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The excited states of highly charged ions populated by charge transfer are frequently aligned.
The alignment of each nl level often reflects the initial alignment due to the collision as well as the
alignment of higher levels which cascade down to this level. We adapt the theory of alignment
transfer and apply it to analyze the alignment of Lyman radiations following ion-atom collisions.
The theory is illustrated using computed alignments of higher levels reported earlier and the results

are compared with recent measurements.

I. INTRODUCTION

The wide availability of beams of highly stripped heavy
ions has prompted the study of how such ions interact
with matter. One of the most probable reactions is the
capture of electrons by highly charged ions.! Such reac-
tions are of considerable interest, but are difficult to study
in detail, both experimentally and theoretically, owing to
the large number of Rydberg states populated by capture.
On the experimental side, the population of different n
levels or nl sublevels has been measured by translational
energy spectroscopy’ or by photon- and electron-emission
spectroscopy” for some systems, while the most common
theoretical methods must first calculate amplitudes for
populating specific nlm eigenstates. Appropriate sums
must be performed to obtain n and/or nl distributions,
and much detailed information about the collision is lost
in obtaining the total cross sections. Alternatively, it is
clearly impossible to experimentally measure complete
nlm distributions by conventional methods for the mani-
fold of Rydberg states populated by capture with high-Z
projectiles, even though such measurements would help
uncover the mechanisms which operate to populate Ryd-
berg states in collisions involving highly charged species.
For this reason interest attaches to quantities which mea-
sure other gross features of nonstationary states populated
in collisions, such as their shape and circulation proper-
ties. Such properties are characterized by the alignment
and orientation parameters of Fano and Macek.* These
parameters are defined for atomic states of specific n and
I; to compare them with experiment it is necessary to
average them according to the specific experimental ar-
rangement.

Alignment is commonly measured by observing the po-
larization of collision-induced radiation. The appropriate
averages in this case include sums over all of the cascade
contributions. For this purpose the alignment parameter
is particularly useful since it has simple transfer proper-
ties. In contrast, the commonly employed polarization
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parameter is much more cumbersome. In this work we
used computed nlm distributions to obtain alignments of
dominant nl levels in the high-energy region for O+ +He
collisions™® and for Ne’* +H, collisions at 4 keV/amu.’
In the latter case we model the primary collision for the
population of nlm states as identical to the distribution
for O** +H at the same velocity. We then illustrate, us-
ing standard alignment transfer theory, how the np
(n >2) levels are populated and aligned by cascades from
higher levels. General expressions for alignment transfer
are given in Sec. II. Using calculated nl/ cross sections
and initial alignments, in Sec. III we illustrate the calcula-
tion of alignments of np levels by cascades from higher
excited levels. The calculated alignments and polariza-
tions are then compared with measurements for O+ + He
and Ne’* +H,. Agreement between theory and experi-
ment is reasonable for the former system, but large
discrepancies exist for the latter. A short summary is
given in Sec. IV.

II. ALIGNMENT TRANSFER IN CASCADES

Anisotropy transfer and perturbation have been treated
in the literature.*®~1° The object of this paper is to adapt
available treatments to the particular case of alignment of
np states populated by electron capture, taking into ac-
count both cascade and spin-orbit effects for hydrogenlike
ions. We use the calculations of Jain et al.’ to obtain the
initial alignment and standard treatments of anisotropy
transfer®® to compute cascade contributions.

To compute the anisotropy transfer we take advantage
of some simplifications characteristic of hydrogenic ions
but often found in other ions. First, one has that the de-
cay widths are much smaller than the fine-structure split-
ting. This permits one to compute anisotropy transfer be-
tween stationary states labeled by LSJ quantum numbers.
Second, we suppose that Russell-Saunders coupling holds.
This allows branching ratios for radiative transitions be-
tween fine-structure levels in the decay n; \L;  —n;L;
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to be treated by standard angular momentum recoupling
theory. Branching to different nL levels requires a
knowledge of radial matrix elements and cannot be treated
by angular momentum recoupling. For hydrogenic ions
the radial matrix elements and transition probabilities are
available in standard references.!! We therefore compute
the anisotropy transfer for each sequence of transitions
nNLNSJN_’nN—lLN—ISJN——l_’ —»nlLlle. We
suppose that the alignment is measured by observing the
angular distribution or polarization of radiation emitted
in the transitions n{LSJ;—ngLySJy. In this last transi-
tion it is usually true that fine structure is not resolved so
that it is necessary to sum or average over fine-structure
levels J; and J,. In addition it is necessary to sum over
all intermediate fine-structure levels J; allowed by dipole
selection rules. This gives the anisotropy transfer factor
for the chain nyLy—ny_Ly_;— *--nL;. When
several such chains contribute to the population of level 1,
then it is necessary to average over the contribution from
each chain weighted according to the branching ratios for
the various intermediate n;L; levels and the initial popula-
tion of level N. Our purpose here is to compute the
transfer factor for a given chain. These factors are then
used in Sec. III to compute the alignment of np levels of
hydrogenic ions populated by electron capture, taking into

|

J.

where C’ is a constant independent of J;,,, J;, and k.
Because kk' couple to O, terms with k=4k’ vanish in the
sum over k’. This follows from the general theorem that
scalar interactions, represented in this case by the operator
in Eq. (2), cannot change the rank of a state multipole.'?
Note that the state multipoles are not normalized. Since
many intermediate levels are possible in cascade transi-
tions, it is convenient to defer normalization until the
alignment for the levels (SL,)J, populated by a single
chain of cascade transitions has been obtained. Reduced
matrix elements in Eq. (3) and throughout this work are
defined according to Eq. (5.4.1) of the book by Ed-
monds. "3

In order to sum over both J; and J; |, it is necessary to
extract the J dependence of the reduced matrix element
explicitly. In a more complete notation we have

(L; 4187 41| ||| L;ST;)?

= (Li 1|17 [|1L)A2J; 4+ 12T+ 1)
2

Liyy Jig1 S
J
D(k,JlJN)I 2 B(k,JlJz)B(k,Jz-I})"'
Jpdze e dy s

D(k,J]JN):B(k,JlJz), N =2
D(k,J\Jy)=8(JJy), N=1.
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account cascade contributions from all possible cascade
chains.

To carry out this task we use standard results on aniso-
tropy transfer theory.® Let Jia{; denote the unnormalized
kgth-state multipole'? of the level J;:

m'

ligk= 3 OpmldimJ;—m’ | kgl — 1)~ (1
m,m’

This multipole is represented by the coupling scheme
(J;J;)k. If J; is populated by cascade transitions from
Ji 41, the kth multipole of the upper level is represented
by the coupling scheme (J;J; )k. The dipole transi-
tion matrix is represented by the coupling scheme
(J;J; £1)1. The states are coupled by radiative transitions
characterized by the dipole transition operator (& T-r)(e-r')
averaged over directions and polarizations of the photon

@fner)=rr/3. )

Since this operator is a scalar, the average squared di-
pole matrix element is characterized by the coupling
scheme (J;J; ;1)1(J;J; 1 1)1,0. The alignment transfer fac-
tor just represents a recoupling of (J;J;)k (J; J; 1)k’,0
to yield the coupling (J;J;  )1(J;J; ,1)1,0. A detailed
treatment® gives

ok =C'(J; |7 |2k + DTS (U IO )1 |(J,~J,~)k(J,~+1J,~+1)k’)‘°)1‘+‘o’;' , (3)
<

Defining C;=C'(L;||r||L;)* and using Eq. (4) in Eq.
(3) with the recoupling coefficient written in terms of 6-j
symbols, we have the result

ligk=C.B(k,JiJ; ) ok (5)
where
B(k,JJi 1)

= (2 1+ D2+ D(— 1)k

Lioy Jig1 SPTigr o IJ

P P N I A A (6)

X

Equations (5) and (6) give the anisotropy transfer for
the transition J;,;—J;. The anisotropy of the level
L,SJ, of interest involves many sequences of such binary
alignment transfers. The alignment of level 1 is computed
by summing over all such transfers. We therefore have

JIO'I‘;::[—:[C‘,'Jz.D(k,JlJN)JNO'Iqc , (7)
! N

where

B(k,JN-lJN), N>2
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The factors C; are unimportant for our present pur- age alignment of level 1.
poses since they will divide out when the state multipoles The alignment transfer factor relates to the transfer
for level 1 are normalized. These factors just represent from a Jy level which is part of a fine-structure multiplet.
the branching ratios for the level n;  L; ; to populate To relate this to the initial alignment formed by electron
the level n;L;. If several different cascade chains popu- capture, we employ the hypothesis of Percival and
late level 1, then these factors must be incorporated into Seaton, ' namely,
the averaging over alternative paths to determine the aver-

J

szo,k=(_1)‘s“'LN‘ v+k (2T +1)

‘ 25+ 7 ®)

k
Ly Ly Ly s
Jv Jy S

The Fano-Macek* anisotropy parameters are given in terms of expectation values of nonstandard irreducible tensors
T,}k] constructed from angular momentum operators. When LS coupling holds to a good approximation, then the
relevant operators are constructed from orbital angular momentum operators L. In particular the single nonvanishing
component of the alignment tensor is proportional to the expectation value of 3L2—L2 These expectation values are
denoted by ((L | T}*| L)) and are normalized by dividing by ((L | 7§ |L)).

Using the definition of the state multipoles and the Wigner-Eckart theorem, we have

WLy T L)) =3 (W [ THT))
J

1
L, J, S
J, L, k

S+L1+J,+k(2J1 1)

=k +D)~V2AL, || TRLHTS (—1)
J

1

Nigh . (10)

Equation (10) together with Egs. (7), (8), and (9) give the expectation values of irreducible tensors in terms of the state
multipoles of level N. These expectation values are normalized by dividing by the mean value of the zeroth rank tensor.
This ratio for level N is just given by

(Ly | TE| L)) 7Ly | T Ly)) =2k + 1) = 2[(Ly || TW L) ALy || T L) 1N ok /N 0) (11)

Substituting Eqgs. (9), (10), and (11) into Eq. (7), we obtain the anisotropy parameters from level 1 populated by cascade

transitions from level N in terms of the anisotropy of level N:
(L [ TL))Y @y | TH)IL) Ly || T |Ly)
Ly | TRV L)Y (L ||TOYIL ) (Ly||TW|Ly)

|3 (Cphitye=dy G D@D br 3 D(k,J Jy) v I3
e (28 +1) Ji L, k WUENI gy Ly k
L, J, S
Ly—Ly+J,—dy (2J1+1D(2JIy+1) [=1
x ,Z, (=1 (25 +1) 5 L, o[POSIW
1'YN
-1
Ly Jy S (Ly [T Ly))

X , (12)

Iv Ly O 1 (L [TV Ly))
where D (k,JJy) is given by Egs. (6) and (8).
The second factor in large parentheses is evaluated directly to obtain

Ly—Ly+dy -ty 2T+ DRIy +1) Ly Iy S
(—1) 17NN D(0,J,Jy)
JPE;N (2S5 +1) NIy Ly O

=L, +DY22L,+1)2L;+1) - 2Ly _+1QRLy+ 1?2 . (13)

Equation (13) serves as a check on computer programs used to compute the first term in large parentheses for arbitrary
k.

We have obtained the transfer for arbitrary rank tensors; however, the alignment parameter in the collision frame
AS"‘(L 1) corresponding to kK =2 and g =0 is of most interest. In this case we use T{)” =3L12—L2 and T&Ol =L?2 Expli-
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cit evaluation of the reduced matrix elements gives

AL =¢AF(Ly)
1/2

(Li+3)XLy—%)  Ly(Ly+1)

Li(Li+1) (Ly+3)Ly—71)
_ _1, (2T 4+ D2y +1)
x | 3 (-phieeno 2L S
T Iy

X Q2L+ 1DY22L,+1) -+ 2Ly 1+ 1)Ly + 1245 Ly) ,

with k =2.

Equation (14) defines the alignment transfer factor &,
although, strictly speaking, the factor £ includes both
alignment transfer proper and dealignment due to spin-
orbit interactions. Throughout this work we refer to § as
an alignment transfer factor even though it differs from
unity for N =1 owing to spin-orbit interactions.

This formula is used in Sec. III to evaluate the align-
ment of np levels of hydrogenic ions populated by elec-
tron capture using the data of Ref. 5. Useful checks on
these formulas are provided by evaluating various special
cases that can be obtained by more elementary methods.

Consider the case where level 1 and level N are identi-
cal, i.e., there is no cascade transition. Then the factor
D(k,JJy) is replaced by 8(J,Jy) and one has N =1 in
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L, J, S

5L, kPGS

Ly Jy S
Jv Ly k

Eq. (12). The resulting equation just relates the initial
alignment of level 1 to the alignment pertinent to observa-
tions which average over the fine-structure oscillations'®
to give the averaged perturbation factor'® G (L), :

2

L J S
J L k

2
G=s WD)

P 1
225+ 1) 13

Equation (15) just represents the effect of spin-orbit in-
teractions in the absence of cascades. Alternatively, con-
sider cascades in the absence of fine structure, that is,
when S =0. For simplicity consider that level 1 is popu-
lated by cascades from level 2 with L, =L, +1. Explicit
evaluation of the 6-j symbols in Eq. (14) gives the simple
result

TABLE 1. Alignment transfer coefficients due to cascades and spin-orbit interactions for (a) S = % and (b) S =1 states. The initial

angular momentum of the excited state Ly is listed in the first row; the final angular momentum L, of the excited state is listed as
the first column. Only dipole transitions where the angular momentum decreases by one unit in each step are considered. For exam-
ple, if Ly=4, L =1, the considered cascade is 4—3—2-—1. The diagonal elements reflect the average over spin-orbit interactions.

Ly 1 2 3 4 5 6 7 8 9
L,
@ S=+
9 0.983 38
8 0.979 24 0.96196
7 0.97333 0.95170 0.93491
6 0.964 50 0.936 67 0.91586 0.899 71
5 0.95041 0.91337 0.88705 0.86737 0.85208
4 0.92593 0.874 84 0.840 48 0.81631 0.79823 0.784 18
3 0.87755 0.80242 0.758 11 0.728 77 0.707 63 0.692 30 0.68016
2 0.76000 0.647 18 0.592 96 0.56078 0.53973 0.524 14 0.51269 0.503 79
1 0.33333 0.246 67 0.21693 0.201 50 0.19150 0.18473 0.18001 0.176 35 0.17346
b S=1
9 0.95617
8 0.94541 0.93185
7 0.93017 0.91386 0.90076
6 0.907 60 0.88777 0.87271 0.85975
5 0.87223 0.84797 0.829 50 0.81502 0.803 38
4 0.81253 0.78317 0.761 54 0.74507 0.73174 0.72152
3 0.70153 0.668 78 0.64510 0.627 58 0.61418 0.603 36 0.59529
2 0.47333 0.45016 0.430 67 0.41645 0.406 00 0.39775 0.39124 0.38594
1 0.27778 0.15056 0.13397 0.126 66 0.12213 0.11894 0.11655 0.114 68 0.11316
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AL )= [(2L,—1)XLy+1]1/[(2L, —1)(L,+1)]
XALNL,) . (16)

The ratio of the alignments of levels 1 and 2 can be
computed directly since the ratio is independent of the ac-
tual alignment of the initial level. Thus if we suppose
that only the levels with | M, | =L, are populated, then
these levels can only decay to levels with | M, |=L,.
The alignment of a level with only | M | =L populated is
just

APNL)=[3L*—~L(L +1)]/L(L +1)
=(2L —D/L +1) (17)
so that the alignment ratio is
E=[Q2L—D(L,+D]/[(2L,— 1L+ 1],
Ly=L;+1,

(18)

in agreement with Eq. (16). Repeated application of Eq.
(18) gives

2L,—1 Ly+1

o1 mAgd(LN). (19)

ASOI(Ll)Z

For p—s transitions the observed quantity, namely, the
polarization of the emitted light P, is related to the align-
ment according to

P=_—34%/(2—A4°") . (20)

In practical applications, one needs only to consider
cascade transitions involving dipole transitions in which
each step is L—L —1. Radiative transitions involving
L —L +1 have small branching ratios and can be neglect-
ed. For these L —L —1 cascade channels, the alignment
transfer coefficients for S =0 are given by the analytical
expression (19). For S =5 and S =1 we tabulate the re-
sults for L =2—9 in Table I. These results are indepen-
dent of the charge of the ionic species.

III. ILLUSTRATIVE EXAMPLES

In this section we use the formula developed in Sec. II
to calculate the polarization of the emitted radiation by
excited atoms. We will consider excited states formed
through charge-transfer processes in ion-atom collisions
only. From the formulation of Sec. II, we calculate the
alignment of the excited state from which the polarization
of the emitted radiation is obtained.

The alignment of an excited state i is determined by the
alignment of the state produced in a collision and by the
transfer of alignment due to the cascade from the higher
states j. To evaluate the alignment of state / we need to
calculate the weighted alignment from all the possible cas-
cade channels. Let the cross section and the alignment for
state j produced by the collision be o; and 4 (), respec-
tively. If the fraction of radiative transitions from state j
to state i via branch k is wg(j) and the alignment transfer
coefficient is {x (j), the alignment for state i is given by

3 S o (DIE(NAF(D]o;

i k
2 3 oxlio; ’
j k

AP i)=—
where the summation is over all the cascade branches k&
and states j. The alignment transfer from each cascade
branch is calculated using Eq. (14). In general the sum-
mation is truncated assuming contributions from very
highly excited states are negligible.

We now use Eq. (21) to calculate the Lyman-a radia-
tion emitted following electron capture in O®*+-He col-
lisions. This system has been studied theoretically by Jain
et al.’ and the results were compared with the polariza-
tion data of Ellsworth et al.® In the analysis of Jain
et al., the effects of spin-orbit interactions for the initial
and intermediate states of each cascade chain are not
correctly included. We provide the proper analysis here
using Eq. (21).

We illustrate the calculation of the alignment of the 2p
state for O%* on He at 5 MeV. The parameters relevant
to the calculation are given in Table II. Firstly, the cross
section for each nl state and its alignment are obtained
from the ab initio calculation using a two-center atomic
orbital expansion method. The data used here are taken
from Jain et al.®> where capture cross sections to n =2, 3,
and 4 states of O’* were calculated. In Table II only
those data relevant to the cascade to 2p are included. The
alignment transfer coefficients for each cascade channel
are taken from Table I. We also include the 4p-3d-2p
cascade to show that contributions involving L —L +1
type transitions are small. Note that the alignment is
completely lost for an initial s state and for chains where
s state is an intermediate state. The fraction of radiative
transitions from an initial state i to the 2p state is evaluat-
ed using the table given in Bethe and Salpeter.!! Note
that we also include 2p to 2p “transitions” in the table to
account for the effect due to the spin-orbit coupling.
From this table it is clear that the dominant contribution
to 2p alignment is due to the 3d-2p transition, with sub-
stantial contributions from 4f-3d-2p and 4d-2p branches
as well. The final alignment of —0.157 is small compared
with the initial alignment of each excited state which
shows strong alignment (see column 2 of Table II). This
significant loss of alignment is due to the cascade effect as
well as to spin-orbit interactions. We note from Table II
that the alignment transfer coefficient for each cascade
branch is only about 0.2, thus reducing the strong align-
ment of the initially populated excited states.

Using the simple relation between alignment A and po-
larization fraction P for the radiative decay for an np
state, P=3A4/(A —2), the predicted polarization frac-
tions for the Lyman-a radiation resulting from O** on
He collisions are shown in Fig. 1 in the energy range
5—36 MeV. The only experimental data® point is at 16
MeV where the measured value is (17.6+3)%, while the
calculated value is 22.8%. The small discrepancy is prob-
ably due to the neglect in the calculation of contributions
from the cascade of n >4 excited states. Including these
higher states would tend to reduce the polarization.

We next analyze the polarization of Lyman radiations
emitted after the collisions of Ne’+ on H, at 4 keV/amu

(21)
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TABLE II. Analysis of alignment parameter for the 2p state of O’* for O®** on He at 5 MeV.

Channel AL (&P (W ) (o) ©k0; wro;x A gol
4f—3d —2p —0.757 0.217 1 1.21 1.21 —0.199
4d—2p —0.725 0.247 0.744 1.33 0.99 —0.177
4p—3d—2p —0.642 0.168 0.0037 0.49 0.0 0.0
4p—3s—2p —0.642 0 0.037 0.49 0.02 0.0
4s—2p 0 0 0.581 0.167 0.07 0.0
3s—2p 0 0 1 0.22 0.22 0.0
3d—2p —0.634 0.247 1 2.40 2.40 —0.375
2p—2p —0.230 0.333 1 1.32 1.32 —0.101

sum = 6.23 —0.85
AP (2p)=—0.137
P=19.2%

2Initial alignment and subshell cross sections from the calculation of Ref. 5; o; is in units of 10~!7 cm?.

2

®Alignment transfer coefficient from Table I and from Eq. (14).

“Branching ratio calculated from Ref. 11.

to compare with the measurement of Vernhet et al.” We
model this problem by assuming that the initial rnlm dis-
tribution is the same as the collision of O%* on H at 4
keV/amu. This model is supported by the agreement of
the measured np fraction for a given n manifold and the
measured average angular momentum (/) with the
theoretically calculated results for O*+ on H. The partial
nlm cross sections for O*+ on H were taken from the cal-
culation of Fritsch and Lin'® where an extended coupled
channel calculations using two-center atomic orbitals were
employed. This calculation obtains the nlm capture cross
sections to the n =4, 5, and 6 excited states of O’ .

In the model calculation, we assume that singlet and
triplet states are populated equally for each nl/m and that
radiations from triplet states are not measured since they
decay to the metastable 15 2s 35¢ and 1s2p 3P states. The
cascade analysis is performed for 'PO states, i.e., S =0. In
this analysis, we include only L —L —1 type transitions
for each cascade branch. Since S =0, we can use the
analytical expression (19) to evaluate the alignment
transfer coefficient. We also assume that the radiative

T T

_. 30} 08* + He .
S

§ 20fF /?ﬂ—~
s

N

< 10f .
a

Q.

N 1 1 1

0 0 20 30 40

Projectile Energy (MeV)

FIG. 1. Polarization fraction of Lyman-a radiation of O+
following charge transfer in O®** + He collisions. Contributions
due to cascade from higher channels and effects of spin-orbit in-
teraction are included. The experimental point is from Ref. 6.

branching ratios for the heliumlike neon are identical to
the corresponding transitions in the hydrogenlike neon.
The final results for the polarizations of all the Lyman
transitions are listed in Table III. In Table III we also
comment on the dominant contributions to the alignment
of each np state. We note that for n =5 and 6, the polari-
zation is entirely due to the collisionally produced np
states, while for n =4, there are comparable contributions
from the collisionally produced 4p state and cascade con-
tribution from the 5d-4p transition. For » =3 and 2, the
polarizations are due to cascade contributions.

The agreement between the theoretical results with ex-
perimental data in Table III is quite poor. In general, the
calculated polarizations are smaller than the experimental
ones except for the 2p-1s transition where the experimen-
tal result is smaller. (Experimental result for 2p-1s transi-
tion includes contribution from the decay of triplet states
which is not considered in the present model.) It is not
obvious to us that the approximations made in our model
can explain the large measured polarizations. At this time
we suspect that the large measured polarizations are due

TABLE III. Polarization fractions of Lyman x-ray intensities
in 4-keV/amu charge-exchange collisions of Ne’* —H,.

Expt.? Theory® Comments®

6p—1s > 58% 1% Direct?

5p—1s  (59+21)% 27% Direct?

4p—1s  (69+£20)% 19% Direct® and 5d —4p

3p—1s  (69£19)% 20% 5d —3p and 5f—4d —3p

2p—>1$ (7£7)% 25% 5g—>4f->3d->2p
5f—4d —2p
5f—3d—2p
5d—>2p
6h—5g—4f—3d—2p

?Data from Ref. 7.

bCalculated for O*-H at the same velocity. Cascade effect is
analyzed for S =0.

“Indicates the dominant contributions to the alignment of the np
state.

9From direct np populated in the collision.



to the contribution from double-capture channels. Since
the measurement was performed on H, targets, a simple
estimate suggests that capture to doubly excited states of
155150" and 1s4l50' types are likely. The low-lying dou-
bly excited states of 1s5/5]' type are estimated to lie
below 1s4l/ states. Therefore these doubly excited states
can autoionize to 1s3p and 1s4p states directly, providing
contributions to the measured polarizations for the decay
of 1s3p and 1s4p states without the loss of alignment by
the cascade effect. We can estimate the relative impor-
tance of contributions from single and from double cap-
tures. In general, one estimates that double-capture cross
section is 15—25% of the single-capture cross section.
Because only about 5% (10%) of the single capture even-
tually reaches the ls4p (1s3p) state, the contribution
from double capture to 1s3p and 1s4p could be compar-
able to the contribution from single capture. Unfor-
tunately we are unable to make a reasonable prediction for
the contribution from doubly excited states since it would
require the knowledge of capture cross section to each
doubly excited state and of the alignment of each state
after it autoionizes. On the other hand, our speculation
can be tested experimentally by performing the polariza-
tion measurements in coincidence with the energy gain of
the projectiles after the collision.

IV. SUMMARY AND DISCUSSION

In this paper we present the formula for the analysis of
alignment transfer of excited states due to cascade contri-
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butions. The general expression Eq. (14) allows calcula-
tions of alignment transfer from one state to another with
spin-orbit coupling effects included. This analysis is
essential for the comparison of experimental measured po-
larizations with theoretical calculations. For S =0 the
analysis is simple and an analytical expression Eq. (19)
can be used. For S =7 and S =1 we present a table for
the alignment transfer coefficients for the dominant tran-
sitions for L <9. We applied the formula to calculate the
polarizations of Lyman radiations for collisions of O%* on
He from 5 to 36 MeV. The measured polarization at 16
MeV is close to the calculated value at this energy. We
have also made a model study for the polarizations of Ly-
man radiations for Ne°* on H,. The theoretical results
are in disagreement with measured values. We suspect
that contributions from double-capture channels are re-
sponsible for the disagreement and suggest that a coin-
cidence measurement of polarizations with the energy
gain of the projectiles for the same collision system be
carried out.
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