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A theoretical study of radiative transitions in molecular collisions occurring in the presence of
short laser pulses is carried out within the semiclassical two-state formalism. Transition probabili-
ties are calculated by numerically integrating the Bloch equation for two model systems and the
Na-Ar system. At high laser intensities where a short pulse is more effective in inducing transitions
than cw radiation, the transition probability exhibits nonlinear character with respect to the pulse in-

tensity. At such high intensities, noncollisiona1 atomic transitions may also be present, which need

to be eliminated for an observation of collisional transitions.

I. INTRODUCTION
P, = 1 —exp( PI) . — (2)

Atomic and molecular collisions taking place in the
presence of laser radiation have been studied extensively
in the past. ' It is now well established both theoretically
and experimentally that the presence of strong laser radi-
ation can greatly alter the outcome of collision processes.
This is significant as it offers a means of controlling phys-
ical and chemical processes by varying laser parameters
such as intensity and wavelength. We have suggested in
the past that the details of laser radiation (linewidth, tem-
poral variation of the intensity, etc.) need to be carefully
examined before the effect of the radiation is accurately
determined. ' In particular, we showed that the temporal
width of radiation can have a significant effect on elec-
tronic transitions occurring via curve crossing: If laser ra-
diation consists of pulses whose duration is shorter than
the collision time, transition probabilities may be signifi-
cantly higher than for the case of cw radiation or long
pulses. An experimental study of this short-pulse effect
in the Na-Ar system has recently been reported by Sizer
and Raymer.

The basic idea behind the short-pulse effect is a closing
of transition channels during one half of the collision. It
can be best illustrated with the Landau-Zener model, as
we described in our earlier paper. If one considers a di-
pole transition taking place in the presence of cw laser ra-
diation (or a long pulse) of constant intensity I, the
Landau-Zener probability is given by

P, =2 exp( PI ) [1—exp( PI )]t, — —
where P is a constant depending on the details of the sys-
tem. If, however, the laser radiation consists of a short
pulse which illuminates the system on the way in (out)
only, the transition at the crossing point on the way out
(in) is effectively turned off, and the probability becomes

If the laser intensity is sufficiently high (PI »1), P, is
significantly higher than P,„,indicating that a short pulse
can be much more effective in inducing transition than cw
radiation or a long pulse.

While the above argument serves to illustrate the basic
idea, it does not reveal many complications and difficul-
ties that accompany the detailed theoretical analysis and
experimental observation of short-pulse-induced col-
lisions. We note in particular that the short-pulse effect
manifests itself strongly at relatively high intensities at
which transitions exhibit nonlinear characters. The
short-pulse probability P, cannot stay high at all high
values of the intensity because of the Rabi oscillation. If
one introduces the concept of the pulse area here, P, is
high only if the pulse area is in the neighborhood of an
odd multiple of ~. This restricts the range of intensity
over which the short-pulse effect is significant, while the
Landau-Zener model only requires the intensity to be suf-
ficiently high (PI » 1). Another difficulty arises from the
fact that, in order to observe the short-pulse effect, the
pulse duration must be shorter than the collision time.
With the typical collision time of 10 "—10 ' sec, one
needs picosecond or subpicosecond pulses. Such ul-
trashort pulses have large linewidths which may leave
channels other than the one under consideration open,
especially at high pulse intensities. In particular, noncol-
lisional atomic transitions may occur at asymptotic
separations if the laser frequency is not sufficiently far
away from atomic resonance. In addition, there are com-
plications arising from different collision partners having
different impact parameters and different relative veloci-
ties, which require appropriate averaging processes. Ef-
fects due to the shape of the pulse, the polarization of the
pulse, etc. , should also be carefully considered.
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II. THE LANDAU-ZENER MODEL
AND THE NUMERICAL BLOCH APPROACH

In this section we describe the two approaches used in
our calculations: the Landau-Zener model and the numeri-
cal Bloch approach. The former provides a rough esti-
mate of transition probabilities, while for more accurate
results we perform numerical integration of the Bloch
equation.

The transition we consider is an electric dipole transi-
tion induced by collision that occurs in the presence of
laser radiation. %'e assume that the system is prepared in
the ground state u

&
before collision and are interested in

the transition to an excited state u2 with absorption of a
photon from the laser field. Within the semiclassical
two-state formalism, ' the Schrodinger equation yields the
following coupled equations for the probability ampli-
tudes a, (t) and a2(t) for the two states u, and u2.

da )(t)
iR

dt
= w]a/+ 8']2a2,

da2(t)
iA

dt
= 8 2]a/+ 8 2a2,

with the initial condition given by

(3a)

(3b)

It is therefore clear that a quantitatively accurate
description of atomic and molecular collisions occurring
in the presence of short laser pulses requires a more accu-
rate treatment than the simple Landau-Zener model, espe-
cially at high laser intensities. One might adopt, for ex-
ample, an approach that employs numerical integration of
the classical path equation, or, equivalently, of the Bloch
equation. This numerical Bloch approach was used by
Sizer and Raymer to analyze their experimental data.

At the present time it is not possible to construct a
complete theoretical description of the complex collision
process occurring in the presence of a short laser pulse.
This paper represents an attempt to provide the first step
toward such a description. Since the short-pulse effect is
important at high pulse intensities, we give special con-
sideration to high intensity effects such as effects due to
the Rabi oscillation and noncollisional atomic transitions.
We recall that, for a clean observation of the short-pulse
effect, one wants to choose a system which exhibits
minimal complications arising from such high intensity
effects. In order to cover a variety of possibilities, we
choose to study two model systems and the Na-Ar system
which show different degrees of high intensity effects.
Both the Landau-Zener model and the numerical Bloch
approach are used to calculate transition probabilities. It
is of course the numerical Bloch approach that gives a
more accurate description. The Landau-Zener calcula-
tions are presented to demonstrate and analyze the limita-
tions of the model.

In Sec. II we give a description of the Landau-Zener
model and the numerical Bloch approach. We then
describe in Sec. III the two model systems and the ¹ Ar
system for which our calculations are made. The results
of our calculations are presented in Sec. IV, and in Sec. V
a discussion is given.

~

a, (0)
~

=1, az(0)=0. (4)

a& ——c ~exp(inst), a~ =cqexp[i (n —1)cut],

where n is the number of photons in the laser field before
collision. Equations (3) then become

dc'(t)
iA

dt
Hi]c i +H12C2 ~

dc2(t)
iA

dt
—Hp)c) +Hype

where

(7a)

(7b)

and

H, ~
——W, +nfico, H22 ——Wz+(n —l)fm (8a)

H]2 ———p.Ep/2 . (8b)

In deriving Eqs. (7) we also have made the rotating-wave
approximation. The factor —, appearing in Eq. (8b) is the
result of this approximation. Let us assume that the laser
field is in resonance with the two states u] and u2 at a
certain internuclear distance R =R„i.e.,

Hpp(R, ) —H))(R, ) =0 .

The Landau-Zener probability as the system passes
through the crossing point R, is given by

P =1—exp( —p),
where

p=2~[Hiq(R, )] /A'vy 1—
Rc

2 1/2

(10a)

( lob)

b is the impact parameter, y = [d (Hqz H» ) /dR ]+-
and U is the relative velocity of the colliding partners at
the crossing point R, . If the collision occurs in the pres-
ence of a short pulse so that the system is illuminated on
the way in or out only, the transition probability is given
by P, =P. On the other hand, if the system is illuminated
both on the way in and out as is the case for cw radiation
or a long pulse, the transition probability is given by
P,„=2P(1 P). —

A more accurate evaluation of the transition probability
can be obtained if Eqs. (3) are numerically integrated. It

Here the matrix elements W~
——(u;

~

H
~
u; ) and

W~ = (u;
~

H
~
uj ) of the Hamiltonian H vary with inter-

nuclear distance and thus with time. The diagonal ele-
ments 8'& and 8 2 represent the potential-energy surfaces
of the two states being considered, and the off-diagonal
element 8'&2 is given by

W&z ——(u&
~

—er E
~
u2) = —p Eocos(cvt)

where p is the transition moment ()u, = (u ~
~

er
~

uq ) ),
which in general varies with the internuclear distance, Ep
is the electric field amplitude [E=Eocos(cot ) ], and cv

represents the angular frequency of the laser field.
Equations (3) can be transformed to a form in which

the Landau-Zener model can readily be applied by the
substitution
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dp11

dt

dp22

dt

l l

~
012P21 +

~ 021P12

l l= ——H21P 12 +—012P21

(1 la)

(1 lb)

dp12 i l l

dt
(H22 H 1 1 )P12 H12p22+ H12P11

(1 lc)

dp21 i l l

dt A'
(H22 H11)P21 H21P22+ 21P11

(11d)

We now define R 1, R 2, and R 3 as

R1 ——p21exp(idiot )+p12exp( idiot), —
R 2 ——

ip21exp(idiot

) —ip12exp( icot ),—
R 3 =p22 p11

(12a)

(12b)

(12c)

Equations (11) can then be written for R1, R2, and R3 as

dR 1

dt
= —(H22 —H11 )R 2/fi, (13a)

is, however, more convenient to transform Eqs. (3) to the
Bloch form before performing integration. For this pur-
pose we first let p,j ——a;aj* to obtain

R1(t)+R2(t)+R3(t) =1 . (16)

For the models we consider, the transition occurs main-
ly in the neighborhood of the crossing point R, unless the
laser intensity is extremely high. If collision occurs in the
presence of a short pulse which illuminates the system on
the way in or out only, the integration is performed only
once through the crossing point to determine the short-
pulse probability P, . To determine the magnitude of the
short-pulse effect, this probability P, must be compared
with the cw (or long-pulse) probability P,„. If the two
crossing points are well separated so that the Stuckelberg
interference" can be neglected, the probability P,„ is
given by P, =2P, (1 P, ). —

The main difficulty in integrating these equations arises
from the fact that HJ vary with internuclear distance and
thus with time in a complicated manner. The time varia-
tion of H;J is determined by the collision dynamics, which
in turn depends on the potential-energy surfaces of the
system. For our calculations, we assume a simple
straight-line constant-velocity (=U) trajectory, which al-
lows us to obtain the time dependence of H,J directly
from its dependence on the internuclear distance. Once
the time dependence of H;& is determined, the integration
can be performed using the standard fourth-order
predictor-corrector method with the Runge-Kutta method
as a starter. The accuracy of integration can be checked
any time during integration, due to the identity

dR 2

dt
= (H22 H11 )R 1/fi 2—H12R 3/fl— (13b) III. THE SYSTEMS

dR 3

dt
=2H12R2 ~& (13c)

where the rotating-wave approximation has been made,
and H,J are defined by Eqs. (8). Equations (13) can be
written in vector form as

For our study of the short-pulse effect, we choose to
consider two model systems as well as the Na-Ar system
for which experimental data exist. Here we give a brief
description of each system. Throughout the section we
use atomic units unless stated otherwise.

dR
dt

=R~ g

where

(14a) A. Model 1

The first model system is defined by the following
equations:

2H12 (H22 —H11)
C1 — C3 (14b) H22 —H» ——0.001 sinh[2(R R, )]—,

~12 = —po-Eo~2

(17a)

(17b)

R1(0)=R2(0)=0, R3(0)= —1 . (15)

The R vector precesses clockwise about the effective field
il with the frequency

~
rt

~

. Thus, Eqs. (14) provide a pic-
torial representation of the transition: As the system ap-
proaches the crossing point R„~H22 —H11

~

decreases
and the rotation axis of the vector R approaches the x
axis. At the crossing point, R precesses about the x axis,
producing a rapid change in R 3, which indicates that the
transition is taking place. As the system moves away
from the crossing point,

~
H22 —H»

~

increases and the
rotation axis turns from the x axis toward the z axis. At
asymptotic separations (

~
H22 —H»

~
&&

~
2H12

~
), the R

vector precesses about the z axis, producing no change in
R 3, and thus no transition.

Equations (14) [or Eqs. (13)] are the Bloch equations
which are to be integrated subject to the initial condition
given by Eq. (4), or, in terms of R1, R2, and R3

where we take R, =9.5 and pa=
~ p ~

=3. Since this
model is characterized by a rapid increase in energy de-
tuning

~
H22 —H»

~

as R moves away from the crossing
point R„ the transition is highly localized around R, and
the Rabi oscillation is expected to occur only at extremely
high intensities. The Landau-Zener model should there-
fore work well for this model. Also, the energy detuning
is large at asymptotic separations, so noncollisional atom-
ic transitions do not occur. This model therefore is ex-
pected to exhibit the short-pulse effect most clearly
without complications arising from the Rabi oscillation or
any noncollisional atomic transition. We also note that
the magnitude of the transition momentum p is assumed
constant (independent of the internuclear distance R),

~ p ~
=go. This is a good approximation if the transition

considered is, for example, the X X—3 II transition of
Na-Ar.
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B. Model 2

The second model system is characterized by the
potential-energy surfaces given as

O. I—

W2 ——3.2 exp( —0.737R ) +0.0744,

W~ ——0.2 exp( —0.737R ) .

(18a)

(18b) W

(ha r trees)

These potential-energy surfaces are plotted in Fig. 1. The
wavelength of the laser is assumed to be A. =16916 cm
(same as the wavelength used by Sizer and Raymer), i.e.,

Ace =0.0771. We therefore obtain

0.05-

H22 H, ~
———3 exp( —0.737R)—0.0027 .

We also assume

(19a)

H 12
—pp- Ep/2, (19b)

with pa ——3, as in model 1. From Eq. (19a) we obtain the
crossing point to be R, =9.5. As R moves away from R„

~
Hzz —H»

~

increases less rapidly for this model than
for model 1, indicating that the transition occurs over a
wider range of internuclear distances for this model.
Thus the Landau-Zener model is probably less accurate
for model 2, especially when the laser intensity is high.
The Rabi flopping can also occur more easily since the en-

ergy detuning stays low over a relatively long period of
time. Another point to note is that the energy detuning

~
Hzz —H~~

~

at large R is 0.0027, to which the interac-
tion energy @+a/2 becomes comparable at a laser intensi-

ty of —10»—10' W/cm . Thus, the contribution from
the noncollisional atomic transition should also be con-
sidered for this model.

C. Na-Ar

The parameters for the Na-Ar system are chosen to
correspond to the experimental conditions of Sizer and
Raymer. The wavelength of the laser is X=16916cm

R (a. )

I

l0 l2 IA

FIG. 1. The potential-energy surfaces W& (lower curve) and
W& (upper curve) of model 2.

which is at resonance with the X X—2 H transition at
R =R, =9.51. Since the transition corresponds to a weak
perturbation of the dipole-allowed 3 S—3 P transition of
atomic Na, the magnitude of the transition moment varies
only slightly with respect to the internuclear distance (see,
for example, Laskowski et al. ' ). We therefore assume

~ p ~
=pa ——2.58. The potential-energy surface W~ for the

X X state is assumed to be given by the analytic expres-
sion of Tellinghuisen et al. ' and the potential-energy sur-
face W2 for the 2 H state by the analytic expression for

H&~2 of Goble and Winn. ' Thus we have

W& (in cm ') =40.4I 1 —exp[ —0.98693(R —4.994)] I I 1 —0.4988 exp[ —(R —2.5981) /1. 2129 ] I
—40.4

Wz (in cm ')=510.481@ (1+0.125 87p, —0.0338p, +0.035@ —0.01797@ +0.01175@ )+16961—572. 1726

p= 1 —(2.9074/R)

(20a)

(20b)

(20c)

where the internuclear distance R appearing in Eqs. (20)
should be entered in angstroms. These potential-energy
surfaces 8'& and W2 are shown in Fig. 2. In terms of the
energy detuning H22 —H

~ ~
and the interaction energy

H &2, the ¹ Ar system is represented by

H~~ —H)) (in cm ')=Wq —W) —16916,

H i2 ———pp-Ep/2,

(21a)

(21b)

with W, and Wz defined by Eqs. (20) and pa given by
2.58. We note that the energy detuning

~
H2z —H»

~

in-
creases even more slowly for the Na-Ar system than for
model 2 as R moves away from R, =9~ 51. Furthermore,

~
Hz2 H»

~

at large R is —only 45 cm ' =2.05 X 10, to
which the interaction energy paEa/2 becomes comparable

at relatively low laser intensities, 10 —10' W/cm . For
the ¹ Ar system, therefore, the effect of the Rabi oscilla-
tion and the contribution from the 3 S-3 P transition of
atomic sodium are expected to be visible even at relatively
low laser intensities.

D. Comparison of the three systems

In Fig. 3 we show the energy detuning H22 —H»
versus the internuclear distance R for the three systems
discussed above. The energy detuning vanishes at
R, =9.5 for models 1 and 2 and at R, =9.51 for Na-Ar.
Model 1 shows the most rapid variation of H22 —H»
with respect to R while the Na-Ar system exhibits the
slowest variation.
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TABLE I. The short-pulse probability P, for a X-X transition in model 1 calculated at different
values of the pulse intensity I and impact parameter b using the Landau-Zener (LZ) model and the nu-

merical Bloch (NB) approach.

b (a.u. ) 1O' 5 X 10'
I (W/cm )

1O' 5X10' 1010 5X 10'

LZ
NB
LZ
NB

0.027 01
0.024 63

0.023 14
0.022 81

0.1280
0.1175
0.1105
0.1089

0.2395
0.2223

0.2087
0.2062

0.7457
0.7364
0.6898
0.6871

0.9353
0.9557
0.9038
0.9006

1.0000
0.9714
1.0000
0.9885

LZ
NB
LZ
NB

1O"

1.0000
0.9999
1.0000
0.9996

5 X1O"

1.0000
0.9945
1.0000
0.9978

1012

1.0000
0.9980
1.0000
0.9926

5X10

1.0000
0.9497
1.0000
0.9639

1013

1.0000
0.9351
1.0000
0.9318

3X 10'

1.0000
0.8368

1.0000
0.8186

W/cm . It is this range of intensity (10' —10' W/cm )

for which the short-pulse effect is significant, because the
cw or long-pulse probability P, =2P, (1 P, ) is s—mall
when P, —1. For model 1, therefore, the short-pulse ef-
fect can be seen over a wide range of the laser intensity.

After reaching the value of —1, the probability P, is
expected to decrease upon further increase of the intensity
as the Rabi oscillation sets in. We see indeed that the
probability calculated by the numerical Bloch approach
shows a decrease as the laser intensity is increased beyond
—10' W/cm, a feature the Landau-Zener model fails to
show. One notes, however, that the decrease is very slow.
This can be understood if we recall that, for the model
under consideration, the energy detuning

l
Hz2 —H»

l

varies rapidly with R. As the system moves past the
crossing point R„ the axis of the rotation of the vector R
turns rapidly from the x axis to the z axis, effectively

turning off the transition immediately after the crossing
point. All in all, our data shown in Table I and Fig. 4
confirm our expectation: Model 1 represents the system
for which the short-pulse effect is the strongest and the
simple Landau-Zener model works well.

For further study of the probability, we show in Fig. 5
the short-pulse probability P, at I=2)&10' W/cm cal-
culated using the numerical Bloch approach for different
values of the impact parameter b. The probability is seen
to remain relatively constant over the entire range
0(b ~ R„provided b is not too close to R, . This is what
one would expect for a X-X transition because the interac-
tion energy given by Eq. (22a) at R =R, varies slowly
with respect to b unless b =R, . As b approaches R„ the
interaction energy decreases sharply, accounting for the
decrease in P, shown in Fig. 5.

We recall that the numerical Bloch probabilities shown

0 0 o
I -ae

X X

o. 0.5—

IO 10 IOIO lOI I

I (W/cm )

I

l
Ol 2

I

lol' lOl4

b (a. )

10

FIG. 4. The short-pulse probability P, at impact parameter
b = 1 for a X-X transition in model 1. The solid curve
represents the probability calculated by the Landau-Zener model
and the circles by the numerical Bloch approach.

FIG. 5. The short-pulse probability P, vs impact parameter b
at I =2X10' W/cm for a X-X transition calculated using the
numerical Bloch approach. The circles represent the probabili-
ties for model 1 and the X's for model 2.
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in Table I, and Figs. 4 and 5 are calculated assuming that
the center of the pulse coincides with the crossing point.
This is true only for a small fraction of the colliding pairs.
In order to study the effect of the time difference td be-
tween the center of the pulse and the crossing point, we
have calculated the probability P, using the numerical
Bloch approach at 1=2)&10' W/cm and b= 1 for dif-
ferent values of td T. he result is shown in Fig. 6 where P,
is plotted against td. The time difference tz is defined in
such a way that, if td & 0, the center of the pulse coincides
with the internuclear separation greater than R, =9.5. If

~
td

~

&0.8 ps, no part of the pulse illuminates the system
at the time for which R =R„and thus the Landau-Zener
probability would vanish. The numerical Bloch approach
presented in Fig. 6 shows the similar behavior: The prob-
ability at td ——+0.8 ps drops to ——,

' of the probability at
td ——0. If

~
td

~

is increased beyond 0.8 ps, the probability
drops sharply.

So far the probabilities are calculated assuming that the
transition is a X-X transition. We now present the result
of calculations made under the assumption that the transi-
tion is a X-II transition. Table EI shows the short-pulse
probability P, at two different values of I and two dif-
ferent values of b with td ——0. The Landau-Zener model
and the numerical Bloch approach are seen to agree well
with each other. The main difference between the types
of transition arises from the difference in the interaction
energy as given by Eq. (22a) for a X-X transition and by
Eq. (22b) for a X-II transition. In particular, the probabil-
ity P, for a X-II transition is expected to increase as b is
increased because of the linear dependence of H&2 on b.
This is clearly indicated in Table III where the Landau-
Zener probability is large only when b is relatively large,
i.e., when b )7. This makes the theoretical analysis and
experimental observation of the short-pulse effect very

X

P

X
Q

0
td (psec)

FICx. 6. The short-pulse probability P, vs the time difference
tq between the center of the pulse and the crossing point for a
X-X transition calculated at I=2&& 10' W/cm and b =1 using
the numerical Bloch approach. The circles represent the proba-
bilities for model 1 and the X's for model 2.

b (a.u. )

LZ
NB
LZ
NB

10'

0.000 153 4
0.000 1397

0.004 475
0.004 353

5X10'

0.000 766 8
0.000 697 2

0.022 18
0.021 51

difficult, because the transition is made mainly at large
values of b at which an extremely short pulse is required
to separate the two crossing points. For the pulse dura-
tion of r= 1.6 ps which we have chosen, the difference be-
tween the short-pulse probability and the cw or long-pulse
probability becomes obscure for much of the b values over
which the transition probability is significant. One there-
fore should probably go with a X-X transition rather than
a X-H transition if a clean observation of the short-pulse
effect is desired.

B. Model 2

In Table IV and Fig. 7 we show the probability P, cal-
culated for model 2 assuming that the transition is a X-X
transition and the center of the pulse coincides with the
crossing point. As in model 1, we see generally good
agreement between the Landau-Zener probabilities and the
numerical Bloch probabilities at low laser intensities
(I (2&&10' W/cm ). However, there exists a significant
difference between the two sets of the probabilities at high
intensities (I) 5&&10' W/cm ). This is attributed to the
inability of the Landau-Zener model to properly describe
the decrease in probability due to the Rabi oscillation.
For model 2 the energy detuning varies more slowly than
for model 1 (see Fig. 3), and thus the probability P, de-
creases more rapidly after it reaches a value of —1. In
fact, the probabilities calculated by the numerical Bloch
approach indicate that P, decreases from —1 at 1.5)& 10'
W/cm to -0.6 at 3~10' W/cm, a fast decrease com-
pared with the decrease in model 1. Because of this fast
decrease, the range of intensity over which the probability
P, is large (-1), i.e., over which the short-pulse effect is
significant, is much narrower [10' —(5 X 10' ) W/cm ] in
model 2 than in model 1. As I is increased beyond
-5&(10' W/cm, the difference between the short-pulse
probability P, and the cw or long-pulse probability P,
becomes less significant.

Figures 5 and 6 show the variation of the probability
P„calculated for model 2 using the numerical Bloch ap-
proach, with respect to b and td, respectively, at
I=2&10' W/cm . One can clearly see that essentially
the same behavior is shown by models 1 and 2. All the
discussions given in Sec. IV A for model 1 on the b and td
dependences of P, can equally be applied here. The
behavior indicated by Figs. 5 and 6 is characteristic of a
X-X transition.

A new feature that appears here but was absent in

TABLE II. The short-pulse probability P, for a X-H transi-
tion in model 1 calculated using the Landau-Zener (LZ) model
and the numerical Bloch (NB) approach.

I (W/cm )
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TABLE III. The short-pulse probability P, vs impact parameter b for a X-H transition in model 1

calculated at I= 10' W/crn using the Landau-Zener model.

b (a.u. )

P, 0.000 153 4 0.000 624 1 0.001 446 0.002 687

0.004 475 0.007 059 0.01100 0.017 94 0.037 68

(@ED/2A')

[(co—co, ) +(@ED/fi) ]/4
(23b)

and ~, is the atomic frequency. In Table IV and Fig. 7
we present P „for the atomic transition in model 2 as
well as the Landau-Zener and numerical Bloch probabili-
ties for the collisional transition. As expected, P „be-
comes comparable to the probability for the collisional
transition if the laser intensity exceeds —10" W/cm .
The observation of the short-pulse effect will therefore be
difficult unless there is a way to clearly eliminate the con-
tribution from the atomic transition.

model 1 is the possibility of the noncollisional atomic
transition. As pointed out in Sec. III, the energy detuning
at large R for this model is 0.0027, and the interaction en-
ergy given by Eq. (22a) becomes comparable to it at a
laser intensity of 10"—10' W/cm . At this intensity the
system can be excited not only by the collisional transition
but also by the atomic transition. The probability for the
atomic transition for the case of a square pulse of dura-
tion ~ is given by the we11-known formula

P, =P „sin I [(co—co, ) +(pEo/fi) ]'i w/2I, (23a)

where

C. Na-Ar

In Table V we show both the Landau-Zener and numer-
ical Bloch probabilities calculated at different values of
the laser intensity I and different values of the impact pa-
rameter b for the X X-A II transition of the ¹ Ar sys-
tern. As before, the center of the pulse is assumed to coin-
cide with the crossing point. In Fig. 8 the Landau-Zener
and numerical Bloch probabilities at b=7 are plotted
against the intensity I. Also plotted is P „,given by Eq.
(23b), for the 3 S-3 P transition of atomic sodium. We
note that the probability P, for the collisional transition is
already high at a laser intensity as low as 10 W/cm, re-
flecting the slow increase of the energy detuning as R
moves away from R, (see Fig. 3). At the same time, the
probability already begins to decrease as the intensity is
increased beyond 5)&10 W/cm . Thus the Landau-Zener
method yields an inaccurate probability for the Na-Ar
system if the laser intensity exceeds -5&10 W/cm . A
significant feature displayed in Fig. 8 is the prominent
role played by the noncollisional atomic transition: The
probability for the atomic transition is comparable to the
probability for the collisional transition at all laser intensi-
ties. In particular, we note that, at I—10 W/cm at
which the collisional probability becomes significant at

TABLE IV. The short-pulse probability P, for a X-X transition in model 2 calculated at different
values of the pulse intensity I and impact parameter b using the Landau-Zener (LZ) model and the nu-
merical Bloch (NB) approach. The last row shows P,x for the atomic transition.

b (a.u. ) 10
I(W/ciH )

5 && 10' 1o' 1p10

LZ
NB
LZ
NB

0.026 80
0.029 45

0.022 96
0.019 18

0.000 856 6

1p11

0.1270
0.1422

0.1097
0.091 04

0.004 268

5~10"

0.2379
0.2714
0.2073
0.1723

Pmax

0.008 500

1p12

0.7429
0.7317
0.6870
0.7057

0.041 10

5 ~ 1012

0.9339
0.8774

0.9020
0.9317

0.078 96

1p13

1.0000
0.9153
1.0000
0.9266

0.3000

3 && 10"

LZ
NB
LZ
NB

1.0000
0.8630
1.0000
0.8724

0.4616

1.0000
0,7254
1.0000
0.7218

0.8108

1.0000
0.6756
1.0000
0.6448

Pmax

0.8955

1.0000
0.5986
1.0000
0.5788

0.9772

1.0000
0.6091
1.0000
0.6084

0.9885

1.0000
0.5418
1.0000
0.6346

0.9961
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FIG. 7. The short-pulse probability P, at impact parameter
b = 1 for a X-X transition in model 2. The solid curve
represents the probability calculated by the Landau-Zener model
and the circles by the numerical Bloch approach. The dashed
curve is P,x for the atomic transition.

FIG. 8. The short-pulse probability P, at impact parameter
b =7 for the X X-A H transition of Na-Ar. The solid curve
represents the probability calculated by the Landau-Zener model
and the circles by the numerical Bloch approach. The dashed
curve is P,x for the 3 S-3 P transition of atomic sodium.

large b, the atomic probability also becomes large. This
occurs because the interaction energy becomes comparable
to the asymptotic detuning of 45 cm ' when the laser in-
tensity reaches —10 —10' W/cm, as noted in Sec. III.
It therefore seems necessary to separate the atomic contri-
bution from the collisional contribution if a clean observa-
tion of the short-pulse effect in ¹Ar collisions is
desired. Sizer and Raymer have suggested variations of

Ar pressure and of laser detuning from the atomic reso-
nance line as possible ways of separating the two contribu-
tions.

Figure 9 shows the collisional probability P, versus the
impact parameter b calculated using the numerical Bloch
approach at I=2/10 W/cn& . One immediately notes a
rather sharp increase in probability as b is increased from
0 to the crossing point R, =9.51, a trend characteristic of

TABLE V. The short-pulse probability P, for the X X-A H transition of Na-Ar calculated at different values of the pulse intensi-
ty I and impact parameter b using the Landau-Zener (LZ) model and the numerical Bloch (NB) approach. The last row shows P,x

for the 3 S-3 P transition of atomic sodium.

I(W/cm )

b (a.u. )

LZ
NB
LZ
NB

10'

0.000 365 6
0.000 280 8

0.000 900 3
0.000 723 5

0.001 128

5x10'

0.001 827
0.001 407

0.004 493
0.003 394

0.005 612

10

0.003 650
0.002 853

0.008 966
0.006 805

Pmax

0.011 16

5x10'

0.018 12
0.01425

0.044 03
0.033 16

0.053 42

108

0.035 91
0.028 07
0.086 13
0.063 66

0.1014

5x10'

0.1671
0.1228

0.3626
0.2329

0.3608

10' 5x10'
Pmax

1010 3x10"

LZ
NB
LZ
NB

0.3063
0.2105
0.5937
0.3514

0.5302

0.8393
0.6724
0.9889
0.9556

0.8495
Prnax

0.9742
0.9554
0.9999
0.8391

0.9186

1.0000
0.7300
1.0000
0.8410

0.9713
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FIG. 9. The short-pulse probability I', vs impact parameter b

at. I=2&(10 W/cm for the X X-3 H transition of Na-Ar cal-
culated using the numerical Bloch approach.

a X-H transition already noted in model 1. In fact, our
calculations indicated (although not shown in Table V)
that for small b the probability remains small even at
I=10' W/cm, whereas for large b (b ) 5) the probabili-
ty already becomes significant at I= 5 & 10 W/cm .
Since the probability is relatively large for large b s
( b = 5—9.5) at laser intensities 10 W/cm &I & 10'o

W/cm, this range of intensity seems to offer the best
chance for the observation of the short-pulse effect. The
problem, however, is that for these large b values, the
pulse needs to be extremely short to separate the two
crossing points.

It is interesting to note that the calculations of Sizer
and Raymer indicate that the short-pulse effect becomes
significant at a laser intensity of 10 W/cm, although
their observed intensity at which the effect is significant is
much higher (at least —10' W/cm ). At this intensity,
however, a significant portion of their observed fluores-
cence signal would originate from the 3 S-3 P transition
of atomic sodium, according to our estimate. Sizer and
Raymer, on the other hand, found no evidence of any sig-
nificant contribution from the atomic transition.

V. DISCUSSION

We now summarize our findings obtained by compar-
ing the three systems, models 1 and 2 and Na-Ar:

(1) As is well know from a simple argument based on
the Landau-Zener model and confirmed by our calcula-
tions using the numerical Bloch approach, the parameter
that largely determines the intensity dependence of the
short-pulse probability P, is the energy detuning

~
H2z H&& ~, in particula—r, the behavior of the energy de-

tuning in the neighborhood of the crossing point R, ~ If
one considers a system in which

~
H2z —H» increases

rapidly as R moves away from R, (as in model 1), the
probability P, increases slowly with respect to the intensi-
ty, requiring a high intensity for an observation of the

short-pulse effect. Such a system, however, has an advan-
tage in that once the probability has reached a high value,
it decreases slowly upon a further increase of the intensi-
ty, giving a wide range of intensity over which the short-
pulse effect can be observed.

(2) The energy detuning Hz2 H~ ~
—

~

at asymptotic
separations is also important as it determines the probabil-
ity of noncollisional atomic transitions. Unless the detun-
ing is very large, there exists a good possibility that the
collisional transition occurs simultaneously with the
atomic transition, especially at the high laser intensities of
our interest. This is true even if the detuning of the two
atomic states is large compared with the linewidth of the
laser pulse. For example, the linewidth of a 1.6-ns pulse is
3.3 cm ', small compared with the energy detuning (45
cm ) of the 3 S-3 P atomic transition with the laser
wavelength k = 16 916 cm '. And yet the probability for
the atomic transition is high if the laser intensity is
I ) 10 W/cm .

(3) The type of transition, i.e., whether it is a X-X or
X-H type, also has an important bearing on the short-
pulse effect. Assuming that the laser beam is linearly po-
larized in the direction of the radiative velocity v of the
colliding molecules, the short-pulse probability varies
slowly with respect to b for the entire range of 0& b (R,
if the transition is a X-X transition. The pulse duration
can thus remain shorter than the time between the two
crossing points for a wide range of b over which the prob-
ability P, is significant, a necessary condition for an ob-
servation of the short-pulse effect. On the other hand, the
probability for a X-H transition increases sharply as b is
increased from 0 to R, . The transition occurs mainly at
large b's at which an extremely short pulse is required to
separate the two crossing points. It therefore seems ad-
vantageous to choose a X-X transition rather than a
X-Htransition, but this is true for the particular polariza-
tion we have assumed. If the laser beam used is unpolar-
ized, for example, no such difference between the two
types of transition is expected to be present.

We emphasize that the theory given in this paper is by
no means a complete description of the complex collision
process occurring in the presence of a short laser pulse.
Rather, we hope to provide a first step toward such a
description. In particular, we note that the probabilities
presented in this work are calculated at a given value of
impact parameter b, relative velocity v, and the time
difference td between the center of the pulse and the
crossing point. Obviously, appropriate averaging must be
taken in order to compare the theory with experimental
data. It is expected that the averaging reduces the differ-
ence between the short-pulse probability P, and the cw (or
long-pulse) probability P, . Another factor that should
bear importance is the shape of the laser pulse. Although
we assumed a square pulse, the actual laser pulse is prob-
ably better approximated by a Gaussian. Each colliding
pair then experiences a continuous change in the pulse in-
tensity and samples a different intensity at or near the
crossing point, requiring another averaging over the pro-
file of the pulse intensity. Previous calculations '' indi-
cate that the short-pulse effect is sometimes considerably
weaker with a Gaussian pulse than with a square pulse.
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Considering all this, it perhaps can be understood why the
experimental data of Sizer and Raymer indicates that the
differences between the short-pulse case and the long-
pulse case show up at a higher pulse intensity than the
theory predicts. The main emphasis of this paper, howev-
er, is not an analysis of their experimental data but the
understanding of the kinematics and dynamics of the
pulse-induced collisions at the fundamental level.
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