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Quantum theory of an atom near partially refiecting walls
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We consider first a dielectric medium of identical two-state atoms coupled by the radiation field
to an initially excited atom outside the dielectric. From the Schrodinger equation follows a delay-
differential equation describing how the atom interacts with the dielectric by virtual photon ex-

changes. In the macroscopic limit of a continuous distribution of atoms in the dielectric, we derive a
simpler delay-differential equation in which a Fresnel reflection coefficient appears. We apply our
results to a model of an atom in a multimode Fabry-Perot resonator, and obtain a general delay-
differential equation for the probability amplitude of the initially excited state. This equation
predicts well-known Rabi oscillations when the round-trip photon propagation time is negligible

compared with the inverse of the Rabi frequency and the mirrors are highly reflective. For low mir-
ror reflectivities we recover Purcell's prediction that the emission rate is enhanced by the cavity g
factor. When the photon bounce time is large compared with the inverse Rabi frequency, Rabi os-
cillations do not occur. We discuss the Ewald-Oseen extinction theorem from the standpoint of
quantum mechanics.

I. INTRODUCTION

In recent years there has been considerable experimental
and theoretical interest in the effects of cavity walls on
atomic absorption and emission processes. Such effects
include the inhibited absorption of blackbody radiation'
and the enhancement and suppression of spontaneous
emission rates. The theory of such cavity effects seems,
by and large, well understood.

Of related theoretical interest is the Jaynes-Cummings
model in which a two-state atom interacts with a single
mode of the electromagnetic field in the dipole and
rotating-wave approximations. Jaynes and Cummings
showed that the same sort of "Rabi oscillations" are
predicted regardless of whether the field is treated classi-
cally or quantum mechanically. Their paper was perhaps
the first detailed exposition of what is now called the
"dressed-atom" approach to resonant atom-field interac-
tions. More recently Eberly et aI. have stimulated
renewed interest in the Jaynes-Cummings model by
describing certain "collapse and revival" effects that have
now apparently been observed by Walther et al.

Classical analogs of such effects follow from considera-
tion of an oscillating dipole inside a cavity. The cavity
walls reflect radiation back to the dipole, altering its oscil-
lations and therefore its rate of radiation. One question
we address in this paper is how such multiple reflections
of radiation off the cavity walls are described quantum
mechanically. For instance, if at time t =0 an atom is
suddenly injected into a cavity, it does not "know" it is in
a cavity until a time 2d/c, where d is the distance to a
cavity wall. Such an effect cannot be described within the
Jaynes-Cummings model in which one begins a priori

with a single-mode model, for retardation involves many
field modes in an essential way. In our approach, there-
fore, the single-mode (Jaynes-Cummings) results are de-
rived without the a priori assumption of a single-mode in-
teraction.

Another question concerns cavity damping. Purcell in
1946 argued that for a lossy cavity the spontaneous emis-
sion rate should be increased by a factor Q, the cavity
quality factor. Sachdev has considered this problem in
the single-mode context, and has shown that Purcell's pre-
diction is justified in the case of an overdamped cavity; in
the underdamped case the Rabi oscillations are recovered,
but they are damped by the factor e ~', where y is the
field damping rate. ' A feature of our approach here is

that the field loss is not distributed but is lumped at the
mirrors as a consequence of imperfect reflectivity.

Since we intend our approach to be fully quantum
mechanical, we wish to show how the reflection coeffi-
cient follows from the Schrodinger equation describing
the coupling of the atoms of the (dielectric) mirror to the
field. This we do in Sec. II. In Sec. III we apply the re-
sults to an atom in a Fabry-Perot resonator of length L
and mirror reflectivities R. We derive a delay-differential
equation describing an atom in a multimode, lossy cavity.
When QT « I, where 0 is the Rabi frequency and
T =2L/c is the photon bounce time, we recover known
single-mode results. When QT»1, on the other hand,
the initially excited atomic state decays exponentially with
no Rabi oscillations. In Sec. IV we discuss the Ewald-
Oseen extinction theorem and summarize our results. Our
goal in this paper is mainly to understand how dielectric
mirrors may be described in a fully quantum-mechanical
way.
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II. ATOM NEAR A PLANE DIELECTRIC
INTERFACE: MICROSCOPIC THEORY

We consider first the situation illustrated in Fig. 1. At
xp is an initially excited two-state atom with transition
frequency co0. It is near a dielectric slab of X ground-
state atoms per unit volume, each of which has transition
frequency co=cop. For simplicity we assume that all the
atoms have the same (real) transition dipole moment )M.

Let b(t) be the probability amplitude for the state in
which the atom at xp is excited, all other atoms are in
their ground states, and the field is in its vacuum state of
no photons. Similarly let bj(t) be the amplitude for the
state in which the atom at xi (&x()) is excited, all other
atoms are in their ground states, and no photons in the
field. Finally let a„(t) be the amplitude for the state in
which all the atoms are in their ground states and the
field contains one photon in the nth mode. Then in terms
of these "essential states" the Schrodinger equation be-
comes

b(t)= —gC„' J dt'b(t )e

n J
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and lowering operators for the jth two-state atom. For
simplicity we take each field mode to be linearly polarized
along the direction of the identical dipole moments.

Equation (2.1c) can be used to formally eliminate the
amplitudes a„(t) from (2.1a) and (2.1b). The result is the
coupled set of equations

b(t) = —g C„a„(t)e

bj. (t) = i (cp c—u() )bl. (—t) —g C„a„(t)e

a„(t)= i (cp„——cp())a„(t)+C„b (t)e

(2.1a)

(2.1b)

(2.4b)

Here we have used our assumption that the atom at xp is
excited at t =0, so that b(0)=1, bj(0)=a„(0)=0.

In the limit in which the length L of our quantization
box goes to infinity we have

+C„gb, (t)e
J

(2.1c)

We have set the energy scale such that the state with the
atom at xp excited has energy zero. The atom-field in-

teraction H;„, has been taken to be the "electric-dipole
orm

H;„,=iRQ g C„(cr;a„e " ' —cr;a „e " ') . (2.2)
i n

The electric field has been expanded in a complete set of
free-space, plane-wave modes with associated photon an-
nihilation operators a„. Actually, for our purposes it is
very convenient to restrict our considerations to modes
with wave vectors k„parallel to the z axis of Fig. 1. Thus
we take

i(co„—cop)(( t) (M
' 27/It —~ (~(„cop)(( ——()'
277' L ~, , i (td' —coo j( t' —t)

dk cOe
AAL 2~

(2.5)

where
~

k'
~

=co'/c. If it is assumed that only modes with
frequencies cu'=cop interact strongly with the atoms, one
might replace the integration variable k' by co'/c, allow-
ing co' to take on negative values. This is a good approxi-
mation for our purposes. Thus

t (co„—tdo)(t' —t j
C„e

(2.3)

where A is an effective area, L is the length along the z
axis of our quantization box, and p is the magnitude of
the transition dipole moment of each two-state atom. The
operators cr J and crl in (2.2) are, respectively, the raising

2
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In this approximation we have

Excited atom at x,

Dielectric m
of N atoms

~ I

y C2 dtIb( r) t' n P

0

22mtp d rb( I)
—icop(( —t)'

%Ac

FICz. l. Excited atom at xo located a distance d from a
dielectric half-space of N atoms per unit volume.
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(2.7)
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We are ignoring an infinite term corresponding to a
single-atom frequency shift. We have also made use of—I CO()ifthe fact that b(t) is slowly varying compared with e
Our approach is just a variant of Weisskopf-%Signer

theory, specialized to the case of field modes propagating
along the z axis.

Similarly

i (cu' —co())(t' —t)
dk'co cos(k'z)e

00 i (co' —coo)(t' —t)
co cos co z c eSic

e ', [5(t' —r +z/c)+5(t' t —z/c—)]
%Ac 6t'

and so
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e "b;(r —1 /c)6(r —l. /c), (2.9)

bj. (t 1J I—c)6(t IJ Ie—)

e "b (r —21J /c)6(t —21~ /c)
CO —COp

(2.12)

where 6 is the unit step function, kp ——cop/c, and
1J =

/

zp —z~ f
.

Combining these results in Eqs. (2.4), we have the
delay-differential equations"

b(r)= Kb(r) —K—g e 'ibJ(r 1, /c)6(t ——1,/c),

(2.10a)

and, from (2.10a)

~ 2

b(t) = Kb—(r) — g e Q'b (t —21J Ic)
CO —6)p J

xB(r —21, /c) . (2.13)

bj(t) = —i (a) n)Q)b~(t)—

Ke 'b (t —1 /c)6(t ——1 /c) Kb (t)—
—K g e '"b;(t 1;J/c)6—(t —1;~/c),

I+J

(2.10b)

This delay differential equation describes the effect of the
dielectric in Fig. 1 on the probability amplitude b for the
atom at xp to be excited.

Now we pass to the limit in which the dielectric con-
tains NAdz atoms in the slice [z,z+dz], making the re-
placement

g e 'b (t 21' Ic)B(t —21—1 Ic)

where l~ =
~
z; —z~ ~

and K= mp cop/fisc. —Equations
(2.10) express the effects of atom-atom coupling in a way
that displays explicitly the retarded nature of the elec-
trornagnetic interaction. '

Since we are interested in the case in which only the
atom at xp is initially excited, it is reasonable to suppose
that the coupling b; —bj of probability amplitudes for
atoms inside the dielectric is small compared with the
b bj coupling involv—ing the atom at xp. If

co cop
~

&&K, furthermore, we may write

2ikO(z' —zO )

Xb(t —2(z' —zp)/c}6(t —2(z' —zp)/c) .

(2.14)

e b (t —2dIc)B(t —2d/c),
2ikp

(2.1S)

Partial integration yields for the integral the approximate
expression

bz (t)= Ke ' f dt'b. (r' lj/c—)6(t' lj/c)— —
i (co—a)0)( t' —t)Xe

e "b(t —1 /c)6(t —1 /c) .
Q7 —COp

(2.11)

where d =1—zp is the distance of the atom at xp from the
dielectric interface The ap.proximation (2.1S) uses again
the fact that b (t) varies slowly compared with e, and
we ignore rapidly oscillating terms. Combining this result
with (2.13), we obtain

This "adiabatic following" approximation is obtained by
partial integration, making use of the fact that b(t) is

I (CO —COO)f
slowly varying compared with e, because of our
assumption that K ~&

~

co —cop
~

.

6) —COp

X6(t —2d/c) . (2.16)
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The refractive index of a dielectric of N two-state
atoms per unit volume, each of transition frequency co and
transition dipole moment p, is given by

4~%A cp/fi
tl cop —1 =

2 2
CO —COO

(2.17)

if local field effects are ignored, as is permissible for a di-
lute medium. Of course, this is consistent with our earlier
neglect of the last term in (2.10b), which corresponds to
atom-atom interactions within the dielectric. For co=cop
and n (cop) -=1, therefore, we have

up, as it were, by "virtual photon exchanges. " The re-
striction to modes propagating parallel to the z axis be-
comes somewhat more meaningful in Sec. III.

Note that in effect a layer of atoms of depth
kp A.p gives rise to the reflection coefficient. That is,

the reflection coefficient arises mainly from atoms near
the surface of the dielectric interface. This is seen from
the approximation (2.15) to the integral appearing in
(2.14). From a rigorous point of view, however, the re-
flection coefficient has contributions from a11 the atoms
comprising the dielectric. We discuss this point further in
Sec. IV.

Ã~p /2A n —1

co —cop 72 + 1
(2.18) III. ATOM IN A FABRY-PEROT RESONATOR

and

b(t) = —K[b (t)+Re b (t —2d Ic)B(t —2d/c)],
(2.19)

where R = —(n —1)/(n +1) is the reflection coefficient
according to the Fresnel formula for normal incidence.

The solution of (2.19) with the initial condition b (0)= 1

1s b(t) = Dg cp„' b„—(t)sin(k„zp), (3.la)

We first consider an atom between two perfectly con-
ducting walls (Fig. 2). Then we will generalize to the case
of mirror reflectivities R& —1. We could proceed as in
the preceding section, but instead we will follow a slightly
different approach, expanding the field in mode functions
sin( k„z), k„=n n/L. The Schrodinger equation now
takes the form

2ikod „

n=0 n!
b„(t)= i (cc)„—cop)b„(—t)+Dcp„' b (t)sin(k„zp), (3.1b)

+ e K(t 2ndlc—)B—
( r —2ttd /c) . (2.20)

Similar solutions were discussed some time ago for the
resonant two-atom interaction. ' When 2d/c~0 (2.20)
reduces to

where D =(4vrp IfiAL)'l and again we have employed
the essential-states approximation, b(t) being the ampli-
tude for the state in which the atom is excited and there
are no photons in the field, and b„(t) the amplitude for
one photon in mode n and the atom deexcited. Using the
formal solution of the second equation in the first, we
have [b„(0)=0,b(0)=1]

2ikod—Ki 1+Re )r (2.21) QO

b(t)= DJ dt'b(—t') g co„sin (k„zp)
n=0

which also could have been deduced from (2.19). From
this result we can see that K[1+R cos(2kpd)] and
KR sin(2kpd) represent a decay rate and frequency shift,
respectively, of the atom near the dielectric, although
these expressions are unrealistic in the sense that we have
only included modes propagating parallel to the z axis in
our analysis. The more realistic expressions including all
field modes are easily derived. ' Our point here is that
(2.20) describes how the atom-dielectric interaction builds

i (co„—coo)( t' —t)
Xe (3.2)

where cp„=nb, , k„=co„/c, and b, =~c/L is the mode (an-
gular) frequency separation. Now by the same sort of ar-
gument used in Sec. II we let the cu„ take on negative
values, arguing that frequencies far removed from the
atomic resonance frequency cannot make a significant
contribution. Thus we replace (3.2) by

OQ

b(t)=iD f dt'b(t')e ', g sin (k„zp)e'" "
n = —oo

i 2 ', „, , icuoit' t) Q—;nait —
t) ) ink t (t+2zolc) —'

) inc)(t' t 2zolc)——
2 5t'

e'" —— e e (3.3)

From the Poisson summation formula

g e ' = g 5(x /2mn), .— (3.4)

therefore, we obtain after some straightforward manipulations as above the delay-differential equation
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00 ~ T 2'k
b(t)= ——,'0 T ,'b—(t)+g e ' b(t n T)B(t n—T) —,—e ' ' g e ' b(t —To n—T)B(t —To n—T)

n=1 n=0

——,'e g e b(t+To —nT)B(t+To —nT)
n=l

(3.5)

where 0 =D co0=47Tp c{)o/RAL, k0 ——coo/c, T =2L/c, and TO ——2z0/c. This equation displays retardation effects due
to the presence of two walls, and as such has a much more complicated delay-time structure than (2.19).

Writing coo ——co+A, o, where co is the frequency of the cavity mode closest to the atomic frequency coo, we have

icooT i (co+60)(2L /c) i hoT
e ' =e ' =e (3.6)

incooT in DOT .
as a result of the mode condition sin(coL/c) =0. Therefore we may replace e by e in (3.5).

To account for mirror reflectivities
~

R
~

&1 we modify (3.5) based on the results of Sec. II. Assuming both mirrors
have the same reflectivity R = —(n —1)/(n + 1), and associating with each "bounce" off a mirror a factor R, therefore,
we replace (3.5) by

b(t)= —, 0 T , b—(t)+—g(R e ' )"b(t nT)8(t —nT)+——,Re ' ' g (R e ' )"b(t —To nT)8(t——To —nT)
n=1 n=0

+ —,R 'e g (R e )"b (t + To —n T)8(t + To —n T)
n=1

(3.7)

Equation (3.7) is quite general in that it includes possible effects of all longitudinal modes, as well as mirror reflectivities
R&—1. In general, however, the time dependence prescribed by (3.7) is rather complicated. For this reason it is
worthwhile to focus our attention on some special cases, and show that some well-known results can be recovered from
(3.7).

A. Rabi oscillations

For perfectly reflecting mirrors, R = —1. For QT && 1 and t » T we have in this case
OO 2'kb(t)= ——,0 e T g e b(t —nT)B(t —nT) —, e T g e —b(t—To nT)B(t ——To —nT)

n=0

——,e OT g e b (t + To —nT)B(t + To —nT)

2 2 2
II2 '4'(1 '"0'0 —'"o'o) dt b (t )

0

= —0 sin (kozo)e ' dt'b (t')e
0

(3.8)

342
b(t) i h,b(t)+ b (t)—=0-

4
with X=ZQsin(kozo). Thus

1'

b (t) =e ' cos[ —,
'

(Do+A, ')'~'t]

sin[ —,
' (b,a+A, )' t](g2+ g2)1/2

(3.9)

photon bounce frequency T '=c/2L is much greater
than the Rabi frequency. Note that when this condition is
satisfied we also have 0 T«T '=6, i.e., the cavity-
mode spacing is large compared with the spontaneous de-
cay rate and therefore the natural linewidth. ' Further-
more 0 T «0 means that the spontaneous emission rate
is small compared with the Rabi frequency. Thus it is not
surprising that Rabi oscillations occur in this limit. This

(3.10)
which displays the well-known Rabi oscillations for an
atom interacting with a single field mode. (In this case
they may be termed "vacuum" Rabi oscillations. ) For ex-
act resonance, Ao ——0, we have b(t)=cos( —,'A. t), and the
population difference

i
b (t)

i

—(1—
i
b (t)

i
) =cos(A, t) . (3.11)

Thus our general delay-differential equation (3.7)
predicts Rabi oscillations when QT«1, i.e., when the

z=0 zo z=L

FIG. 2. Excited atom between two dielectric walls, located a
distance zo from the nearest wall.
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single-mode limit is the same limit for which retardation
effects are negligible.

B. Damped single-mode cavity

i (Do+i@)T=e (3.12)

with y= —(c/2L)lnR &0 the field damping rate due to
imperfectly reflecting walls, we can perform the same ma-
nipulations that led to (3.9) to obtain

k2
b(t) i (b,,—+iy )b(t)+ b (t) —=0 .

4

For Ap ——0 and k ~~y, for instance, we have

~

b (t)
~

'=e r'cos ( —,
'

A.t) .

For y &~A, , on the other hand,

~

b(t) ~:—e ~ '~2r

(3.13)

(3.14)

(3.15)

These results agree with those of Purcell and Sachdev.
In fact, the solution of (3.13) with ho ——0 is exactly
equivalent to Sachdev's general solution (5.2) obtained by
a different approach. We therefore refer the reader to
Ref. 9 for a discussion of the single-mode case with cavity
damping. (See also Ref. 10.)

C. Damped multimode cavity

If T is increased the solution of (3.7) has a complicated
delay-time structure, as discussed earlier for a similar but
somewhat simpler quantum delay-differential system. '

In particular, if T is large then the Rabi frequency is large
compared with the photon bounce frequency. The atom
can emit spontaneously before feeling the presence of the
cavity, and later it can absorb the emitted photon, reemit,
etc. , without any coherent Rabi oscillations associated
with the single-mode limit QT ~~1. Since the solutions
in this case resemble those shown in Ref. 15, we will not
take the time here to display them graphically.

Now let us consider the same single-mode limit for
R &—1. Writing

2 IEOT (iso+ T I lnR2)TRe '=e

IV. REMARKS ON THE EWALD-OSEEN
EXTINCTION THEOREM

According to the classical Ewald-Oseen extinction
theorem, ' the polarization induced in a dielectric medium
produces in the medium a field that consists of two parts.
One part exactly cancels the incident field inside the
medium, whereas the other propagates inside the medium
at the phase velocity c/n. The field radiated out from the
medium is just the reflected field, with amplitude deter-
mined by the Fresnel reflection coefficient.

In Sec. II we obtained, starting from the Schrodinger
equation, the correct Fresnel reflection coefficient for nor-
mal incidence, assuming n =1. The approximation (2.15)
to the integral appearing in (2.14) indicates that a number
of atoms =NA/kp-NAkp contributes to the reflected
field. That is, atoms in a layer of depth =kp at the sur-
face of the dielectric cooperate to produce the reflected
field. This result is consistent with classical

argum-

entss. ""
To describe the extinction of the incident field inside

the medium, consider the steady-state solution of Equa-
tion (2.10b),

b = —(iK/bo)be ' —(iK/bo)g b;e ' " . (4.1)
l+J

Here we have again used the nonresonance assumption

~

b,o ~

=
~

coo —co
~

&&K to replace 60+iK by 50. The
steady-state assumption is useful in order to focus our at-
tention on a single-frequency component at a time (as in
the classical Ewald-Oseen extinction theorem). If the
second term on the right side of (4.1) were absent, we
would have

(4.2)

for the probability of exciting some atom j in the medium.
We now ask how this result is modified by the presence of
the last term in (4.1). In other words, what is the proba-
bility that the initially excited atom can excite an atom
within an entire dielectric medium of atoms?

In the continuum limit we replace the summation in
(4.1) by an integral over z, as in Sec. II. Writing b(z) in-
stead of b~, we then have the following integral equation
for b(z):

b (z) = —(iK/b )be'"' (iK/60)NA d—z'b (z')e'" ''
p

Z OO

(iK/ho)be'"' (iK—/bo)NA d—z'b (z')e'"' ' '+ dz'b (z')e'"'
0 Z

(4.3)

where we have written k for kp. To solve this equation
we seek a solution of the form

b (z) =Ce'"', (4.4)

where C and k' are constants to be determined. Using
this form in (4.3), and performing the integrals, we obtain

Ceik z(tK/'Q )beikz

and, equating coefficients of e'"' and e' ',

k' —k = —2kKNA/Ap,

C =i (k' k)/NA . —

Equation (4.6a) gives k ' =kn, where

n —1 = —2K' /kAp

(4.6a)

(4.6b)

(4.7a)

ik'z ikz—(KNAC/bo) k' —k

ik'z

k'+ k
(4.5)

or

n = 1+rip N/fi(cu —coo) (4.7b)
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C = ( iK—blho) = ( iKb —lho) .
2 . 2n

n+1 @+1
(4.8)

From Eqs. (4.2) and (4.5) we see that the amplitude to ex-
cite any atom in the medium is a factor 2n l(n +1) times
the amplitude to excite that atom if it were in free space.
This factor is just the Fresnel transmission coefficient (for
normal incidence, because in our model we only allow
plane-wave modes propagating normally to the dielectric
interface).

These results provide a fully microscopic, quantum-
mechanical basis for the Ewald-Oseen extinction theorem,
starting from the Schrodinger equation. Equation (4.3) is
a quantum analogue, in terms of probability amplitudes,
of the classical superposition principle for the field.

for n —1 &&1. n is just the refractive index for light of
frequency tao in a medium of N two-state atoms per unit
volume, each with transition dipole moment p and transi-
tion frequency ca. [Equation (2.18).]

Equation (4.6b) is the condition that the incident field
in the medium is exactly cancelled by the part of the di-
pole field in the medium that varies as exp(ikz) [.See Eq.
(4.5).] Using our result for k', (4.6b) gives

The extinction theorem is a nonlocal boundary condi-
tion that the field must satisfy. ' Physically, the cancella-
tion of the incident field is often regarded as "caused by
the dipoles on the boundary of the medium, " since in the
classical macroscopic approach the term that cancels the
incident field can be cast in the form of a surface integral
over dipole sources. Our approach shows how all the di-
pole contributions add up in such a way that the cancella-
tion is effectively due to dipoles within a depth approxi-
mately equal to X at the surface. In particular, "The (re-
flected) radiation comes from everywhere in the interior,
but it turns out that the total effect is equivalent to a re-
flection from the surface. "'
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