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Formulas for the matrix elements of the spin-dependent interactions, such as spin-spin, spin-

other-orbit, and effective electrostatic spin-orbit, were constructed for I l configurations, including

the two special cases N= 1 and 4l + 1. Since these interactions are described by two-electron opera-

tors, they comprise, in analogy with the electrostatic interaction, both direct and exchange parts.
For each of these interactions, 12 angular momenta participate in the orbital part, as well as in the

spin part, of the corresponding matrix element. In the formula representing the direct part, both or-

bital and spin angular momenta are connected according to the identity of Arima, Horie, and

Tanabe; in this identity, a double sum of three 6j symbols and one 9j symbol is expressed as a simple

product of one 6j symbol and one 9j symbol. In the exchange part, all orbital (spin) angular momen-

ta are grouped in one 12j symbol of the first kind, according to a newly discovered identity; in this

identity, the 12j symbol is expressed as a double sum of three 6j symbols and one 9j symbol. All the
above-mentioned results were also reproduced by using graphical methods. It can thus be concluded
that the identity of Arima, Horie, and Tanabe. and the new identity, respectively, represent the sym-

metry properties of the direct and exchange parts of the two-electron spin-dependent interactions.
For the purpose of obtaining simple and closed formulas in the special case N =4l + 1, namely, for
configurations comprising a hole and an electron, additional new identities were constructed.

I. INTRODUCTION

It has recently been shown that the introduction of the
"additional spin-dependent interactions (additional SDI)"
in the energy-level calculations of nl (Refs. 1—6) and
nln'l' (Refs. 4, 5, 7 and 8) configurations greatly improves
the fit between observed and calculated multiplet split-
tings. The interactions considered were the spin-spin (SS),
the spin-other-orbit (SOO), and the effective electrostatic
spin-orbit (effective EL-SO) interactions. The first two
interactions belong to the category of the mutual magnetic
interactions and, respectively, represent the mutual in-
teraction between the magnetic dipole moments of the
electrons and between the dipole moment of one electron

and the orbital motion of another. The effective EL-SO
interaction represents, to second order of perturbation
theory, the mixed electrostatic spin-orbit interaction with
distant configurations.

In order to include these interactions in more complex
configurations, such as nl n'I', one must first express
them in tensor-operator form and then calculate the angu-
lar parts of their matrix elements between states belonging
to the desired configuration. Only after the completion of
these two steps can one proceed by evaluating the radial
integrals (parameters) describing these interactions, and
comparing the theory with experiment.

The tensor-operator form of all the additional SDI, for
nl n'I' configurations, is by now well known, and given

by the following formulas: ' '

I /2
P ~ ( )k (2k +5)!
V 5 k (2k)!

k k
J ([g (k+2) C (k)] 2) [ ] ) ([C (k) C (k+ )] [ ]( ))
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35 506 1,.987 The American Physical Society



35 NE% IDENTITIES FOR MATRIX ELEMENTS OF SPIN-. . . 507

k —2

(k +1)(2k + I ) '"[6"'"'X [C(k) X I]'"]'"
rJ

k
j k (2k + 1)1/2[C (k) X [C(k) X 1](k)](1)

r;+

[k(k+1)(2k+1)]' '[C,'"'XC', ']'"k+I

[k(k+. 1)(2k+1)]' [CJ 'XC'; ']'" (s;+2s J),rJ
(2)

and also '"

1

HE1 so ——g g (2t+1) S"(nln'I', nln "I')[I'(I'+1)(21'+1)]'
k even i,j
t odd (i&j)

k t .([ (k) X (t)](1) )

1 k t
+S"(nln'I', n"'In'I')[I(I+ 1)(21+1)]'~ '

I I I '(s; [u I"Xv j~ ']"')

1 1 k t
(2t + 1) T"(nln'I', n "I'nl)[l'(I'+1)(21'+1)]'.~ ( —1)'+' '

I
k(Pk «Pt+( ) 1,j

(i&j)

1 k t
+T (nln'I', n'I'n"'l)[l(1 +1)(21+1)]' ( —1)"'

I,

X I(;'[ (t)X (k)](1))+([ (k)X (t)](1) s )I

where u'k', v'k', z'k, and z' ' are unit tensor operators
defined as follows

(4)

and k(Pk Pt+t ) in the l—a—st summation means that k
may only take values having the same parity as 1+I'.

By inspecting formulas (1)—(3), the following con-
clusions are drawn.

(i) All the additional SDI are described by two-electron
operators, that is, by operators of the type

G= gg;, .

Consequently, for n/ nl' configurations, these interac-
tions comprise both direct and exchange parts, in analogy
with the electrostatic interaction. For the SS interaction
these parts are, respectively, expressed in terms of the ra-
dial integrals I"(nl,n'I'), I (n'I', nl), and N"(nl, n'I')

defined by Marvin. ' The exchange part of the SQO in-
teraction includes, in addition, the radial integrals K —,in
which derivatives of the radial functions appear under the
integral sign [see the last two terms in formula (2)].
These integrals were defined by Jucys et al. '"
The direct and exchange parts of the effective
EL-SO interactions are, respectively, represent-
ed by S (nln'I', nln "I'), S (nln'I', n"'ln'I') and
T"(nln'I', n "I'nl), T"(nln'I', n'I'n"'I), defined by Cxoldsch-
midt and Mallow. '" The definitions of all these parame-
ters as well as the relations holding between them are in-
cluded in Ref. 5.

(ii) For aH these interactions the angular part of each of
the terms included in g;J is given as a scalar product of
two irreducible tensor operators, which operate, respec-
tively, on the or'bital and spin spaces.

6= gg;,

can thus be written (up to constant factors which include
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TABLE I. Ranks of the various operators describing the ad-

ditional SDI as compared to the electrostatic interaction.

Inter
K2

SS
SOO
EL-SO
electrostatic

1

0

0

and/or

also the corresponding reduced matrix elements) in the
following form.

The direct part can be written as

i,j /, J
(i~j) (i~j)

while the exchange part can be written as

i,j i,j
(i&j) (i&j)

In the last two expressions k;, ~;, and E constitute a
representative set of the ranks of the various tensor opera-
tors describing the additional SDI. For simplicity, the
summations over k; of ~; which appear in the original
formulas (1)—(3) are omitted. The values taken by K, I~&,

and ~2 in the various additional SDI, and, for comparison,
in the electrostatic interaction as well, are gathered in
Table I.

In the present work explicit formulas were derived for
the matrix elements of D and E, for nl n, 'l, ' configura-
tions (including the two special cases N=1 and 41+ 1).
These formulas were obtained by using two different alge-
braic methods. At the outset, the calculations by two dif-
ferent methods were devised for checking the final results.
It turned out that the results obtained by the two
methods, while leading indeed to identical numerical
values, differ in form, in the following ways.

(a) For the direct part of each of the additional SDI,
these results constitute the two sides of the identity of
Arima, Horie, and Tanabe (AHT) in this identity, a

double sum of three 6j symbols and one 9j symbol is ex-
pressed as a simple product of one 6j symbol and one 9j
symbol.

(b) For the exchange part, these results constitute the
two sides of a newly discovered identity, in which a dou-
ble sum of three 6j symbols and one 9j symbol equals one
12j symbol of the first kind. '

Conclusions (a) and (b) hold for both the spin and orbital
parts of D and E.

All the above-mentioned results were then reproduced
by using graphical methods. These were first introduced
by Jucys et al. ' and further developed by a number of au-
thors. ' In the present work the phase conventions of
Lindgren and Morrison are used.

It can thus be concluded that the AHT and the new
identity, respectively, represent the symmetry properties
of the direct and exchange parts of the additional SDI.
Each of these identities reduces to a simpler identity
whenever one, or more, of the ~; and/or K vanish; this
occurs for the spin part of the SOO and the effective EL-
SO interactions, and, of course, for the electrostatic in-
teraction. The various simpler identities will be discussed
in a separate paper.

For the purpose of obtaining simple and closed formu-
las for the matrix elements of the additional SDI, for con-
figurations nl +'n'l' comprising a hole and an electron,
additional new identities were constructed; these identities
enable the performance of summations over the quantum
numbers Sz and L2, which represent, respectively, the to-
tal spin and orbital angular momentum of the
grandparent configurations nl . These summations can-
not be carried out independently, since S2 and L2 are con-
nected through the requirement that S2+Lz be even, in
accordance with the Pauli principle.

II. MATRIX ELEMENTS

A. General expressions

The matrix elements to be calculated are
(1 (a&S&L&)1'SLJM{

~

D+E ]1 (a&S'&L&)l'S'L'JM).
The { ~ ~ I sign on both sides of the operator indicates a
matrix element between antisymmetric eigenfunctions,
whereas a sign

~ ~

will indicate a matrix element between
nonantisymmetrized eigenfunctions. An antis ymmetric
function for nl n'l' can be written in the form

( 1,2, . . . , N + 1
~ ] 1 (a &S &

L
&
)1'SLJM )

N+1
=(N+1) ' g ( —1) '(1,2, . . . , i —1,N+ 1,i +1, . . . , Ni )1 (a&S&L&)1'SLJM),

where P; is the parity of the permutation which exchanges i with X+ 1. Utilization of the fact that D and E are sym-
metric operators whereas the eigenfunctions are antisymmetric leads to the following expressions for the matrix elements
of the direct and exchange parts:

N (k~ ) (k2) (~) (&~) (Ic2)

{ ~

D
~ ] =N(1(~)(a&S'&L&)1~~&SLJM

~ [g ~ XU ~+&] [s ~ X~&~&] ~1(~)(a&S&L&)1„'+&S'L'JM),

N (k ) ) (k2 (~) lt
1 2 (~)

{ (
E

~ ] ——N(l(&v)(a&s&L&)l)v+&SLJM
~

[z&v Xz)v+&] [s &&
Xs &v+&] ~

l(&v+&)(aIS&LI )l&vs'L'JM) .
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The factor N on the right-hand side of these equations is a product of the three numbers N(N+ 1), (N+1)
(N+ 1) '~; N(N+ 1) is the number of pairs of electrons included in each of the summations

X D&J'& X E&J &

17J l,J
(i+j ) (i&j )

whereas (N+1) '~ are the normalization factors of the eigenfunctions on each side of the matrix elements. The sub-
script (N) [(N +. 1)] in l~&~ ( l~&+, ~

) is written to indicate that the Nth [(N + 1)th] electron is included in the group 1

Factoring out their J dependence, both I l
D

l I and I l

E
l I can be written in the following forms:

S S' E
(10)

5 S' K

where the reduced matrix elements
l lD l l

and
l
lE l l

are given by

(K)) (&2) (~) (k) ) (k2) (~)
l lDl l =N(l~~~(a~S~L~)l~+~SLll[s ~ Xs ~+~] [u ~ Xv ~+~] lit~~~(a~S~L &)t~+~S'L')

3.QCl

N (xl ) (]c2) (~) (k( ) (k2) (~)llEl l

= —N(l&~&(azSqL&)tz+, SL ll[s & Xs ~+q] [zz Xz z+z] l fl&~+q&(aqSqLx)AS L ) .
(~) ) (~2) (~) (~q ) (~2) (~) (~) «$) «2) (~)[s N X—sN +1] [u N Xv &v+1] and [s &v X—sN +1] Lzx Xz N+1]

(12)

(13)

are both double-tensor operators, acting on the Nth and (N+ 1)th electrons. The problem, therefore, remains to calcu-

B. The configuration nln 'l' ( X= 1)

For the two-electron configuration nln'l', formula (12) takes the form

llD;, ll=(ll'SLll[s; ' Xs I
' ]' '[u; ' Xv, ' ]' 'lilt'S'L ')

=(—,
' 2SII[s; ' xs,""]' 'll —,

'
—,'s')(tt'L, ll[u;

' Xv, ']' 'litt'L'),

where SL (S 'L ') have been chosen to stand for the total spin and orbital angular momenta of tt', instead of SL (S'L'),
for later use. By using formula (15.4) of Ref. 24 for both the spin and orbital reduced matrix elements, and also taking
into account the definitions (4) above, one obtains

D,, I I
=[re]([S,S',L„L '])'"(—,

' lls'"'
ll —,

'
)( —,

' Ils'""ll —,
'

) —,
'

S

I l k)
~ I I k2. ,

L, I.' E
(14)

where [X] stands for 2k + 1, etc. , [S,S ',L,L '] stands for [S][S'][L][L'] and

&3/2 for ir= 1,
v2 for v=0. (15)

In a similar manner, the expression for
l lE;~ l l

is found to be

l lE j l l

= (1 tj'S L
l l
[s;—' Xs 1

' ]' '[z; ' Xz J
' ]' '

l l lJ t S 'L ')

=(l&lJ'SLll[s; ' Xs~ ']' '[z; ' Xz~ ' ]' 'lit l S'LJ')( —1) + + +

according to formula (13.19) of Ref. 24. By using again formula (15.4) of Ref. 24, one obtains

1

k,

IIEJ II =(—1)'+'+'+' [&]([SS' L L '])'"(—' lls
"'

ll
—')( —' lls

"'
ll

—') —'

S

1

2

s' x
)l' l k2 . .
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C. The configuration nlNn 'l'

As mentioned in the introduction, the formulas for the
matrix elements of the additional SDI, for nl n'l' config-
urations, were obtained by using two different algebraic
methods. The first method utilizes the expressions ob-
tained above for IIDJ.

I

and IIE~ I

in the two-electron case
[see formulas (14) and (16)]; it can thus be referred to as
the two-electron method. The second method uses, suc-
cessively, formulas which transform IIDI and IIEII from
the scheme of the combined eigenfunctions of the nl n'l'
configuration to the one-electron schemes of the Kth and
(X+ 1)th electrons. It can thus be referred to as the one-
electron method.

Method 1

In this method, the derivation of explicit formulas for
IIDII and IIEII is carried out by taking the following
steps.

(i) Expansion of the nl part of the eigenfunctions ap-
pearing on both sides of the reduced matrix elements in
terms of fractional parentage coefficients

(l (aisiLi)
I

(l a&slL I I I

l" '(a2S2L2 )lslL1)
a2, S2,L2

X (l '(aps2L2 )l(S iL i ) I

By using the abbreviated notations

(l (ap'iLi)
I
—= (llew I,

'(a2S2L2)
I =(A I,

etc., and

(l aisiLi [ I

l '(a2S2L2)lslL1)=($1I
I Q2),

this formula can be written as

= X(fan[ I 02)(A l(siLi)
I

(ii) Recoupling of each of these functions between the
two schemes of angular momenta

l '(a S L ),l(S,L, ), l'SL and l '(a S L ), ll'(SL), SL,
which gives

(@,1',SL
I

= g (QiI I $2)(@2,ll'(SL), SL
I (S2L2, ll'(SL), SL IS2L2, I(siLi), l', SL)

$2,S,L

1

S2 —, Si
(Qi [ I $2)($2, ll'(S L ),SL

I ([S„S,L „L])'i2( —1) '
f2, S,L 2

L2 l

l' L

Li
L

(iii) Transformation of the reduced matrix elements
I
ID

I
and

I

E
I

from the scheme l~ '(ap'2L2), ll (SL ),SL to the
scheme ll'(S L) through the use of formula (15.7') of Ref. 24 for both spin and orbital Parts.

(iv) Substitution for
I IDiv iv+&I I

and
I IEJv ~+iI of the corresponding expressions obtained in formulas (14) and (16)

above.
By Performing these steps, the following expressions are obtained for

I
ID

I I
and IEI I:

I ID
I I

=&2 (Wi [ I A)(@~ I ) @i)( 2 I
ls

'
I I 2 )( —,

'
I

ls'"'I
I

—,
' )[1~]([s„s'„s,s',L „I.'„I.,I. ])'i'

S2 , Si
X g ( —1) '[S,S'] '

S,S' S S 1

2
S'

S 1

2 2 Si
r

S' S2

K]
S
S'

1 1

2 '2
1 1

2 2

S S'

L+L
X g ( —1) '[L,L'] '

L,L'

l L]
L L

L2 l Li E L' L
L2 L L'

ki l

k2 l' l'

K L L'
(17)

IIEII =&&(fi[
I
A)(42 I ]0i)( ~ lls

'
ll ~ )( 2 lls "II ~ )[&]([s„s;,s,s',L, ,L'„L,L'])'i

S,S'

S2
1 Si S2

S S 2
S'

K S'
S' S2 S

Ki
S

I ' 2

1 1

2 2

1 1

2 2

S S'
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l L1 L2 l

L L, l' L L'
k1

k2

E
(18)

2. Method 2

The direct part
I ID I I. For calculating

I ID I I

in method 2 the following steps are taken.
(i) Use of formula (15.4) of Ref. 24 and of the definitions. (4) above, which results in

S1 S1 +1 L1 L1 k1

IIDII=X(I a)s)L)lls~' u Iv' Ill a(s(L))&&( —, Is
'

ll —, )[K]([s,s',L,L'])' —,
'

—,
'

~2
. l' l' k2

S S'
(sc1) (k1) . (x1k1 )

where s ' u ' is the double-tensor operator U
' ' defined by Racah. '

(ii) Use of formula (8.23) of Ref. 22 for the reduced matrix element of U
' ' leads to the following formula for

I ID I I:
(a1k1)

IIDII =+(—' lls
'

ll
—')( —' Ils

'
ll

—')Ã]([s„s'„s,s',L„L'„L,L'

S1
S1 S1

1 1

L, -L, L, ', k,
1 1

T

L1
l

l' I' k2 . .

L L' E
K2

2

S S' K

The exchange part
I IEI I

The calculation of
I IEI I

through the use of method 2 is accomplished by carrying out the
following steps.

(i) Expansion of the eigenfunctions of l, on both sides of IE I, in terms of fractional parentage coefficients.
(ii) Transformation of the eigenfunction on the right-hand side of

I
IE I I

from the scheme

I '(aps2L2) l~+ )(S)L ') )l~(s L )

to the scheme

l (a2S2L2)lz(S3L3)l~+((S L ) .

The recoupling coefficient representing this transformation is given by

J J J
Vi)2Vi2)J3~ IAJ3V»V3~)=( —1)" " '" '"([Ji2]U13])'"'.

J2 J12
(20)

with

1 I ) ~

S2~L2~J1~ 2 &~~J2& 2 &I ~J3

S pL ~Jy S 1 pL 1 ~J12' S3pL3~J 13

One obtains

'(azs2L2)4(S'IL i)@+PL I l[s Iv' &s Iv'+i]' '[zIv' &&& Iv'+i]' 'I l~ '«zs2L2)4 (S3L3)4+4'L')
2,S3,L3

X(g)[ I g2)(g2 I
}P'))(—1) ' ' ' '([S),L ),S3,L3])' ' '

S2 S3 I L2 L3

L, ' I',

(iii) Use of formula (15,4) of Ref. 24 and formulas (4) above results in
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2, S3,L3

( 2 IIL
'

I I 2 )[~]([~~' L L' ~'1 L'1 ~»L3])'"(01I
I @z)(A I ]41)(—1)

S2 S3
C

1

S1 S3
1 1

2 2 K2 L 1

-S S' K

L1

, '. I'
1

L

L3 k1

I k2
L' E

(iv) Use of formula (15.7') of Ref. 24 and performance of odd permutations of the columns of both 9j-symbols result

(q I I y )(q Iq')( 1) 3 1 1 2 + 2 3 1 1 2+ + 2

S3,L3

X [~3 L3,&]( [~,~',L,L ',~1,~ l,L 1L 1 ] )
'"(

2 I Is

1

2X'i
2

S S K S S I, L , L I, k I

S2 S3 1 2 3 2 3 1 2 3

S1 S3 k1 L1 L3

(v) By using now the definition of the 12j symbol of the first kind, given by Jahn and Hope, ' as well as its symmetry
relations found by Ord-Smith, ' the summations over S3 and L3 can be carried out as follows:

S
1

2 2

S1

1 I i 1 K
2S3

S S 1 2 1

'[~3]
S3

S2 S3 1 2

S'
1/2'+S'+ S1 + tc1

2

S3

1

2

S1

1

2

K1

S'

1

2

1

2

S'1

S2 . ,

(21a)

I' L' L', I'

l L L L,
3

k1

L2

K

3

k1 L1 L3

L L'
I,=( —1)

L1 L1

L2 -.

The expression for
I IEI I

then takes the following form:

II&II =&X(@a[ I
@2)(A

I
IW'1)( 2 II&

'
ll 2 )( 2 IIL

'
ll 2 )[&]([~1~1 ~ ~' L1 L'1 L L'])'"

(21b)

1+1'+L1+2
1 +k1 +k2+L2+ I + 1+S1+S1+K1+K2+S2+S

X

1

2

S1

1

2

K1

S'

1

2

1

2

S'1

S2 .

L'
L2 -. (22)

III. IDENTITIES

A. The identity of Arima, Horie, and Tanabe: a representative of the symmetry properties
of the direct part of the additional SDI in 1NI' configurations

The two expressions obtained for
I
ID I I

through the use of methods 1 and 2 [see formulas (17) and (19), respectively]
should be equal to each other. Indeed, each of the double summations, over S,S ' and L,L ', appearing in formula (17)
can be carried out through the use of the identity of AHT (Refs. 15, 18, and 10) given in formula (23) below, this result-
ing in a simple product of one 6j symbol and one 9j symbol, as given in formula (19). Since both the spin and orbital
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parts of
~

~D~ ~

can be expressed by either the left-hand side or the right-hand side of the identity of Arima, Horie, and
Tanabe, it is hereby concluded that this identity represents the symmetry properties of the direct part of the additional
SDI, in l l' configurations.

The AHT identity' is given by the following formula:

V —j2+j & +j2 —j—k —k&+l2
k' j2

[xl[J ](—1)
x,V

l2 k'

X J]
j] l] k k k1 2

y
'J J2 Jt
k x y

l2 li
C

J& J2

l2

'J2
k2

(23)

Twelve angular momenta participate in this identity. These are arranged in the following ten triads, four in the 6j
symbol and six in the 9j symbol appearing on the right-hand side of (23); however, since two of these ten triads are iden-
tical, only nine different triads are i~vol~ed: (lzl, j), (lzjzk'), (j&l&k'), (j&jzj), (jtjzj'), (k&kzk), (kzlzjz), (k, l,j', ),
(jj k). An algebraic proof of this identity was, of course, given by its first discovers; a different algebraic proof was
given by Judd a graphical proof of this identity was given by Jucys et al

B. The new identity: represents the symmetry
properties of the exchange part of the additional

SDI, in I l' configurations

The two expressions obtained for
~
~E~

~

through the use of methods 1 and 2 are given in formulas (18) and (22). The
requirement that these two expressions be equal leads to the following new identity:

2
' —'

I —I ' —' k k
]( )zy+ j, —j +I, —t +j—j'+k, +k

x,V
J2

J2 l2 k'

X J)
l) k

y k'
k) k2 J

~ I

x y
k

J2 J~

J2 Ji '

x y

l2

J2

J2

(24)

In this identity, one 12j symbol of the first kind' is expressed as a double sum of a product of three 6j symbols and
one 9j symbol. All 3nj symbols written on the left-hand side of this identity coincide with those appearing in the identi-
ty of AHT, except for the exchange of j] and j &

in the last column of the 9j symbol. The twelve angular momenta parti-
cipating in the 12j symbol are arranged in the following eight triads: (j~jzj'), (j'kj), (jj'jjz), (lzjzk'), (lzjzkz), (k&kzk),
(kilij'i ), (jilik').

This eight-triad structure leads to sixteen symmetry relations of the 12j symbol of the first kind, first given by Ord-
Smith. "

Since both the spin and the orbital parts of
~
~E~

~

can be expressed by either the left-hand side or the right-hand side of
the new identity it is thus concluded that this identity represents the symmetry properties of the exchange part of the ad-
ditional SDI, in l l' configurations.

C. Algebraic proof of the new identity

The left-hand side of (24) can be written in the following form [transforming all phase factors except ( —1) to its
right-hand side]:

k' j]
J2 k2 x J] k(

l, k

y k' y
'J
k

j2 Ji
J2 J] '

~

X

(25)

In the last expression, the summation over y is carried out first, through the use of formula (21), written below in the fol-
lowing form:
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k, k k,
k y x k y

Jz J& l)

(
I)x+k+j)+jI

Jz Ji
k x y

(21c)

Substitution of the. right-hand side of (21c) in (25) results in the following expression:

g [x](—1)
k' k2 x

~ )

j2 j2 l2
(25a)

Using formula (A.6.40) of Ref. 18, (25a) can be transformed into the following expression:

l) k) k2
)2k+2j ', +j, +j 2+1) —12+k)+k~+1 +2

J2 '~ —& (25b)

~ I ~ I

By using the symmetry relations of the 12j symbol, ' and the fact that ( —1) '=( —1) '=( —1) ', (25b)
can be written

k' .( —1)J )
—J2+I) —12+1—J'+k) +k~

(25c)

which proves the new identity (24).

IV. GRAPHICAL METHODS

The present section comprises A, derivation of a graphical representation of the 12j symbol of the first kind, in accord
with the phase conventions of Lindgren and Morrison used herein; B, graphical proof of the new identity; and C,
graphical derivation of the formulas for the reduced matrix elements

~
~D

~

and
~
~E

~ ~, for nl n'I' configurations.

t

A. Graphical representation of the 12j symbol of the first kind

The graphical representation of the 12j symbol of the first kind is obtained by starting out from formula (21c), which
constitutes its first definition, '6

li ji k' ki y
k' .( —1) (21d)

and then taking the following steps.
(i) Describing the 6j and 9j symbols appearing on the

left-hand side of (21d) in graphical form (chapter 3 of
Ref. 22); (ii) multiplying them according to the rules of
Jucys et al. ,

' listed also in chapter 4 of Ref. 22; (iii) per-
forming the summation over y (see again Ref. 18 and
chapter 4 of Ref. 22). In these steps and also in further
graphical derivations, useful graphical rules are used,
which enable (1) the addition (or removal) of arrows to all
three lines of a vertex, (2) the reversal of the direction of
an arrow, and (3) a change of sign of a vertex (chapter 3
of Ref. 22). These rules will be referred to as "fundamen-
tal graphical rules. "

(i) The graphical representations of the 6j and the 9j
symbols are

&
( j Ik'

ki JI j(

i i, i,'1
fj' 4j('=

k x )!

(-I) +

kt
I k

k( y k

xk, x

(26a)

(26b)

(27)
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where R =j+j2+j'I+j'+j2+j~+k+x+y
(ii) The product

l& j~ k' k] y

y k) J') x k2 k

is graphically represented by

By drawing the Hamilton line [dotted line in diagr'am
(30)], pulling the graph apart so that this Hamilton line
lies along the edges of the octagon, and using the funda-
mental graphical rules, one obtains

kI

k2
k

+ (-[) kI+ k +y+2x+P j,
'

k'
II,

X

(2

2
~ IX+k+j I+]I ~ (31)

The last diagram was obtained through the use of formula
(4.7) of Ref. 22, which is referred to as the Jucys, Levin-
son, and Vanagas third theorem (JLV3), in addition to the
use of the fundamental graphical rules. The graphical
representation of the left-hand side of (21d) thus takes the
following form:

k
I

glv] +~, = „~+
]I

Since (31) equals the right-hand side of (21d), which can
be written as

x+k+j&+j&
J2 '—

it is hereby concluded that the graphical representation of
the 12j symbol of the first kind is given by the following
diagram:

k+k'+k+ j+j'+j +j -j'+j'-x
( )) I I 2 I 2 (29)

This graphical expression can now be transformed ac-
cording to formula (4.9) of Ref. 22 (which is referred to as
JLV4) to give (solid line)

'I

k'k, j j.x k2k j'

(32)

X ( () ' I 2 I 2k, + k'+ k+ j+ j
'+ jI+ j

—
j + j -x ~ (30)

B. Cxraphical proof of the new identity

The new identity is given by formula (24),

k' jg l k' J, l, k
[Xl ' ' I, y [3'](—1)"'.

I,kq x J) k) y

J J2 J1
2

y
'J' J2 J1
k x y

, —I +j—j'+k, +k

The graphical proof of this identity could be carried out
in a straightforward manner, similar to the one taken in
Sec. IVA above; that is, by "calculating" graphically the
product of the four 3nj symbols written in the left-hand
side of (24'), and then performing the double sum over
x,y—according to the rules of JLV. ' ' Instead, a short-

I

cut in the proof is made, by exploiting the results already
obtained in Sec. IVA. According to these results, all the
y-dependent factors on the left-hand side of formula (24')
can be substituted by one 12j symbol of the first kind and
a phase factor [see formula (31)]. The left-hand side of
(24') is thus written graphically in the following form:
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x+k+))+)(
X

+ jI +

+ jl +

j' k'

k+2k2+2k + j + j + j +j
i( j' (-I)

I

(34)

+ g2

k2
)

'I

j2 (- I ) 2 2 ~ (33)

By drawing the Hamilton (dotted) line, pulling the dia-
gram apart so that this line lies along the edges of the po-
lygon, and making use of the fundamental graphical rules,
one obtains

The last row of (33) constitutes a graphical representation
of 2

+ ( j ) I 2 I 2 I 2j -j +8 —x +j—j'+k +k (35)

j2 k2 x

The summation over x in (33) can be carried out accord-
ing to formula (4.9) of Ref. 22 (JLV4). The following re-
sult is obtained (solid line): which completes the graphical proof of the new identity.

C. Graphical derivation of the direct and exchange
matrix element

Direct matrix element

The direct matrix element to be graphically calculated is given by formula (8),

1V Jc1) (K2) (g) (k1 ) (k2)
I I

D
I j =X(1()tr)(a(S(L()l)I(+(SLJM

I
[s ~ Xs x+(] '[Lr )( Xv N+(] I

l(N)(alslL1)le+(S"L'JM) (8')

The antisymmetric wave function on each side of (8 ) is expressed in terms of vector-coupling and fractional-parentage
coefficients. For instance, for the left-hand-side wave function one can write

(nl (a(s)L()n'I'SLJM
I

(JM
I
SMs LMr )(nl (a(s(L()n'I'SMsLMr.

I

s,

(JM
I
SMs LMr. )(SMs

I
S(Ms, 2 m )(LMr.

I L(Mr, , l'm( )(nl a(S(Ms, L(Mr. , I

(n'I'm, m(
I

Ms, M~,

Ms m.
1

ML, , ml'
1

(JM
I
SMs LM~)(SMs S(Ms, m. )(LMr

I L(Mi, I mI')

Ms, ML,

s,m, „
1

Ml, m).
1

X(I (a)s(L()I
I

r '(a,S,I., )t,S,L, )(nl '(a2S2Lq)nl s)Ms, L(Mr. , I
(n'i'm. m1'

I

(JM
I
SMs LMr. )(SMs

I S(Ms, 2 m )(LMr.
I
L)Mr, 'm( )(S(M. s, I S2Ms, 2 m )(L(Mr. , I L2Mr, , lm()

a2, S2,L2

Ms, ML,

Ms m.
1

ML, mh,
1

Ms, m,
2

Ml. , mI,
2



35 NEW IDENTITIES FOR MATRIX ELEMENTS OF SPIN-. . . 517

X(l (a)S)L) )I I
l (a2S2L2)l, S)L) )(nl a2S2Ms L2ML I

(nlm, m~
I
(n'l'm, m) I

(36)

](Ill

( JM I j) ff)) ~]2m2) = =
]2fYl 2

] )Tl

JM
2 2

Of

jm
(37)

A vector-coupling coefficient is graphically represented
by

I

(nlN(a)S(L) )n'l'SLJM
I

(l (a(S(L))I I
l '(a2SgLp)l, S(L))

m, „m„~s,
2

(in each of these diagrams the direction of the arrows are
determined so that the "initial" state j&m) scatters off the
heavy line into the "final" state j2mz. The sign at the
vertex of the vector-coupling coefficient is chosen so that
the angular momenta are always read in the order Jj2j&,'

the heavy line stands for

mI. , m(, ML
2

S2
(S2MS

( I/2m'
[

JM )/2 JM (38)

[see formulas (3.11)—(3.16) of Ref. 22]). Now, if one sub-
stitutes for each of the five vector-coupling coefficients in
(36) its corresponding graphical diagram (37) and then
joins the free lines having the same quantum numbers
(which means performing summations over the corre-
sponding m's), the left-hand-side wave function takes the
following form:

( LpM)

(39)

The wave. function on the right-hand side of (8') can be
drawn in a similar manner. By expressing the scalar
product of two operators in terms of their components,
the operator appearing in (8') is written in the form

(tr)) (K2) (I ) (k) ) (k2) (~)[s N Xs N+1] [u N XvN+I]
E g (~)) (l 2) (g) (k) ) (k2) (g)

[sN XsN, ]& [uN XvN, ] g
Q

( 2 Ils
'

ll z )( 2 Ils
"'

ll 2 )

Q,
7T) p ff 2 & g ] y g 2 y

[
I /2 ms ) [ I /2 m ~' )

Im, m„&~,~
g Q i f7) ~$ fil )wg&

«~ gm, ) ~
g'm& )

K(7T( K2772

l /2 ms+I/2 Al s (/2 fTl&'+ (/2 f7)s

( ~/2m,
)

( t/am&
(

k(q( k2q2

q) K Q KQ KQ+ K(77

k2q2 K2 772

by using formulas (4.12) and (4.16)—(4.18) of Ref. 22, for
both the spin and orbital operators; it should be noted that
the diagram before last in (40) includes the phase factor
( —1) ~ [formula (3.3a) of Ref. 22]. The sum over Q
can now be performed, by joining the corresponding free
lines, in the last two vector-coupling coefficients; one ob-
tains

k, q) K + K(77)

I

ing the orthogonality properties of the wave functions);
the following graphical expression is obtained:

&(—1) X (0) I I @2)(02 I IK)( 2 I Is
"'

I I

—')( 2 I
Is

'
I I 2 )

S2

k2q2 (41)
JM JM (42)

[formula (3.21b) of Ref. 22].
The matrix element (8') can now be formed by joining

the corresponding lines of the left- and right-hand wave
functions and of the operator standing between them (us- L +2
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Since this matrix element is independent of M, the two
free lines may be joined together —meaning summation
over M, that is, multiplication by (2J+ 1). This action
can be compensated for by removing the two factors
(2J+1)'/ (heavy parts of these lines). By substituting
also for the remaining heavy lines with the corresponding
factors, and using the fundamental graphical rules, the
following expression is obtained:

that these lines lie along the edges of the corresponding
polygons, and subsequently cutting each of these diagrams
in three lines, the following result is obtained.

The spin part is

—K2—
Kl
+
I/2

2 (0q I I A)(@2 I I@i)(
'

I Is
—/si—
/ I

Is

X [K]([S,S',S, ,S'„L,L',L „L', ])'i2
and on changing both 3nj symbols to their standard forms
we have

S2

K2

+ (-I)K(+ ~/2+)/2+&/2+S+S2+ I
I 2 (45a)

+s' +

(43)

Si Si
Si

1

2
1

2 K2
2S S' E

— '2—
The orbital part is

S2

S'i
S( +s2 + 1 /2+ a )

( —1
2

(4Sb)

The last diagram may be cut twice on three lines, as
shown by the dotted lines, to give the following three dia-
grams:

S2

/I +
l

and on transforming both 3nj symbols to their standard
forms we have

k2

L)+L2+ &+k)+L+L+ K+ (-I) (46a)

L] k]

L' E
L ( ~L2 ~1 +k( gL +L'+K

X —1 (46b)

On transforming the J-dependent diagram to its standard
form, one obtains

(44)
S+L+J+ (-I )

S L J
S'K

S+L+J(-I ) (47)

+
2

The second of these diagrams includes all the J depen-
dence of the matrix elements, whereas the first and the
third ones depend only on the spin and orbital quantum
numbers, respectively. By drawing Hamilton (dotted)
lines in the first and third diagrams, pulling them apart so

By collecting the contribution of all diagrams the follow-
ing result is obtained for I I

D
I I:

S S'

where
I ID I I

is identical to the expression given in formula
(19)
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2. Exchange matrix element

The exchange matrix element to be graphically calculated is given by formula (9),

(&)) (&2) (~) (k() (k2) (~)E = —N(l~~~(cx&S&L&)l~+qSLJM
I
[s ~ Xs &+1] [z z &&z z+q] f l~jv+»(aqSIL q)l&S'L'JM) . (9')

By proceeding in the same manner as for [ I
D

I I, but taking into account that, on the right-hand side of the matrix ele-
ment, the ¹hand (N+ 1)th electrons are characterized by l' and /, respectively, one obtains for I I

E
I I the following

graphical expression:

I IE I I =N( —1) +'X(0~[
I A)(@2I I@i)(2 Ifs" II 2)(2 Ils

'
ll 2)

S2

JM

Lp +
(48)

By joining together the two free lines, substituting the heavy lines by the corresponding factors and cutting the result-
ing diagram into three separate diagrams, the following result is obtained:

[ IE I
I=N( —1) +'g(@~I 1@2)(&zl&'»(z I-' '

I ~)(~ II-'
'

ll 2)

&& [K]([SS',S&,S'&,L,L',L ~,L '& ])'/ && (spin part) X (orbital part) )& (J-dependent part) .

(49)

The last three factors are given by the following graphical
expressions.

The spin part is equal to
+

I

The J-dependent part is

S+L+J+ (-I )
S L

S'K
S+L+J

(52)

S
I

K+I+I +S I+S
I
+KI+KP+ S~+S+ (-I) (50a)

On collecting all terms of I I

E
I I included in (49), one

obtains

I/2 K~ KI
K I/a

SI'

I/2

SI S

The orbital part is

K+ I+I+S +SI+ KI+K2+ S&+ S ~

Sp (- I)

(50b)

S S' K
{ IE I

]=( »'+s+'L—

where
I
IE

I I

is identical to the expression given in formula
(22).

)
e+ '+ L+L + k I+k ~+ Lp+ L' + 2 L+ ( I) I I

kP kI
e' K e' L e+e'+ L,+L', +kI+k +L&+L+ 2L

( 1) I I I 2 2

LI L L' LI

(51a)

(51b)

V. THE CONFIGURATION nl"'+'n'l' {X =41 + I )

In order to obtain the formulas for
I IDI I

and
I IEII for

configurations nl +'n'1', comprising a hole (h) and an
electron (e), one should start from formulas (19) and (22),
respectively, and therein make the following substitutions:

X =4l +1,S]——S) ———,,L, ]
——I. )

——I
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(I4i+»I
t I

14'(S2Lz)12l)(I"'(SzL )l2l
I

jl"'+' I)

[S2][L2]
(4l + 1)(2I + 1)

(53)

[the explicit expression for the coefficients of fractional
parentage was obtained through the use of formula (19) of
Ref. 23].

The following results are obtained:

T Y K& l l k)

II =( ' llz"' ll
'

)(
' lls'""ll —,')[K]([s,s',L,L'))' '

—,
'

—,
'

v2
' I' I' k2 ( —1)'+"'+"'

ss'x
l l k)

0&2 y [S2][L2)(—1) ' ' '
i

S2 L2 2 2 S2
(54)

~2 g [s2)[L'](—1) '
S2,L2

1

2

1

2

1

2

1

2

1

2

S, l'

L'
L2 . .

(55)

In the last three formulas S2 and L2 stand, respectively,
for the total spin and orbital angular momenta of the l
configuration; they are thus connected through the re-
quirement that their sum, S2+L2, be even, in accordance
wit'h the Pauli Principle. Consequently, the summations
over S2,I.z cannot be carried out independently. In order
to perform these summations, the following identities are
used [Eqs. (A.6.17), (A.6.18), (A.6.23), and (A.6.24) of
Ref. 18]:

A. Direct part

Use of the first two identities results in the following
equalities, already obtained in a previous paper:

l l k& l l k&

L2 even L2 odd

I l ki

L2 Consequently,

(ki~0) .1

2

l l ki
(ii) g ( —1) '[LP) '

I I
' ——5(k i,0)[l]=0

2L2

(the last equality on the right is valid for ki &0),

1 1
K) l l ki

[S2)[L2] '

S2,L2 S2 2

(iii) g [L2] I' L2- =2 g [Lq]
L2 even

(S2 ——0)

1

2

1

2

l l ki
l l L2'

(iv) g( —1) '[L2] .I
L2

5(k2,L)5(ki, L')
[k2)[kil

k] I

L2-

+2 g 3[L2) '
i

L2 odd

(S2 ——1)

1

l l k)
l l L2

K l' l' K
l k2 L' l

lI

L 2

1

2

+3 1

2

1
K)

1
1

2

'=1 (ki+0) (57)
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for both cases a&
——0,1.

Substituting this last result in formula (54), one obtains
the following final, explicit, form of

~
~Dz,

~
~:

T 2 K1 l l

X '
—,
'

—,
'

~2
' l' l' k2 .( —1)

SS'Z

The second part, containing l; and s J, is represented by
Ir~+k~ odd, and therefore remains invariant under conju-
gation.

B. Exchange part

Use of identities (iii) and (iv) leads to the following new
equalities:

2 y [L2] 1'

By comparing formula (58) with formula (14), one obtains
the following relation between

~
~D~,

~
~, for nl"'+'n'l', and

/[D„//, for nln'I':

(59)

L2 even

gk„L)S(k„L )

[k ][k,]
+ k, I k2 L' I L

Formula (59) is in agreement with Racah's formula (74) of
Ref. 12; it 1eads to the fo11owing conclusions concerning
the behavior of the direct part of the additional SDI under
the conjugation 2+ [L,,]

kq

(60)

nln'l' —+nl +'n'l' .

(i) SS interaction. ~&+k& odd,

(ii) Effective EL-SO interaction. ~&+kt even,

gk„L)S(k„L )

[k2][ki]
K l' l' X l'

l k2 L' l I.
(61)

(iii) SOO interaction. This interaction splits into two
parts. The first, containing the factors l;,L; is character-
ized by K~+k~ even, in analogy with the spin-orbit in-
teractions, and therefore changes sign under conjugation.

These equalities enable the performance of the summation
over S2,L2 in formula (55) by splitting it into two parts:
one over L2 even (Sz ——0), and the other over Lz odd
(S2 ——1). Using also formula (19.8) of Ref. 18 for a 12j
symbol with one vanishing angular momentum,

~ ~E~,
~ ~

is
given by the following expression:

K)

5( k2L)5( ki, L')

[k2][ki]

+3

1

2

1

2

K(
1

2

1

2

5(kg, L)5(ki,L')

[k2][ki]

l' K l' l' E l'

k) l k2 I-' l I- (62)

The following special cases occur.
(i) SS interaction. In order to calculate the exchange

part of the SS interaction in the configuration nl +'n'l',
one must substitute in (62)

K) =K2= l~ E =2 .

1

2

1
1

2
2

1
1

2

1 2 ')=3 ~

1
1

2

1

2

1

2

1 1

1

2

1

2

1

2

The only nonvanishing spin factors are obtained for
S =S'=1,

(63)

Substitution of (63) in the outer square brackets of (62)
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leads to

[ ]=— 5(S, 1)5(S', 1) .1 5(k2,L)5(ki,L')
9 k2 k)

Consequently,

E„,(SS

to formula (11) above, the following final, explicit expres-
sion for I ~

E(SS)
~ j is obtained

I i
Ep„(SS)

i I
= —', ( —1) ' ' 5(S,1)5(S',I )

1 2,
k2 J

5 k2, L)5(k),L'
5(S, 1)5(S',1) . (64)

v'[k21[k i]

5(k2,L)5(k„L')~5(k, ,L)5(k~,L')

Q[k, ][k,]
(65a)

Now one must take into account the fact that the Hamil-
tonian representing the SS interaction includes, in addi-
tion to (6), also a term with the roles of k& and k2 inter-
changed. Adding. the reduced matrix element of this term
to (64), and going over from ~~E~

~

to I ~

E
I ], according

Formula (65a) leads to the following conclusion. In the
configuration nl '+'n'l', for each pair. ( k&, kq), all matrix
elements of the SS interaction vanish, except those con-
necting the levels L (L =k2)z and L'(L'=k~)z,

(nl +'n'l' L(L =k2)JI ~E(SS)
~

Inl +'n'l' L'(L'=k~)J)

=(nl +'n'I' L(L =k~)Jt
~

E(SS)
~

Inl +'n'I' L'(L'=k2)J)

1+1'+k +k +J
(65b)

(ii) SOO and effective EL-SO interactions. For these
interactions one must substitute

(a) ~) ——0, Ir2=IC =1,
3

l
2

1

2

1

2

1 0

S'

1

2

1

2

or

(b) &p=O, v( ——K =1 3

2
1

2

1

2

1 0

S'

[in case (b) the roles of k~ and k2 are interchanged as
compared to case (a), see formulas (2) and (3) above].

(a) The spin factors become
by using the symmetry relations of the 12j symbol, '

r

1

1 S'
2

2

1
1

2

( —1)

0
I
2

1 1

2 2

(66)

3
vS

1

2

1

2

1, 'S S'
S' 1

2 2

(67)

through the use of formula (19.9) of Ref. 18. Substitution
of (66) and (67) in (62) results in

I
IEhe(SO»EI--SO &i =O,~2 K 1)

=3v 3([S&S'&L&L'])' ~( —1)

S S'
1 16 2 2

1 L L' 1

,

l' l'
k] k2 1

fol S = 1& S =0& 1

S
C

16 2
1

2

1 L L'
l' l'

2

r

k, k,
l l' l'

S S' 1 5(k2,L)5(k),L')
v 6 —,

'
—,
'

—,
' [k, ][k,]

for S'=0, S=1 .

(68)
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After subtracting the common term

3v 3([S~S «L~L ])i/z( 1)
+'+'+"i+"z+

By multiplying each of these reduced matrix elements by
the corresponding factor

S
16 2

1

2

I L L'
I'

k)
I I' S S' K

which is proportional to the reduced matrix element of
the spin-orbit interaction of the electron I in the configu-
ration under discussion, there remains

~
~Eke (SOO, EL-SO, lc] =O, K2 =K = 1 )

2t+t +k, +k, +L 5(k 2, L) 5( k(,L')

&[kz][k i 1

the following final expression for I ~

E(SOO,EL-SQ)~ I is
obtained:

I i
E(SQO, EL-SO)

i I

=v 3( —1) ' 5(J,ki)

X5(S,1)5(S',O) .

(b) Following the steps carried out in (a), one obtains
for case (b)

&& [5(k,L)5(k i,L ')5(S, 1)5(S',0)

+5(k „L)5(kg,L')5(S,O)5(S', 1)]/[k & ] 1/ [kz]

(71a)

~ ~
Eke ( SOO, EL-SO &2 ——O, tc i =I' = 1 )

I I

I+i'+1+k)+kg+I 5(k»=3(—1)
V'[kz][ki l

x5(S,O)5(S', I) . (70)

Formula (7l.a) leads to the following conclusion: In the
configuration nl +'n'1', for each pair (k&, kt2), »I ex-
change matrix elements of the SOO and the effective EL-
SO interactions vanish, except those connecting the levels
L (L =kq) J( —k ) and 'L'(L'=ki) J( k ),

(nl"t+'n'1' L(L =kq)J(=k&)I
~

E
~

]nl +'n'1' 'L'(L'=ki)J(=ki))

(nl +'n.'1''L(L =k~)J(=k~)I
~

E
~

Inl" +'n'1' L'(L'=k2)J(=k~))

=v 3( —1) ' /[k)]Q[k2] . (71b)

It should be emphasized that although exchange matrix
elements between two triplet levels are allowed for the
SOO and the effective EL-SO interactions, and they
indeed occur in the configuration nln'I', this is not the
case for nl '+'n'I'; in the latter configuration there are no
nonvanishing exchange matrix elements connecting two

triplet levels, as in the analogous case of the electrostatic
interaction. ' ' The orbital selection rules, represented by
the Kronecker deltas 5( k,2L) 5( k~,L'), etc. , are also gen-
eralizations of the 5(k,L) appearing in the electrostatic ex-

(

change matrix elements.

Z. B. Goldschmidt, A. Pasternak, and Z. H. Goldschmidt,
Phys. Lett. 28A, 265 (1968).

Z. B. Goldschmidt, J. Phys. (Paris) Suppl. 31, 163 (1970).
A. Pasternak and Z. B. Goldschmidt, Phys. Rev. A 6, 55

(1972); 9, 1022 (1974).
4Z. B. Goldschmidt, Recent Aduances in the Interpretation of

Complex Spectra, Vol. 3 of Atomic Physics, edited by S. J.
Smith and G. K. Walters (Plenum, New York, 1973), pp.
221—246.

5Z. G. Goldschmidt, Atomic Properties (Free Atom), Vol. 1 of
IIandbook on the Physics and Chemistry of Rare Earths, edit-
ed by K. A. Gschneidner and L. R. Eyring {North-Holland,
Amsterdam, 1978), pp. 1—171.

Z. B. Goldschmidt, Phys. Rev. A 27, 740 (1983).
7Z. B. Goldschmidt and D. Ben-Ezra, in Summaries and Contri-

butions to the Seventh Annual Conference of the European
Group of Atomic Spectroscopy, Grenoble, France, 1975 (un-
published).

Z. B. Goldschmidt and M. Cohen, in Summaries and Contribu-
tions to the Seventh Annual Conference of the European
Group of Atomic Spectroscopy, Grenoble, France, 1975 (un-
published).

F. R. Innes, Phys. Rev. 91, 31 (1953).
OB. R. Judd, Operator Techniques in Atomic Spectroscopy

(McGraw-Hill, New York, 1963).
Z. B. Goldschmidt and J. V. Mallow, Phys. Rev. A 29, 2400



524 ZIPORA B. GOLDSCHMIDT 35

(1984).
G. Racah, Phys. Rev. 62, 438 (1942).
H. H. Marvin, Phys. Rev. 71, 102 (1947).
A. Jucys, R. Dagys, J. Vizbaraite, and S. Zvironaite, Trudy
Akad. Nauk. Litovsk. SSR B 3, 53 (1961).

~5A. Arima, H. Horie, and Y. Tanabe, Prog. Theor. Phys. Jpn.
11, 143 (1954).

H. A. Jahn and J. Hope, Phys. Rev. 93, 318 (1954).
R. J. Ord-Smith, Phys. Rev. 94, 1227 (1954).

8A. P. Jucys (Yutsis), I. B. Levinson, and .V. V. Vanagas,
Mathematical Apparatus of the Theory of Angular Momen
turn (Israel Program for Scientific Translations, Jerusalem,
1962).

E. El-Baz and B. Castel, Graphical Methods of Spin Algebras

in Atomic, Nuclear and Particle Physics (Dekker, New York,
1972).

2 D. M. Brink and G. R. Satchler, Angular Momentum, 2nd ed.
(Clarendon, Oxford, 1968).
P. G. H. Sandars, in Atomic Physics and Astrophysics, edited
by M. Chrestien and E. Lipworth (Gordon and Breach, Lon-
don, 1971).
I. Lindgren and J. Morrison, A tomic Many-Body Theory
(Springer-Verlag, Berlin, 1982).
G. Racah, Phys. Rev. 63, 367 (1943).
U. Fano and G. Racah, Irreducible Tensorial Sets (Academic,
New York, 1959).
Z. B. Goldschmidt, Phys. Rev. A 3, 1872 (1971).


