the substitution tc(f3) ~tc[(P) —ct(t)], for the
laser-field damping term in the semiclassical time-
evolution equation for the single-mode one-photon laser in
the presence of a saturable absorber, ' where ~ is the
laser-damping constant, P and cr(t) are the laser field and
the external coherent field in the Glauber representation,
respectively, ignoring distuning and performing the adia-
batic elimination of the atomic variables, we have the
semiclassical time-evolution equation for the system of a
single-mode one-photon laser driven by the external
coherent field in the presence of a saturable absorber,

dE AE (1 —C)E
1+SE' 1+SE'

Kyg

cr& O, cr &0, (1)
4lg I'

g
~ll~+ 1 ~~7&

where E and cr are defined by (/3) =E exp( ivt) and-
a(t)=c7exp( ivt) separately, 2—and C are proportional
to the pump parameters o. and c7 of an active atom and an
absorbing atom, respectively. The other notations in Eq.
(1) are those usually used in laser theory. The notations
with a bar on them denote the quantities of the absorbing
atoms.

It should be noted that the laser amplitude in Eq. (1),
E, is a complex variable. The system is actually a non-
equilibrium system with a complex order parameter. A
linear stability analysis for the dynamics of the phase of
the field amplitude shows that only the in-phase station-
ary solutions are stable when the injected coherent field
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V(E,a, c,a) = —,x E—2(xE
-+ ln(1+SE )

does not vanish. This analysis indicates that we may
treat E as a real order parameter by adding a selection
rule which keeps only the in-phase stationary solutions for
us.

We rewrite Eq. (1) in such a way that a family of poten-
tial functions is introduced explicitly,

dE BV(E,a, c,a)
dt BE dE

dt

0 V„„(E,a, a)
BE

V„~(E,a,a) = , xSSE —aE —aE . —

We refer the readers to Ref. 1 for the details of derivation.
So, letting c =0 in Eq. (5), we have the asymptotic

time-evolution equation near the threshold, (a,a) =(0,0),
or (o,a) =(vy~S/N

~ g ~

(S—S),0) for the system of
single-mode one-photon laser driven by the external
coherent field when o =o.o=——ir) ~S/N

~ g ~

(S—S),
S&S,

C, 2c+ ln(1+SE )
S SK

A, =C, =S/(S —S), S & S

where the transformations

2a

(2)

Equation (6) is the starting point for our discussion of
the dynamical threshold phenomena. Before discussion,
we should define the dynamical threshold exponents and
amplitudes. We can do this in the way of defining them
in parallel with those in critical phenomena. " But we do
not want to do so; we prefer to keep the definitions con-
sistent with some references on this topic. '

The definitions are

C=C, +
K

Ac7=
K and

p, ~a
~

' fora=0 anda&0,

p,'~a
~

' fora=0 anda(0,

are used. S&S comes from the inequalities, 3 &0 and
C & 1, or o. & 0 and o. & 0.

V(E,a, c,a), a family of potential functions, character-
izes the system. The stationary equation for the system is

8 V(E,a, c,a)
BE

(4)

dE
dt

c) V„„(E,a, c,a)
BE

V„„(E,a,c,a) = , IrSSE aE cE aE —. —— —

When the control parameters a, c, and a are fixed, the
value of the order parameter of the system, E, in a steady
state is given by a solution of Eq. (4), which minimizes
the potential, V(E,a, c,a), at (a, c,a).

It is easily seen from Eq. (4) that the origin,
( a, c,a) = (0,0,0), or equivalently, (o., cr, a) = (vyqS/
N

~ g ~

(S—S), Iry~S/N
~ g ~

—(S—S), 0), is a threshold
of the system. That means the abrupt transition between
the steady states of the system will appear as the control
parameters pass the origin.

The catastrophe theory (CT), first developed by Thorn
to understand the discontinuous phenomena in nature, is
powerful in discussion on threshold phenomena of non-
equilibrium systems. CT not only enables us to describe
qualitatively, strictly speaking, with diffeomorphic
equivalent exactitude, the abrupt transitions between
steady states in any nonequilibrium system having a fami-
ly of potential functions, but also gives us an exact asymp-
totic form of the family of potential functions near a
threshold. ' '

Just using CT, we can get the asymptotic time-
evolution equation near the threshold, (a, c,a)=(0,0,0),
for the system. That is,

III. THEORETICAL VALUES FOR q„q,', p„
AND p' AT o =o'o

In Ref. 1 we discussed the static threshold phenomena
for the system and got the theoretical value for the static
threshold exponents and amplitudes, calling dE!dt =0 in
Eq. (6). But it is a different situation when we discuss the
dynamical threshold phenomena: we have to deal with
Eq. (6) itself. It is obviously more difficult. We first con-
fine our attention to the case of o, =0 at cY=o.o in this sec-
tion.

When a=0, Eq. (6) becomes

dt =dE/(—aSSE 2aE). —
or (10)

1 1 KSS E—dt =dE
2a E 2a KSSE —2a

The solution of Eq. (10) is

lnE + ln(aSSE 2a)+c (a), —
2a 8a

where c (a) is to be determined by an initial condition.
To continue, we should separate the case where a &0

from the case where a &0.

X=p
~

a
~

for a =0 and a&0,
where p„p,', and p are dynamical threshold amplitudes,
q, q,

' and q are dynamical threshold exponents, k is the
characteristic time defined as usual by

t —dEt — tdEt
0 0 (9)f [ dE(r)] E(0)—E( oo )
0
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or (13)

(i) a &0. In accordance with the so-called steady-state
condition, as t~ m, E~E =0, where E means the
stationary-state value of the order parameter of the sys-
tem, c(a) in solution (11),must have the form of

c(a)= In2 fa
I
+ inc (a),1 1

8fa
I

where c & (a) is an arbitrary function of the control pa-
rameter a.

In fact, if we put c (a) into the solution (11),we can get

t= — lnE — ln(lrSSE +2
I
a

I
)

+ ln2fa I+ inc (a)
1 1

8 a 8 a

1 2Ia Ic (a)E'
ln

«SSE +2a

E(t)= 1

' 1/4

c, (a)
exp( —2 fa I

t)
' 1/4

1—«SS exp( —8
I
a

I
t)

Owing to Eq. (15), we can expand E(t) as
' 1/4

1

c&(a)
exp( —2 fa

I
t)

~SS
1&

2 fa Ic, (a)

Equation (13) can be rewritten

2
I
a

I
exp( —8

I
a

I
t)

2fa fc (a) —«SSexp( —8fa ft)

1 exp( —8fa ft)
«SS exp( —8

I
a

I
t)1—

2fa Ic (a)

(15)

2 fa fc (a)E"
exp( —8

I
a

I
t) =

«SSE +2la
I

So the initial condition, t =0, E =ED&0, immediately
leads to

X 1+ 1 «SS

, n! 2fa Ic (a)

x g (m ——,')

exp( —8
I
a

I
nt)

«SSEO+2
I

.a
Ic & (a)=

2 fa IEO
(14)

And from Eq. (14), it is easily seen that c & (a ))«SS/2
I
a I, or equivalently

m=1

On the other hand, for a large enough t, E(t) has its
average lifetime or characteristic time A, , which is current-
ly defined by Eq. (9).

Since

J t [—dE(t)] =
c (a)

and

2
I
a

I J texp( —2
I
a

I
t)

n

+ g, (1+4n)t exp[ —2
I
a

I
(1+4n)t] g (m ——,

'
) dt

1 ASS

, n! 2 fa Ic (a)

E(0)—E(ao ) = 1

c ((a)

1/4

1+ 1 «SS

, n! 2fa Ic (a)

n

Q (m ——,')
m=1

we have

1/4 —1/4
1 ~SS

c (a) 2 fa Ic (a)

1

2fa
I

1/4
ASS

2 fa Ic (a)
1 1 SS1+

1+4n n! 2 fa fc&(a)
(18)

Now let us rewrite Eq. (14) as

ASS 1

(a) c, (a)E,' (19)

and substitute the right-hand side of Eq. (14) for c & (a) on
the same side of Eq. (19). We can find

ASS
2 fa Ic((a) «;SSE0+2

I
a

I

Equation (20) gives us that «SS/2
I
a

I
c & (a) ap-

proaches 1 as
I
a

I
approaches 0. So, using this asymp-

totic characteristic and Eq. (20) in the expression (18), we
get
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1

aSSEO

1 2ia
f

~SSE',
3 /4

1

2

1 1 g (m ——, )„,1+4n nt

3/4

E(t)= 2a

~SS

1/4

nxg (m ——, )

m=1
(28)

n
1 11+ g exp( —Sant)

, n! Zac&(a)

1 1x 1++ (m ——, )
1

1+4n nt
1

a
and put it into the formulation (9).

Since

(21)

as fa/~0.
Finally, comparing Eq. (21) with the definitions of the

dynamical threshold exponent q,
' and amplitude p,', we

obtain

f t [dE—(t))

2a

]cSS
L

1/4 r

1 1 1

&
4n n! 2ac & (a)

'n

I 3qa= 4

Ipa= 1

2

' 3/4 1/4

~SSEO

oo
1 ] n

n=1 1+4n n' m=

(22)
and

E (0) E( oo ) =— 2a

~SS

1/4

x g(m ——, )

m=1

1 11+
&

n! 2ac (a)

n

(29)

(ii) a &0. When a &0, the steady-state condition be-
comes t oo,

xQ (m ——, )
m=1

So we have

2Q

~SS

- 1/4

we have

2Q

~SS

' 1/4

1— 1

2ac & (a)

' 1/4

(30)

1 2a 1c(a)= ln + inc&(a)
~SS 8a

(23)

(24)

or

E(t)= 2Q

~SS

1/4
1

1/4

1—exp( —8at)
2ac & (a)

Using the initial condition, E=Eo at t =0, we have fur-
ther

instead of Eq. (12), where c & (a) is also a function of the
control parameter a. Putting this c(a) into the solution
(11) again yields immediately

2ac & (a)(a.sSE 2a)——t =ln
]cSSE

1—1 1

2a 2ac & (a)

1/4

00 ] ]

, 4n n!

n

+ (m ——, ) . (31)
2ac& a

x y' ', g( --,')
, 4n n!

3/4
1

(32)

Now, we notice 1 —1/2ac& (a) =2a/xssEO in Eq. (27)
and that 1/2ac & (a) approaches 1 as the control parame-
ter a vanishes. So, the final expression for A, is

3/4 1/4
1 1

2 wSSE()

2Q

~SS

1/4

1— 1

2ac & (a)

(26)

and the values for q, and p, are
3qa= 4

(33)

which gives

1

2ac & (a)
KSSEo —2a &1.

~SSEO
(27)

pa=
3/4

1 1

2 ~SSE()

n

(m ——, )
14n n!

The final inequality comes from a & 0 and that we discuss
only an asymptotic behavior of the system; in other
words, the control parameter a is small enough.

Based on Eq. (27), we expand E (t) as

IV. THEORETICAL VALUES FOR q AND p
AT cY=o'o

Now let us turn to the case of a =0 at cr =o.o. At this
time Eq. (6) is
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—dt =dE/(trSSE' a—) . (34) on Eq. (34) and let it have the form of

We first perform the transformation
1/5

~SSy= (35)

1 a—dt= ——
]cSS

1/5
dy

1 —y
5

(36)

By integrating this equation, we get

1 a
ASS

1/5
1 1

5 5
——ln(1 —y)+ —cos —ln y +2y cos —+1 + —cos ln y +2y cos +12 77 J 3' 2 3'

5 5

~ IT —1+ —sin —tan5

y+cos
5

sin
5

3&+ sin5 tan

377y+cos
5

3'
sin

5

+c(a) (37)

where c(a) is a finite function which will be determined
below.

For the estimate of the characteristic time A, , it is con-
venient to rewrite A. defined in Eq. (9) as

and

1/5
ASS

CX
S 7

(39b)
E

—f t(E)dE

Eo —E,

(39a)yo

E—f t(E)dE
(38)

—f, 'dE

where Eo =E (0) is an initial value of E, and

E, =E ( ~ ) =(a/~SS)' is a stationary value at a when

a =0. Or, equivalently,
- 1/5

~SS

and

~s CX

t(y)
~ss

1/5

dy

where t (y) is just given by Eq. (37).
Quite fortunately, we can complete the integral on the

right-hand side of Eq. (40), of course, at some length.

I 1 a
Eo —&s 5& ASS

2/5 r

1 1
2f ln(1 y)dy ——f cos —ln y +2y cos —+1 dy

xp gp 5 5

r

3' 2 3~ 7T
cos ln y +2y cos + 1 dy — 2 sin —tan

xp 5 5 ~p 5

y+ cos
5

sin
5

and

3n-
2 srn tan

~o 5

377y+cos
5

~ 3~
sin

5

1

5c cx dy
Kp

(41)
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1

Eo —E

1/5
ASS 1

yo —1
'

where c (a) can be specified by calling t =0 and y =yo in Eq. (37), i.e.,

c (a) = —, ln(1 —yo) ——, cos —ln yo+2yocos —+1 ——, cos ln yo+2yocos +11 1 2 371 2 3'

——sin —tan
IT

5

fp+ COS
5

sin
5

317——sin5 tan

3n
Pp+ COS

5

3'
sin

5

(42)

We integrate Eq. (41) again and can reach

1 1 a
5& Pp —1 KSS

1/5

X (1—yo)ln(1 —yo) —(1 —yo)+cos — ra+ cos
5 5

1n. r +cos0

'
2

2+sin — - —2 ro+cos
5 5

+2 sin —tan
7T

5

Pp+ COS

sin
5

—Cos
5

1+cos — 1n 1+cos
5 5

2+sin
5

—2 1+cos
5

+2 sin —tan
7T

5

1+cos
5

sin

3~+COS
5

3'f0+ COS
5

3%
yo+ COS

5
2 3m+sin

5

3'
Pp+ COS

5
+2 sin

3'
tan

5

377
Pp+ COS

5

3m.
sin

5
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377—cos
5

3'1+cos
3&

ln 1+cos
5

2
~ 2 3n+sin

5

3n—2 1-+cos
5

3~+2 sin tan
5

3'1+cos
5

3'
sin

5

'2

+2 sin
5

Pp+ cos

tan
7T

sin
5

Pp+ cos

sin

——,
'

ln 1+
yp+ cos

5

77
sin

1+cos
5

. -. -tan-'

Sln
5

1+cos
5

+ —,'ln 1+
sin

1+ cos
5

sin

~ 2 3w+2 sin
5

3m
Pp+ cos

5

3&
Sln

5

- tan-'

3~
Pp+ cos

5

3'
sin

5

——,
'

ln 1+

3&
yp+cos

5

377
sin

5

2

3~1+ cos
5
. . tan-'

377
sin

5

3&1+cos
5

3~
sin

5

+ —,'ln 1+

3'1+cos
5

'3~
sin

5

2 3w 2 3'+ (1—yo) —1n(1 —yo) +cos —1n yo+ 2yocos —+ 1 +cos» yo+ 2yocos + 1
5 5 5 5

+2 sin —tan
7T

5

Pp+ cos

7T
sin

5

3'+2 sin tan
5

3~
Pp+ cos

5

377
sin

5

(43)

where the expression (42) is used.
After rearrangement, a shorter expression of k can be obtained as follows:
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1

~SS

1/5
1 377

( yp —1 ) —2( yp —1 )cos ——2( yp —1 )cos
rp —1 5 5

+ cos ——sin —+cos — ln2 ~ 2

5 5 5

pp+ 2&p cos —+ 1

7T2+2 cos
5

2 377+ cos
5

2 377 3'—sin +cos
5 5

ln

3'
yp+ 2yp cos + 1

5

3'2+2 cos
5

7T+2 srn
5

1+2cos — tan
—1

5

(yp —1)sin
5

(1+yp) 1+cos

377+2 sin
5

3771+2cos
5

tan
—'

377
(yp —1)sin

5

(1+yp) 1+cos
(44)

Finally, taking y p (aSS/a )
' E——p into account and

remaining the highest infinite terms in the expression (44)
of A, as the control parameter a approaches zero, we ob-
tain

dE
dt

c) V„„(E,a, a)
BE

V„„(E,a, a) =RE aE aE, — —

1 1

~SS

and then

1 1

~SS

1/5 .4/5
1 3'

1 —2 cos ——2 cos
5 5

1/5 3'
1 —2 cos ——2 cos

5 5

(45)

cz =vs%

1

qa =qa =T

where a =ic(cr cr,')/2,— R=S
+N

~ g I
(S—S)o/4yq.

Starting with this equation and in a way similar to that
in Secs. III and IV, we can estimate theoretically the
values for the dynamical threshold exponents and ampli-
tudes at each of these thresholds. To avoid the repeat, we
only list the results as follows:

4qa= 5

V. THEORETICAL VALUES FOR EXPONENTS
AND AMPLITUDES WHEN o'&o'0

(46)

Pa=

IPa=

1/2
1 1

8R Ep
1/2

1 1

8R Ep

X II™—t~

When 0- is fixed at any value, o. & 0, but
crp icy~S/N——

~ g ~

(—S—S); the system has a kind of
threshold, (a,a)=(0,0), or equivalently, (cr,a)=(o'„0),
where o,' =Icy&(1 N

I g I
'cr«yj. )/N

I g I

And the asymptotic time-evolution equation for the
system near each of these thresholds is

2qa= 3

1

4R

' 1/3

(47)
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TABLE I. The theoretical values for the dynamical threshold exponents and amplitudes.

o =cYo

q,

pa

3/4 - . 3/4
1 1 1

KSS Eo

3
4

—Q (m ——,'j1 1

n=1 4n n' m =1

1

8R

1/2

1

2

1

2

I
pa

qa

3/4
1

2

3/4
1 1

SS Eo
4
5

1

8R

1/2
1 1 1—g im ——,'i

Eo „,1+2n n!
2
3

pa
1/5

1 1

ASS

377
I —2 cos ——2 cos

5 5
1 1

3 4R

1/3

VI. CONCLUSIONS AND DISCUSSIONS

Let us collect our results in Table I.
From the table, it is easy to see that there is slowing

down in the dynamical threshold phenomena of the sys-
tem. In other words, when the control parameters a and
a approach the threshold of either cr=oo or tT&oo, the
characteristic time goes to infinite.

The critical slowing down in some other nonequilibri-
um systems was pointed out both theoretically' ' and
experimentally' ' several years ago. Our results indicate
again that critical slowing down is rather a universal
characteristic of nonequilibrium systems as well as of
equilibrium systems.

It is also easily seen that the influence of the existence
of absorbing atoms in the laser cavity on the dynamical

threshold phenomena is definite, just as well as on the
static threshold phenomena. ' A laser system is a real de-
vice in which a lot of theoretical predictions can be exper-
imentally checked. So we expect for an experimental
check of the influence of the absorbing atoms on the
dynamical threshold exponents and amplitudes.

Finally, we would like to stress two things. The first is
that the method used in the context can be applied to oth-
er nonequilibrium systems, especially to estimating the
switching time in the optical bistability systems. '

Secondly, because the starting point is the same for calcu-
lating the dynamical threshold exponents and amplitudes
and the static ones, the expectation that there are some
scaling relations between the static and dynamical thresh-
old exponents and amplitudes would not be futile. We
shall discuss this problem in another paper.
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