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a vector model we study the coherent dynamics of a special three-level quantumBy constructing a vector mode we s u y e
This three-level problem can be fullyd tunin s and equal Rabi frequencies. is ree- esystem —one with equal de un' g q

1
' c n be achieved even inWe find that complete population depiction can e acrelated to a two-level problem. We in a

nzero detunin s when the three-level system is prepare initia y inthe case of constant nonzero e unings w

mon level of the two transitions. Comp e e popuom lete o u1ation depletion wit cons an e un'

in terms o an equiva en resonanoccur in other odd-number multilevel systems. An explanation in te

excitation is presented.

I. INTRODUCTION

The problem of a two-level atom coupled to an externa 1

potential studied since the early years of quantum theory,
continues to attract the attention of researchers. In spite
of the fact that it represents the simplest nontrivial time-
dependent problem, it is often a good approximation to
real systems in which the field frequency nearly matches
that of an atomic transition. In recent years some atten-
tion has been directed to the question of determining
when such a system may be completely inverted by radia-
tion pulses, namely, the population being transferred wit
100% probability from the initially occupied to the ini-

tially empty level. Hioe' has addressed this matter by
looking at amplitude and frequency modulation functions
for which the equations of motion admit to exact solu-
tions, and Robinson has shown that the relevant features
are related to temporal symmetries of the pulses. T e
specific result obtained indicated that a two-level system
which is subject to a pulse with symmetric amplitude
modulation and antisymmetric frequency modulation may
be inverted provided the carrier frequency is exact y
resonant with the atomic transition. (The probe amp i-

tude is always taken to be positive. ) If the atom-field e-

tuning is a nonzero cconstant complete inversion does not
occur.

The purpose of the present paper is to analyze analo-

gous effects in certain three-level systems. We assume one
common level (

l
2)) to be connected to the other (l 1)

and
l
3)) levels, while

l
1) and

l
3) are not directly cou-

led. In addition, the atom-field detunings between
l
2)pe . na iion,

and the others are equal and the coupling strengt s o eths of the
two atomic transitions are also equal (equal Rabi frequen-
cies) {see ig.) ( F' . 1). These features can arise by illuminating

'h f' ldth toms either with two laser fields, or with one ie
faPcoupling

l
2), for example, to two Zeeman levels of a

state as shown in Fig. 2. We find that, in contrast to the
two-level problem, complete population depletion is possi-
ble for constant nonzero detunings in the three-level prob-
lem. Although this result is implicit in the work of Coo
and Shore, it was not discussed by these authors. We
help to interpret this result by reducing the three-level
equations o mo ionf otion to a form that resembles an
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FIG. 1. Three types of three-level atoms driven by two laser
fields such that the two transitions have equal detunings 5 and
equal Rabi frequencies P. Our analysis applies to all three
types.

equivalent resonant coupled two-level problem. We note
at this point that for three-level systems, complete popula-
tion depletion (CPD) of a prepared state is not, in genera,
identical to complete population inversion (CPI), i.e., t e

transfer to a single initially empty level. CPI always im-

plies CPD whereas CPD implies CPI only in a two-level
system. Conditions for both CPD and CPI are discussed

a 1 toSome of our results for three-level systems also app y to
systems with more levels, provided that the number of ac-
tive states is odd. Cook and Shore' have already studied
such N level system-s for constant detunings and Rabi fre-
quencies. Our result generalizes theirs to time-dependent
detunings and Rabi frequencies for %=3. The three-leve
system with equal detunings and equal Rabi frequencies
and the Cook-Shore type X-level system have been stud-
ied by Hioe et al. in terms of a density matrix descrip-

3 6 7 which is more general than the probability ampli-
tude (wave equation) description. For quantum systems
in which decay, collisions, and incoherent pumping are
absent, one can first solve for probability amplitudes and
then combine probability amplitudes to get the corre-
sponding solution for density matrix elements. Solving
problems in this way has its advantages, for it is easier to
solve the amplitude equations. When initial conditions
for the density matrix elements of a quantum system ean
be rewritten in terms of probability amplitudes, one may
simply apply a probability amplitude description to the
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only. The two atom-field detunings are

621(t) =M21 —sgn(&21) (Alt+$1),
dt

(2.2a)

~32( ) a132 g (~32) (+2 +1) 2)
dt

(2.2b)

and the two Rabi frequencies (chosen real and positive)
are

X,(t) =P21'@ 1/A ~

+2(t) =P32' K2/R,

(2.3a)

(2.3b)

FICJ. 2. A single laser field with linear polarization k which

is perpendicular to an applied magnetic field 8 couples atomic
state 'So to two Zeeman levels (m =+1) of a Pl state. W'hen

the laser frequency fL is tuned to the 'So —P& (m =0) transition

frequency, the atom and laser field constitute a three-level sys-

tem with equal detunings and equal Rabi frequencies.

whole process. In this work we shall employ probability
amplitudes to describe the three-level system with equal
detunings and equal Rabi frequencies and construct a vec-
tor model for it.

Due to their intuitive appeal, vector models are often
constructed for atomic systems. The most familiar exam-

ple of a vector model is one in which the components of
this vector are combinations of density matrix elements,
both in two-level Bloch equations and in two-photon
transitions in a three-level system. A vector model is
given in the Cook and Shore treatment of the %-level sys-
tem. An (X —1)-dimensional vector description in

terms of density matrix elements applies to an X-level sys-
tem. "

The particular vector model appropriate to the present
problem will be described in Sec. II. In Sec. III we spe-
cialize to the case where the atom is prepared in the com-
mon level of two transitions and show that complete de-

pletion with constant detunings can be realized with such
initial conditions. The descriptions in terms of equivalent
two-state equations with zero detuning is given also in

this section. In Sec. IV we demonstrate that CPD with
constant (nonzero) detuning can also occur in a Cook-
Shore X-level system when X is odd.

where cojk and pjk are the frequency difference and the di-

pole moment between states
~
j) and

~
k), respectively.

One may adjust the lasers for equal detunings,

k2 1 ( t ) —63 (2t):5( t )

and equal Rabi frequencies,

X,(t) =X2(t) =X(t) .

(2.4a)

(2.4b)

C)

c =i —,7 0

0

cp (2.5)

C3 0 —,'7 5 c3

By making a linear transformation,

S1 ——l(C1 —C3)/V 2,
S2 —(C1 +C3 )/V 2

S3 =EC2

(2.6a)

(2.6b)

(2.6c)

one can recast Eq. (2.5) in the form

Si 0 b.(t)—
0

—X(t)/3/2

0, s(
g(t)/v 2 s,

0

d
S2 —— h(t)

dt
S3

or in a vector model form

S3

(2.7)

In this case the probability amplitudes cj(t) of the three
states in the field-interaction representation obey the fol-

lowing coupled equations:
r

II. DYNAMICS OF THE THREE-LEVEL SYSTEM
WITH EQUAL DETUNINGS

AND EQUAL RABI FREQUENCIES

A. Vector model

%'e consider a three-level atomic system which interacts
with two laser fields. Nonzero dipole moments exist only
between eigenstates

~
1) and

~
2), and

~

2) and
~

3). The
electric fields can be both amplitude and frequency modu-
lated and are of the form

E(r, t ) = 8', (t)cos[Q, (t)t —k, r+P, (t)]

ds
dt

=&s

with an amplitude vector

S)

S= s2

$3

and driving field vector

—x/~z
Os=

(2.8)

(2.9a)

(2.9b)

+ gt'2(t)cos[Q2(t)t —k, r+ $2(t)] . (2 1)

The laser field (8'1,01) drives the 1-2 transition only,
while the laser field (gt'2, 02) drives the 2-3 transition

The vector As is real whereas the amplitude S is complex.
Its magnitude (length) remains constant during the
motion



5090 NING LU, E. J. ROBINSON, AND P. R. BF.RMAN 35

(s~s ~ +s1s2 +s3s3 )'"
3 1/2

(2.10)

By separating S into real and imaginary parts
S=p&+ip2, the complex vector equation (2.9) can be
decomposed into two real vector equations

p, x p2

Pi=QsxP, ,

Pe= Qs XP2

(2.11a)

(2.11b)

where

1
Im(c3 —c& )

2

1 Re(c3+c
&

)~2
—Imc2

1
Re(c& —c3)

&2
1

I 111 ( C i +C 3 )
2

Rec2

FIG. 3. The vector model of the three-level system with
equal detunings and equal Rabi frequencies. Three real vectors
p~, p2, and p~ X p2 rotate about the same driving field vector
Qs(t). Note that P& XP2 is perpendicular to both P~ and Pz.

(2.12)

Equations (2.11) indicate that the two real vectors p, and
p2 rotate about the same driving field vector Qs(t) as
shown in Fig. 3.

By using Eqs. (2.11), one may easily show that
I p& I

I P1 I, and P~ P1 are three nonlinear constants of the
motion. Geometrically, this means that the shape of the
triangle spanned by the two vectors p& and pz does not
change during its motion; i.e., the triangle rotates rigidly
about the instantaneous axis Qs(t). Furthermore, one
may deduce the following equation from Eqs. (2.11):

d
dt

(p, xp, )=Q, x(p, xp, ),
where

(2.13)

1
Re(c)cp +c1c3 )

2

1
p) Xp1 = II11(c ) c 2 +c2 c 3 }

2
(2.14)

I pt I

'+
I p2 I

'= g I C, I

'=I. (2.15)

This situation can simplify the dynamics of the system
and may be realized by preparing the system in state

I
2).

A more detailed discussion for this initial condition is
presented in Sec. III.

Equation (2.13) demonstrates that
I
p~xpz

I

is also a
constant of the motion. " Moreover, certain results can be
easily obtained by using Eq. (2.13) as will be seen in Sec.
IIB. When one of the p; vectors is of unit length, the
other, pz (j &i, i,j=1,2), shrinks to zero and the triangle
reduces to the vector p;, since

B. Connection with the two-state problem

Equations (2.8) and (2.11) have the same form as the
Bloch equation describing a two-level problem with de-
tuning b, (t) and the Rabi frequency X(t)/W2, in which the
Bloch vector has the components u, U, and w. The quan-
tity ic2 is analogous to the population difference w be-
tween the upper and lower levels of the two-level system,
while i(c& —C3)/~2 and (c&+c3)/1/2 are analogous to
the real and imaginary parts (u and U, respectively) of the
coherence in the field-interaction representation, respec-
tively. As suggested in the Introduction, the two-level
system is the simplest quantum system and consequently
many results have been obtained for it. ' ' ' ' In par-
ticular, there are modulation functions for which the
two-level problem has been solved analytically. ' '
These conclusions may be taken over to the special three-
level system under consideration.

For a two-level atom which is initially in the ground
state and excited by a nearly resonant laser field, some of
the known results are (a) a hyperbolic secant coupling
pulse without frequency or phase modulation of area 2m ~
(m integral) leads to zero transition probability to the ex-
cited state, namely complete population return (CPR), re-
gardless of detuning, ' ' (b) asymmetric pulses with con-
stant detuning do not lead to CPR in general (i.e., except
under accidental, overdetermined circumstances), ' '" (c)
it is impossible to get complete population depletion by
any pulse with constant (nonzero) detuning, and (d) CPD
can be achieved by a resonant pulse with temporally sym-
metric amplitude modulation and antisymmetric frequen-
cy modulation. ' ' (In terms of the vector model of the
two-level system, CPD implies a rotation of the Bloch
vector from an initially downward orientation to an up-
ward orientation, whereas CPR implies a rotation in
which the Bloch vector returns to its initially downward
orientation. )
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TABLE I. Some results about complete population return, complete population depletion, and com-
plete population inversion.

Pulse features

Two-level system Three-level system (6» ——632 g) ——g2)
initially in initially in

ground state state
~

2) state
~

1) or
~

3)

Hyperbolic secant without frequency
modulation, area 2gm&

CPR CPR CPR

Asymmetric, constant
nonzero detuning

no CPR no CPR no CPR

Constant nonzero detuning no CPD
(no CPI)

CPD possible
no CPI

no CPD
no CPI

P(t) symmetric and A(t) antisymmetric,
suitable areas such as
those prescribed in Eqs. (2.16)

CPD

(CPI)
CPR

CPD

CPIb

'g = l in the two-level problem whereas rt =+2 in the three-level problem under discussion.
bCPI occurs only between states 1) and

~

3).

Viewing the three-level system with equal detunings
and equal Rabi frequencies in terms of its vector model, it
is straightforward to apply these results of the two-level
problem to the three-level problem under discussion and
arrive at the following conclusions.

(1) When the three-level system is initially in state
~
1),

which corresponds to p& X@2 being downward initially,
two hyperbolic secant pulses each of area &2m~ lead to
CPR for any constant detuning 6, while it is impossible,
in general, to obtain CPR by using asymmetric pulses
with constant (nonzero) detuning. Moreover, complete
population inversion between states

~

1) and
~

2) is im-
possible for any pulse, owing to the conservation of

~ P& XP2
~

. Similar results can be reached for the three-
level system initially in state

~

3). In addition, CPI be-
tween states

~

1) and
~

3) can be achieved by resonant
pulses with temporally symmetric amplitude modulation
and antisymmetric frequency modulation, but not by
pulses with constant detuning. For example, CPI be-
tween the states

~

1) and
~

3) occurs for pulses with

shape prescribed in Eqs. (2.16) is an example. Some sim-
ple analytic solutions for these CPR pulses are presented
in the Appendix. On the other hand, CPR is impossible,
in general, for asymmetric pulses with constant detuning.
These results and some others given in Sec. III are sum-
marized in Table I.

III. THREE-LEVEL SYSTEM INITIALLY
IN STATE

i
2 )

A. Complete population depletion

The initial condition that the system be in state
~

2)
leads to interesting results. Such an initial condition is sa-
tisfied in a "V"-type level scheme, such as that found in
Na with 3 P&&2, 3 5~~2, and 3 P3/2 corresponding to lev-
els 1, 2, and 3, respectively. Under such initial conditions,
the populations of states

~

1) and
~
3) are always the

same, i.e.,

rI[(2m —1) +(2T5o) ]'~
X(t)=

2T
sech

2T
I c 1(t)

I

=
[ c3(t)

I
(3.1)

b ( t) =5,tanh( t /2T ),

m =1,2, 3, . . . (2.16a)

(2.16b)

where rl =U'2 in the three-level problem under discussion
(while g = 1 in the two-level problem). Note that

6 t dt=0.
(2) When the three-level system is initially in state

~

2),
which may correspond to P& being either downward or
upward and Pq vanishing initially, CPR occurs for hyper-
bolic secant pulses each of area 2v 2m' and of arbitrary
constant detuning 6; CPR can also be achieved by
resonant pulses with symmetric amplitude modulation
and antisymmetric frequency modulation. The pulse

cj (to ) =i 5J.2, (3.2)

where to is the initiation time of the pulses. This corre-
sponds to P& ——(0,0, —1) and P2 ——0 initially [see Eqs.
(2.12)]. Since

~ P~ ~

and
~ Pq

~

are constants of motion,
one further obtains from Eqs. (2.12) that

which follows from the fact that
~
p~ Xp2 ~

is a constant
of the motion with zero initial value. Equation (3.1) tells
one that the maximum possible population of state

~

1 ) or
~
3) is one-half, implying that CPI is impossible with the

given initial condition, even for resonant fields 6=0. '

For the three-level system prepared initially in state
~
2), one may choose
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P2(t) =0, c, (t) =c3 (t), Rec2(t) =0,
—V21mc~(t)

P)(t)= V2Rec((t)
—Imc2(t)

(3.3)
., (t) =b(t)e'~'"/~Z,

c,(t) =b(t)e '&'"/v 2,
(3.5a)

(3.5b)

with b(t) real and smooth. Substituting Eqs. (3.5) into
Eq. (2.5), one obtains

Equations (3.3) show that c&(t) and c3(t) are not mutually
independent with our choice of initial condition.
Knowledge of one implies knowledge of the other. The
projection of the vector P& on the s3 axis uniquely deter-
mines the probability amplitude cz(t). Consequently,
when P, lies in the s, sz plane, we have CPD since

cq ——0. (3.4)

B. An explanation for CPD in state
~
2)

Using the relation c~(t) =c3 (t) from Eq. (3.3), one may
write

In terms of the vector model, CPD corresponds to an ini-
tially downward orientation of the P, vector with respect
to the horizontal s&s2 plane, followed by a rotation into
that plane. (In the two-level problem, the excitation of
half the population from the initially populated lower
state to the upper state likewise corresponds to an initially
downward orientation of the Bloch vector with respect to
the horizontal uv plane, followed by a rotation into that
plane. ) Obviously, there are many ways to accomplish
this, including the use of fields with constant detunings
6=const&0. This is a striking and surprising result. No
matter how one gets CPD, the reorientation is accom-
plished as long as P, is rotated into the s&s2 plane from its
initial downward position.

That CPD in state
~

2) is possible in a field with con-
stant detuning is very interesting, since it is impossible in
a two-level system. In order to understand this
phenomenon, we give an explanation in terms of an
equivalent resonant excitation in a reduced two-state prob-
lem in Sec. IIIB. Usually, CPD or CPI can be achieved
in an X-level system when each of the laser fields with
constant frequency and phase are resonant with the
respective atomic transitions [(N —1) one-photon reso-
nances]. If frequency modulation is allowed, CPD
can also be realized in a three-level atomic system coupled
by two nearly resonant laser fields, for example with de-
tunings 52~(t) = —b, 32(t) ~ tan( t/2T) [note this differs
from condition (2.4a)] and Rabi frequencies X~(t) ~X2(t)
~ sech(t/2T). We can show that CPI can occur in such a
three-level system (i.e., with Az&+ b, 3z

——0) when
62& ——const&0. Inversion in a multilevel system with or
without frequency modulation through adiabatic fol-
lowing has been studied. This does not lead to CPI or
CPD beyond the adiabatic limit. The fact that CPD with
constant nonzero detunings can occur in odd 1V-level sys-
tems is implicitly contained in the expressions given by
Cook and Shore. We consider this result explicitly and
write the equations for X =3 in a form where the CPD
can be explained in terms of an equivalent two-level prob-
lem on resonance.

c2 i (——X/~&)(c os/)b,

b =i( X/v'2)(c os')c2

P =b (t) —i(X/~2)(sing)(cq/b ) .

(3.6a)

(3.6b)

(3.6c)

Equations (3.6a) and (3.6b) are the same as those for a
two-state problem with coupling potential (X/&2)cosg
(i.e., Rabi frequency ~2Xcosg) and zero detuning. Since
b (t) is real, cq(t) is pure imaginary. The formal solutions
of Eqs. (3.6a) and (3.6b) are readily obtained by the use of
an effective pulse area up to time t,

A(t) = f ~2X(t')cosP(t')dt' . (3.7)

For the initial condition (3.2), the solution is

c2(t) =I cos 2 A(t)

b(t)= —sin —,A(t) .

(3.8a)

(3.8b)

CPD of state
~

2) can occur if the pulse area
~

A
~

) 7r,
but not otherwise. Equation (3.8a) demonstrates that the
evolution of the amplitude c2 is uniquely determined by
the effective pulse area A, which, in turn, is determined
by reduced Rabi frequency V 2X cosg. Quantitatively the
behavior of v'2X coslij is not known unless the phase g(t)
of c& or c3 is known, which, however, requires solving the
complicated nonlinear equations (3.6). That is, solving
Eqs. (3.6) directly is very difficult. Alternatively, one may
be willing to return to the linear equations (2.11) and (3.3)
for solving Rec& and Imc& first. This may be done by ac-
tually solving the corresponding two-state problem. Thus,
for those Rabi frequencies X(t) and detunings A(t) whose
solutions for the two-state problem are known, one knows
the solution of Rec&(t) and Imc~(t). These determine
g(t) We give. two examples below to illustrate the ex-
planation using the effective pulse area A.

C. Rectangular pulse

We first consider the stepwise excitation with a pulse of
constant amplitude and frequency —a rectangular pulse.
In this case, the orientation of the driving vector
Qs ——( —X/&2, 0,6) is fixed and P, precesses about Qs
with angular frequency

(g2+ & X2)1/2 (3.9)

and fixed angle arctan
~

(X/&2)/b,
~

starting from its ini-
tially downward (0,0,—1) orientation. Thus P~ can be ro-
tated to the s, sz plane only when X/V 2 &

~

6
~

. It should
be noted that no matter how large

~

b,
~

is, one can always
get CPD by applying strong enough laser fields; i.e., there
is no upper limit for

~

b.
~

beyond which CPD in state

~

2) does not occur for the rectangular pulse with con-
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stant frequency. This feature can be explained by the dis-
cussion of the effective pulse area A.

For a two-level system initially in the lower level and
excited at t =0 by a stepwise external field with Rabi fre-
quency X/V 2 and detuning b, , the u, U, and w com-
ponents of the Bloch vector are

0
O

0
ot

u =2 Re —i sinv'2o. 2

o.t . 6 . o.t
cos +i—sin

2 o 2

(3.10a)
-wax

o.tv=2Im. —i sinv'2o 2

o.t . 6 . o-t
cos +i—sin

2 o 2

X2
cos(crt) .

2o

(3.10b)

(3.10c)

Applying this result to the three-level problem under
discussion and using the correspondence relation
u ~—v 2 Imc &, v~ v'2 Rec t, and w ~—Imc&, we get

FIG. 4. Reduced Rabi frequency in an equivalent resonant
two-state problem when the three-level system with equal detun-
ings and equal Rabi frequencies is prepared initially in state

~

2)
and excited by stepwise is external fields of Rabi frequency P.
The reduced Rabi frequency v 2+cosg(t) has a period 4'/o, .

and the pulse area for the first half-period cancels exactly, as
does that for second half-period, the third half-period, etc. The
figure is plotted for +=2

~

6
~

.

C& =C3 = — Sln
o 2

o.t . 6 . o.t
cos +i—sin

2 o 2
P2,„——sech(ma)sech(7ra+tral)cosh ( —,

' 7rak) (3.14)

(3.11a)

Q2 y2
c2 =l + cos(o' r)

o 2o
(3.11b)

Equation (3.11b) indicates that CPD (c2 ——0) can be
achieved only when 7/v'2&

~

b, ~, which confirms the
same conclusion made previously according to the vector
model. Using Eqs. (3.5) and (3.1la), one obtains the re-
duced Rabi frequency

v'2X cos( ,
' ot)—

v icos/=
[cos ( 2ot)+(b, /o) sin (

—,'ot)]'~—
(3.12)

which oscillates with period 4~/o (see Fig. 4). Conse-
quently, the effective pulse area is obtained by substituting
Eq. (3.12) into Eq. (3.7),

o.tA(t) =4arcsin sin
v'2o. 2

(3.13)

D. Smooth pulses

Bambini and Berman' have found analytic solutions to
the two-state problem for a class of pulse functions with
constant detuning. This class of pulses extended from
t = —oo to t =+ op and lead to an excitation probability
P2 at t =+ oo, which can vary from zero to a maximum
value

The maximum value of
~

3
~

is 4arcsin(X/v2o), which
is just the area OPQ of Fig. 4, and can be made to exceed
m for any given 6, no matter how large, by increasing P.
This explains our previous conclusion which is based on
the vector model. In addition, if

~

A(t)
~

=rr, then
c2(t) =0, in agreement with Eq. (3.8a).

depending on the pulse area. [The quantity a=A, T is the
detuning parameter, T a time-scale parameter of the
pulses, and A, parameter characterizing the shape of pulses
( —1&A, & cc).] (The case X=O is the hyperbolic secant
pulse, for which Pz,„ is reached whenever the pulse area
is an odd multiple of w. ) The pulse areas of these pulses
are proportional to their maximum Rabi frequencies.

Applying such pulses to the three-level system with
equal detunings and equal Rabi frequencies, one may
determine that, for any given parameters a and k, there is
an infinite number of pulse areas which cause CPD for
state

~

2), if P2,„)—,
' . No such pulses exist if

P~,„&—,'. From Eq. (3.14), one easily sees that the con-
dition P2m» ) —, is satisfied provided

cosh ( —, vraA, ) )sinh [rra(1+ —,
'

A, )] . (3.15)

/

a
i

=
/

b.
/

T &2y(A. )/m-,

where

(3.16a)

cosh( ky ) =sinh[( A, + 2)y ] . (3.16b)

For a hyperbolic secant pulse (A, =O) X(t) cc sech(t/2T),
Eqs. (3.16) become

~

a
~

=
~

5
~

T & ~ 'In(V2+ 1)=0.28 . (3.17)

For given u and A, , one cannot get CPD by increasing the
maximum Rabi frequency when

~

a
~

exceeds 2y(A. )/~.
This feature of these smooth pulses is different from that
of the rectangular pulse discussed previously.

This shows that there is an upper limit about
~a~ = ~b.

~

T for any given A, , such that when ~b,
~

T
exceeds this limit, P2,„cannot be larger than one-half.
We thus conclude that a necessary condition for CPD in
state

~

2) with these pulses with fixed A, is
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For the excitation of the three-level system by hyperbol-
ic secant pulses of area (2m —1)rrrr (z)=v 2), for which
Pz ——Pz ~,„——sech (tra ) in the correspondin two-
problem (q = 1), we lotwe plot the reduced Rabi frequency

2X(t)cosg(t) and effective area A(t) i F . 5.in ig. 5. The re-
duced Rabi frequency oscillate b ts e ween positive and neg-
ative values and, consequently th ffe e ective pulse area is
not large even if the i1 g e input pulse area is very large. The
total effective area 4 ( ao )+ ~ &~reaches its maximum value
2 arccos( 1 —2P—2Pz,„) for input pulse area &2(2m —l)tr,
which can be obtained from Eq. (3.8a) and the correspon-

(3.17),
dence relation. Consequently for'

,
6

~

T=
7)], A (+ oo ) & rr with an input pulse area

~2(2m —1 rr so t"ere exists an infinite numb
pulse areas which lead to A(+ )=

um er o input

hand, for
~

b,
I
T=0.3&0.28, A(+ oo) ~sr and it is im-

ao =~. On the other

possi e to et
Note A(+ oo

g + co)=~ for any input pulsee area.

ever 2 t m'
+ oo &rr or most hyperbolic secant 1 hpu ses, ow-

( ) might pass the value rr (i.e., CPD) durin the
pulse process (see Fi . 5 .g. ). This suggests another way of

unng the

obtaining CPD A 1pp y truncated hyperbolic secant
pulses.

The effective upulse area A can also explain CPR in

y yperbolic secant pulses of areastate
I
2) caused b h er

2 2m~ and constant detuning, a result stated in Sec. II B.
We show in the Appendix that &2X cos is an odd func-

(a) (b)

00
2

0

t,/2T

(c) (d)

~ 3
0
O
OC

/
(r

I

0

t./ZT

FIG. 5. Reduceuced Rabi frequency V 2+(t)cosg(t) (solid line) and effective ulp
s exci e y t e hyperbolic secant

e ree- evel system

. , m=3; and (d)
l
4

l
T=0.3, m=3. The reduced p

a e ective area A(+ oo ) is independent of m and is a function of
~

b,
~

T only.
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tion of t for m =1 and m =2. Generally, it is easy to
show that ur(t) in the two-level problem is an even func-
tion of t for any m. One can further determine, through
the two-level Bloch equation, that u and U components
are even and odd functions of t, respectively. Correspond-
ingly, in the three-level system, cosP(t) and ~2X cosg are
odd functions of t A. ccording to Eq. (3.7), A(t) is an
even functions of t and A(+ oo ) vanishes. This, together
with Eq. (3.8a), explains why the three-level system f&nally
returns to its initial value (CPR) for the hyperbolic secant
pulses of area 2v'2m~

8=arctan ~X/(v 2b, )
~

(4.5)

Setting J=1 in Eq. (4.4) leads to a result similar to that
in Eq. (3.11b). Since the argument of the Legendre poly-
nomials y(t)—=cos 8+cos(crt)sin 8 is a periodic function
of time t with period r=2m/~, cJ+&(t) is likewise a
periodic function with the same w. One may note that y
varies from its initial value y(0) =1 to its minimum value
cos(28) and then goes back to y =1. Thus when there are
m nodes of PJ, yJ' (i =1,2, . . . , m & J), lying between
cos(28) and 1, there exist m tJ within each half-period
m. /o. such that

IV. COMPLETE POPULATION DEPLETION
IN AN N-LEVEL SYSTEM

cos 8+cos(atJ)sin 8=y~

cJ+,(tJ)=PJ(yJ")=0, i =1,2, . . . , m .
(4.6)

We consider N-level systems with energy levels
1,2, . . . , X driven by N —1 laser fields such that each
neighboring pair of levels I and I+1 is nearly resonant
with one laser field; i.e., they form a chain type coupled
N-level system. Cook and Shore have studied the system
for the case that the X—1 laser fields are equally detuned
from the respective transitions

~21 ~32 ~N, N —1
=~ (4.1)

and the corresponding Rabi frequencies have the relation

Xi &l(N 1——)/2X, l —=1,2, . . . , N 1—(4.2)

ct(0)=5t, J+& . (4.3)

Using the solution for constant detunings and Rabi fre-
quencies given by Cook and Shore, one obtains

Jc,(t) = g d~o(8)[d (8)]*e
M= —J

J
~

I (80) ~' 'M~'-
2J+1 M= —J

where 7 is constant in time. Note that %=3 is a special
case of the three-level system with equal detunings and
equal Rabi frequencies and has been studied in Sec. III C.
By comparing with a spin- J system (N =2J+ 1) in a con-
stant magnetic field, Cook and Shore gave explicit general
solutions for the probability amplitudes ct(t) in the field-
interaction representation for constants b, and X. (X can
be time dependent when b, =0.) In addition, they present-
ed a vector model for such an N-level system. They
showed that CPI and CPR are possible for resonant exci-
tation 6=0, but only between levels I and cV —I+1. Us-
ing their result, we point out that CPD can occur in an
odd N-level system in the case of constant nonzero detun-
ings.

We consider, in particular, the initial condition that all
population is in the middle level (level J+1) of the N
level system (N =2J+ 1), i.e.,

Consequently, a condition for CPD to be possible is that

g2 & g2
cos(28)=, &yJ" .

g2+ & y2
(4.7)

For any given 6 and J, one can always force the in-
equality (4.7) to hold by increasing X, similar to the
three-level system discussed in Sec. III C. From the or-
dering of yJ",

(1) (1) . . . (1) (1)
y1 ——0&y2 & . &yJ &yJ+1

yJ ~1 for J~~,(1)

(4.8a)

(4.8b)

one knows that for any given 6 and 7, there are an infin-
ite number of odd N-level systems in which one can gen-
erate CPD. Also, it is easier to make CPD for larger than
for smaller J, since smaller P is required.

In terms of the vector model of Cook and Shore, initial
condition (4.3) corresponds to a flat disc of radius
[J(J+.1)]' = —,'(N —1)' and the stepwise excitation of
the system corresponds to the precession of the disc about
a fixed driving vector with angular frequency o. and cone
angle 28. When Eqs. (4.6) hold, there exist 2m orienta-
tions of the disc which correspond to cJ+1——0.

For the initial condition (4.3), we can show by means of
a perturbation expansion that ct(t)=( —1) '+'cg+& ~(t)
for all l(J+1. Thus, we can transform the original
N =2J+ 1 equations to another set of 2J+ 1 in which
J+1 of the equations describe motion of a (J+1)-level
system with all resonant excitation and oscillating Rabi
frequencies modulated by J phases of ci (l &J). [These
are true as long as the relations br+) ((t)=5~ t+) ~ ((t)
and X~(t)=X~ I(t) are satisfied. ] Consequently, CPD
with constant detunings in Cook-Shore X-level systems
can be understood in terms of such resonant excitation.
In the more general case in which b t+ & I(t)

I+, ~ I(t) and X~(t)=X~ ~(t), that cJ+~ ——0 with
ct(0)=5/ J+] (i.e., CPD) may also be possible since the
transformation of the equations of motion to a resonant
excitation also holds in this case.

=PJ (cos 8+cos( crt )sin 8), (4.4) V. DISCUSSION

where PJ is the Legendre polynomial of order J, o- is
given in Eq. (3.9), and

For a three-level system in which the frequencies of two
dipole-allowed transitions are very close, one can use a
single laser field to excite the two transitions. In the case
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of one laser field with frequency 0 and polarization I
coupling level

~

2), for example, to two Zeeman levels of
a P~ state (see Fig. 2), a three-level system with equal de-
tunings and equal Rabi frequencies is obtained when the
conditions 0= —, (cv32+cv&2) and p2&. k=p32. k are satis-
fied. In this case, the frequency and phase of the laser
field must be constants. Those results obtained in Secs. II
and III with restrictions A=const applies to this quantum
system. In particular, CPD in state

~

2) with constant de-
tuning can occur in it. For an equally spaced upward cas-
cade three-level system excited by one nearly resonant
laser with polarization k, it becomes a three-level system
with equal detunings and equal Rabi frequencies if
p2~ k =p32 k. In this case, the atom-field detunings
may be time dependent. All conclusions obtained in Secs.
II and III apply to this system.

It is worthwhile to note that neither equal detunings
62)(t)=b, 32(t) nor equal Rabi frequencies X&(t) =X~(t) are
a necessary condition for obtaining CPD in a three-level
atom coupled to one or two laser fields. In fact, it is easy
to show that, for stepwise excitation with constant detun-
ings, CPD in state

~

2) can be obtained under conditions
632 —gAp'[ and Xz ——V'gX~ (g )0) for any g if the inequali-
ties 4g/(/+1)((X, /Az, ) (4g(/+I)/(g —1) are satis-
fied.

In summary, we have studied the dynamics of a three-
level atom interacting with radiation fields for equal
atom-field detunings b, (t) and equal Rabi frequencies X(t)
and have constructed a vector model [Eqs. (2.11)] for the
probability amplitudes. The vector model enables us to
make a connection with the corresponding two-level prob-
lem for which many results have been obtained previous-
ly. In this manner we found analytic solutions for the
three-level problem for those coupling pulses for which
closed-form solutions to the two-level problem are known.
Through the vector model, we have shown that one can
obtain CPD for the common level 2) of the two transi-
tions even in the case of constant nonzero detunings. To
explain this somewhat surprising result, we recast the
equations of motion (2.11) into Eqs. (3.6), which corre-
spond to the equations of motion of a resonant coupled
two-level system. The realization of CPD is interpreted in
terms of an effective pulse area 3 of the equivalent two-
level equations. Finally, we have shown that a three-level
system is not the only quantum system in which CPD
with constant detunings can occur. It also can be
achieved for the middle level of an odd N-level system,
provided that all detunings are equal and a certain rela-
tion is satisfied among (N —1) Rabi frequencies.
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APPENDIX: SIMPLE ANALYTIC SOLUTIONS
FOR HYPERBOLIC SECANT PULSES

For a two-level atom initially in the ground state excit-
ed by a hyperbolic secant pulse which leads to CPR (area
2m' and constant detuning b, =a/T) or to CPD (area
[(2m —1) +(2T5o) ]' m with frequency modulation,
Eqs. (2.16)), the Bloch vector can be expressed in terms of
elementary functions for all t. For instance, in the con-
stant detuning case, for m =2,

8a sech(t/2T) 6 sech (t/2T)1—
1 +4&2 9+42

(A la)

@sech(t/2T)tanh(t/2T) 18 sech (t /2T)1—
1+4+ 9+4+

(A lb)

8 sech (t/2T) 9 sech (t/2T)1—
1+4a 9+4a

—1, (A 1c)

and, in the frequency modulation case [see Eqs. (2.16)],
for m =2,

2T50sech(t/2T) 8 —4sech2(t/2T)
2 1/2[9+(2T5O) ]' I+ (2T50)

(A2a)

sech( t /2T )

2 1/2
8 —12sech (t/2T)

[9+(2T5O) ]' 1+(2T50)
(A2b)

t 4sech (t/2T)
w =tanh

2T 1+(2T50)~
(A2c)

Such results for the two-level problem can be taken
over to the three-level system with equal detunings and
equal Rabi frequencies. For such a three-level system ini-
tially prepared in state

~
2),

cj( —co ) =i5J2, . (A3)

C)=C3 = vZ
sech tanh —i 2a

1+4a2 2T 2T
(ASa)

one can use the correspondence relation u ~—&2Imc],
v~v 2Rec~, and w~ —Imc2 to get c~ ——c3 and c2 [see
Eqs. (3.3)].

For hyperbolic secant pulses of Rabi frequency

T '-2T (A4)

(area 2V2mn), and constant detunings b, =a/T, one may
obtain the amplitudes c/(t) as m =1,

This research is supported by the U.S. Office of Naval
Research and the National Science Foundation under
Grant No. PHY-84-15781.

c2 ——t 1—

and for m =2,

2 2sech
1+4+

(Asb)

2v 2 sech(t/2T)
C]=C3 =

1+4(z

18 sech (t/2T) t . 6sech (t/2T)
tanh —)2a 1—

9+4+ 2T 9+4' (A6a)
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8sech (t/2T) 9sech (t/2T)
cz ——I, 1—

1+4' 9+4' (A6b)

The two amplitudes c2(t) are even functions of t and c,.(+ ao)=cj( —ac)=i512 C.omparing Eqs. (A5a) and (A6a) with
Eq. (3.5), we identify for m =1,

—tanh(t /2T)cosP=
[4a +tanh (t/2T)]'~

and for m =2,

(A7)

—[9+4a —18 sech ( t /2 T ) ]tanh(t /2T )cos
I[9+4a —18sech (t/2T)] tanh (t/2T)+4a [9+4a —6sech (t/2T)] I'

both of which are odd functions of t Co.nsequently, the reduced Rabi frequency v'2Xcosl( is an odd function of t for
m =1 and m =2. Substituting Eq. (A7) into Eq. (3.7), one obtains the pulse area for m = 1

A(t)=2~ 4arcsec[—(4a +1)' cosh(t/2T)], (A9)

(A10a)

which is an even function of t and vanishes at t = + ~.
For the hyperbolic secant pulses with frequency modulation —Eqs. (2.16) one may get the amplitudes cj(t) as m = 1,

—1+i2TSo
I2[1+(2T5o) ]I'~

c2 —— i tanh—(t/2T), (A10b)

—sech(t/2T) 8 —12sech (t/2T)1+
I2[9+(2T5o) ]I'r 1+(2T5o)

t 4sech (t/2T)
1+(2T5o)

8 —4sech (t/2T)
1+(2T5o)

(A 1 la)

(Al lb)

Note cz(+ oa ) = —cz( —oo ) = —i5&q. The quantities cosg and A(t) for m = 1 are readily obtained as before,

cosg =[1+(2T5o) ]

A ( t) =rr+2 arcsin[tanh(t /2T)],

(A12)

(A13)

which satisfies A(+ oo)=2m. One sees that CPR in state
j 2) occurs for all these pulses, which agrees with our state-
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