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We present a multichannel theory for resonant charge transfer in ion-surface collisions at grazing
incidence at intermediate velocities (v =1 a.u.) taking into account the nonorthogonality of the initial

and the final states.

Kinematic resonances occur between the atomic projectile levels and the

Galilei-shifted conduction band of a metal. The time-dependent Schrédinger equation can be solved
in the adiabatic approximation for the slow perpendicular motion (v, <<1). As an application we
calculate the complete n =2 density matrix for H(n =2) following proton scattering at a gold sur-
face at grazing incidence (6=5°). The shape of the charge cloud around the receding hydrogen atom

is determined.

I. INTRODUCTION

The experimental technique of inelastic ion-surface
scattering at grazing incidence under small grazing angles
6<5° has been recently successfully applied in a large
number of investigations in different subfields. They in-
clude the study of the polarization characteristics of the
excited atomic manifold formed during the collision pro-
cess,! =3 the production of nuclear-spin-polarized beams*
surface channeling experiments for single-crystal targets,’
and the detection of local and long-range magnetic order
at surfaces.®

From the viewpoint of atomic collision theory, ion-
surface scattering provides the opportunity to study col-
lision dynamics under unusual circumstances. Inelastic
processes are simultaneously governed by two different
time (or velocity) scales: a fast motion of the projectile,
v = |v| =vF (and vy) in the surface plane and a slow
adiabatic motion perpendicular to the surface,
v; <<(vp,vg). [The Fermi velocity vg and the atomic or-
bital velocity v, (Bohr velocity) are the characteristic
internal velocities of the transferred electron in its initial
and final states.] A proper treatment requires, therefore,
the combination of methods used in both high-energy and
low-energy atomic collisions. Another interesting feature
is the dominance of contributions from distant collisions
since projectile ions specularly reflected at clean surfaces
undergo an array of extremely soft collisions with the
outermost atomic surface layer. The point of closest ap-
proach is determined by v, .

Theoretical studies of the electron pickup in ion-surface
collisions have been performed in the limit of slow col-
lision velocities, v <<Vf,Vq, using the fixed-ion approxima-
tion.”~!° The transition rate is calculated at fixed ion-
surface distances and then integrated over all distances to
give the capture probability. This static probability model
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does not provide accurate estimates for the relative phases
of scattering amplitudes needed for the density matrix and
cannot be applied to the present case of intermediate ve-
locities. At high velocities v >>(vg,vg) the first-order
(Born) approximation has been used!!'!'? to calculate the
density matrix for beam-tilted foil interaction as well as
for ion-surface scattering. While good qualitative agree-
ment with experimental data is found, a direct quantita-
tive comparison is complicated by the fact that the use of
a first-order approximation is conceptually not well
founded.

More recently, a nonperturbative approach better suited
for intermediate velocities using an Anderson model Ham-
iltonian'>'* has been suggested. The difficulty with this
approach is that it neglects the multichannel nature of the
rearrangement process and its evaluation invokes rather
restrictive model assumptions regarding the analytic
structure of the coupling matrix elements.

The key point of the present treatment is that electron
capture is an intrinsic multichannel process with asymp-
totic initial (¢y) and final state (¢;) belonging to different
channel Hamiltonians. This requires the proper identifi-
cation of relevant channel perturbations and the inclusion
of effects due to the nonorthogonality!® of the initial and
the final states. At intermediate parallel velocities
V| =vF, charge transfer proceeds through a kinematic res-
onance. The effect of the relative motion is to bring about
degeneracies between discrete atomic levels and the
Galilei-shifted occupied conduction-band levels!>!¢ as
seen in the projectile frame (Fig. 1). While at v, <<vg the
atomic spectrum taken to be hydrogenic in the following
is nondegenerate with occupied levels, at velocities
v=v| =vr excited states are in resonance simultaneously
with portions of the occupied as well as empty levels of
the Galilei-shifted band structure. A continual creation of
excited states by resonant capture and subsequent destruc-
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FIG. 1. Kinematic resonance as seen in the projectile frame,
schematically. At v=0 occupied levels (shaded area) are nonde-
generate with atomic spectrum (er: Fermi energy; W is the
work function). At intermediate velocities atomic levels are in
resonance with both occupied and empty levels of the Galilei-
shifted band structure.

tion by resonant ionization is expected to be the dominant
mode of formation.

The plane of the paper is as follows. The general mul-
tichannel kinematic resonance scattering (KRS) theory is
outlined in Sec. II. In Sec. III we briefly review the
density-matrix description of excited hydrogenic mani-
folds. In Sec. IV we apply the KRS theory to the forma-
tion of the H(n=2) manifold following proton scattering
at a gold surface. The Au surface will be treated in the
nearly-free-electron (jellium) approximation. The com-
plete n=2 density matrix will be calculated and the ef-
fects of incoherent (nonresonant) loss processes due to
electron-electron scattering will be analyzed. The relation
between the present KRS description to other theories is
outlined in Sec. V. Concluding remarks are given in Sec.
VI. Atomic units are used throughout unless otherwise
noted.

II. THEORY OF KINEMATIC RESONANCE
SCATTERING

We are concerned with charge transfer through a
kinematic resonance in a grazing-incidence collision.
While the resonant transfer (a time-dependent tunneling
process) between the atomic level and the conduction band
is expected to dominate at intermediate velocities v~uvp,
other mechanisms to create excited states may be simul-
taneously present and will eventually dominate at higher
velocities. They include direct capture from inner shells
of the target as well as two-step processes of capture into
the ground state followed by excitation. Those processes
resembling binary ion-atom collisions become important
when projectile levels come into resonance with inner
shells of the target at higher speeds. We will neglect those
processes from the onset. As we will discuss below, its
justification requires a detailed analysis on a case-by-case
basis.

We treat the transfer problem in an independent-
particle model (IPM) neglecting correlation effects. This
is justified for single-electron capture while the H™ for-
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mation by double capture requires a more sophisticated
approach. We furthermore assume an ideal structureless
surface with planar translation symmetry. The motion of
the proton can be quite accurately approximated by a clas-
sical trajectory since the de Broglie wavelength A, is small
compared to characteristic distances in the target or pro-
jectile. We will in the following focus only on the outgo-
ing portion of the trajectory of the reflected proton which
is approximated by a constant-velocity straight line.

We adopt the projectile frame as the frame of reference
with the proton located at the origin. Accordingly, the
jellium surface has the velocity

vr=—%v| -2, . (1)
The distance of the surface from the proton is given by
R(t)=Ry+v,t, (2)

where the initial distance from the surface at t=0 is
denoted by R,. We will later analyze the influence of the
cutoff parameter R,. The angle between v and the sur-
face plane is 6<5°. Equation (2) clearly becomes invalid
near the point of closest approach (of the order of R <1
a.u.) or for the incoming part of the trajectory. As we will
show below this part of the trajectory will not effectively
contribute to the formation of the final electronic state be-
cause of the continual destruction of excited states in the
immediate vicinity of the surface.

Using a classically prescribed trajectory, the electronic
Hamiltonian becomes time dependent. It can be decom-
posed as

H=H;+V,=H;+Vj, (3)

where H; ) denotes the entrance (exit) channel Hamiltoni-
an and Vj is the corresponding channel perturbation.
The asymptotic initial states of the conduction electron,
&y, and final atomic orbitals, ¢;, are eigenstates of the
channel Hamiltonians H; and Hj, respectively. In the
numerical calculation of Sec. IV we will choose the Som-
merfeld model for the semi-infinite electron gas,

Hi:H0+VJ , (43)

where H| is the electronic kinetic energy and V; is the jel-
lium potential

Vy=—Vy©(—z—R (1)), (4b)

with V), the energy of the bottom of the conduction band
and © the unit step function. The exit-channel Hamil-
tonian is taken to be hydrogenic,

Hy=Hy+Vc, (5)

where the electron-proton Coulomb interaction is denoted
by

Ve=—1/r. (6)
As the entrance channel perturbation we take
Vi=Ve+VEi+vhez+R @), (7

where Vé and VeI denote the interactions with the proton
image charge and with the electronic self-image charge.
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The image potentials describe the collective response of
the electron gas to lowest order within the IPM. The use
of classical image potential is justified!’ for distances
larger than the surface plasmon screening length
As=v/ws (w, is the surface plasmon frequency). The
self-image potential ¥/ may also be included in H;. How-
ever, analytic solutions for channel functions are available
only in the asymptotic region (z— <) (Ref. 14) which are
inaccurate in the region of strong overlap. We therefore
use for simplicity the Sommerfeld-model wave function
for the electron gas.?

In the IPM for charge transfer, the exact wave function
can be expanded in an overcomplete basis as

W)= aj(t)p;+ X, b (t)y(1) . (8)
j k

We use periodic boundary conditions for the metal wave
function ¢ in a quantization volume ?". As usual, we
will eventually convert the sum over all discrete k values
into an integral. Because of the fast parallel motion of the
solid relative to the atom, the orbitals ¢, have to be prop-
erly Galilei transformed by the use of translation factors'®
well known from high-energy ion-atom collisions. For a
target with perfect translation symmetry where k; is a
good quantum number, this corresponds to displacement
in momentum space by the momentum —v,

¢k_v”(r+R (1)2,t)=du(r+ R (1)Z+ v 1,1)
XCXP(—I'V”'I'”—I'U!ZM/Z) . 9)

In the Sommerfeld model we have

dilr,t)= ‘/%eik”'r”g(rl)e_ia"t, (10)
with
ik, r ikz+6 —ik_r
glr))= ekZl k. —b kary O(—r,)
2ik,  _isr
T i0(r,) (11)
and
Ek:%kz—VO s (12)
8=02Vy—kH'? . (13)

We derive in the following a general expression for the
amplitude for resonant charge transfer within the frame-
work of the KRS theory. It is independent of the particu-
lar choice for the channel potentials [Egs. (4)—(7)] and the
target wave function [Eq. (10)]. It is only based on three
essential assumptions: the independent-particle model,
the perfect planar symmetry of the surface, and the adia-
batic approximation for the perpendicular motion.

The Schrodinger equation with the Hamiltonian [Eq.
(3)] can be converted to a coupled system of equations of
motion for the amplitudes a;(¢) and by(#). Restricting the
expansion [Eq. (8)] to an atomic subspace of dimension N,
we find for the vector of amplitudes

AD=(a;(0)<j<n (14)

the set of equations

HA(t)= EM(k)bk(t) (15a)
k
and
.d +
[IE_Eklbk(t):M (k)-A(2) . (15b)

In (15), the elements of the matrix H in the atomic state
space are given by

d
Hjp= |ig-—¢

i 8 — S| Vrld;), (16)

and the vectors of coupling matrix element are given by

M;(k)=N; +{(8; | Vildi) (17a)

€ —ii
kK de

M](k)=N} +{ox| Vil d;) . (17b)

€ —ii
K ar

Furthermore, the right-hand side of Eq. (15b) denotes a
scalar product in the N-dimensional atomic-state space.
The elements of the vector of overlap matrix elements are
denoted by

N;=(¢; | éx) , (18)
and
Ee=tex+ (| Vi | d) (19)

defines the perturbed conduction-band energies including
the entrance-channel distortion.

The system of coupled equations can now be solved in
the adiabatic approximation exploiting the fact that
v, <<1 for grazing-incidence collisions. We first solve
Eq. (15) in the limit v, =0 [i.e., exact parallel motion with
R (t)=R,] for finite time intervals (0,z). In a subsequent
step we treat the implicit time dependence due to the R (z)
dependence of the coupling matrix elements in the adia-
batic approximation. This allows the extraction of
scattering amplitudes as a convergent limit a;(z— o).

In the first step we employ the Laplace transform

a(s)= [~ e % (01t (20)
leading to the system of equations

H(s)A(s)= 3 [M(k,5)by(s)+iO(k;— |k—v) | N1,
k

(21a)
(is —E)by(s)=M "(k,5)- A(s)+iO(k; — | k—v | ) .
(21b)

In Eq. (21) we have incorporated the initial conditions for
charge transfer [a@;(0)=0, by (0)=O(k;— [k—v|)].
The matrix H(s) and the vector M(k,s) are defined in
parallel with the corresponding quantities in ¢ space.
They are given by Egs. (16) and (17) upon replacing d /dt
by the Laplace variable s.

Inserting now Eq. (21b) in (21a) and specializing to the
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case of a degenerate subspace with unperturbed atomic en-
ergy €,, one finds after some straightforward algebra the
subspace matrix equation

Mk, —iE,)
[(lS——Ea)l 2 ]A 2 ——_k .
k IS — €y
(H(—V‘Hékf)

(22)

The matrix elements X; ;(s) of the self-energy matrix for
the atomic manifold are given by

(k,s)M (k,)
<¢,|Vf|¢,>+z*os——s. (23)

s — €&y

The complex self-energies 3;=is; (1=<j<N) are deter-

mined by the eigenvalue equation
det[is1—Z(s)]=0. (24)

We use a single label j for the eigenvalues in order to dis-
tinguish them from the diagonal elements of X in the
original basis. As usual, the real part X describes the

]

gn=—i 3 [ldBjk

k
( ,‘k—vH;ékf)

, — i€ )exp

The new coupling vector B is related to the original vector
M, through

B=U"'M, (26)

where U is the matrix of eigenvectors of X. The
distance-dependent (or in the adiabatic approximation
time-dependent) transformation matrix U is nonunitary
since the coupling between the atomic system and the
solid does not preserve unitarity within the atomic sub-
space. Similarly, the vector of new state amplitudes,
C =(cj)1<j<n, is related to the vector of unperturbed
atomic amplitudes, 4 =(a;);<;<n, by

cC=U"'4. (27

The amplitudes c; describe the population amplitudes of
strongly perturbed atomic states ¢; in the vicinity of the
surface. These perturbed states are eigenstates of X.
Equation (25) is now well suited for the application of

the adiabatic approximation in a second step. According-
ly, the integrands in the time integrals in Eq. (25) are
treated as time dependent due to the R (¢) dependence of
all matrix elements [e.g., 2(¢)]. Furthermore, for nonde-
generate states, the asymptotic scattering amplitudes are
given in the adiabatic approximation by

lim a;(¢)= lim ¢;(¢), (28)

— o0 t— o0
where the correlation between a; and c; is determined by
the nonintersecting (“adiabatic™) self-energy curves X..

j
For an asymptotically degenerate subspace and persistent

BURGDORFER, KUPFER, AND GABRIEL 35

shift of the energy level, while the imaginary part £} ac-
counts for level broadening (damping) due to the presence
of open decay channels into the solid. Note that in Eq.
(23), the k sum (or, in the following, the k integral) ex-
tends over all k, while in Eq. (22) only occupied states are
included. We arrive here at a conceptual difficulty associ-
ated with the IPM. The state label k labels simultaneous-
ly a basis set employed in the equation of perturbed one-
electron states as well as occupation numbers of an N-
particle system. The sum in Eq. (23) includes therefore
exclusion-principle-violating intermediate states. We will
in the following distinguish between contributions to X’
and to 2" due to states k representing occupied orbitals.
In the calculation of X’ we will include exclusion-
principle-violating (EPV) intermediate states similar to
those in atomic many-body perturbation theory,'® while
we exclude all occupied k states in the calculation of X"
since they correspond to closed channels for on-shell tran-
sitions into the solid. We will return to this point in Sec.
Iv.

Upon diagonalization, the inverse Laplace transform
can be performed to give the new amplitude vector C(z)
with components

f dt"E—i f dt"(e,+%;) (25)

f

state mixture due to long-range couplings, Eq. (28) has to
be modified. The inverse transformation

Ilim A(t)= tlim U C(t) (29)
should be used in this case with U restricted to the sub-
space under consideration. In our numerical study (Sec.
IV) we will calculate (29) at a time ¢ corresponding to a
distance of 40 a.u. from the surface where the amplitudes
as well as the transformation matrix U have approximate-
ly converged to their respective asymptotic values. Since
we calculate the evolution only for R (1) =R, the scatter-
ing amplitudes [Eqs. (28) and (29)] depend on R,. We
will later show that they become practically independent
of the cutoff parameter for sufficiently small R,.

Due to the axial symmetry of atom-surface interaction
with respect to the surface normal, self-energies belonging
to states with identical magnetic gantum number m
display level repulsion. In addition, if the diagonal ele-
ments of the original ¥ matrix (the “diabatic” potential
curves) belonging to states of the same representation of
the C_, symmetry group cross each other, avoided cross-
ings occur. This may lead to strong local dynamical cou-
plings between different adiabatic potential curves. The
validity of the adiabatic approximation requires in this

case
vy <$; $j>

near the crossing point. A crude estimate on the effect of

< |Z;—Zj | (30)

d.
dR
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nonadiabaticity can be given by replacing the adiabatic
transformation [Egs. (28) and (29)] by the corresponding
sudden (diabatic) transformation, i.e., by using the
transformation (29) at ¢ values corresponding to the cross-
ing point. The present formulation allows the calculation
of the dynamical process of resonant charge transfer be-
tween atomic levels and the solid for a broad class of in-
put matrix elements characterizing the static structure of
the atom and of the surface at various levels of sophistica-
tion with a realistic amount of CPU time. For analytical-
ly or numerically known input parameters the determina-
tion of density matrix elements [see Eq. (31) below] re-
quires a five-dimensional integration.

An appealing feature is that the present treatment takes
into account coupling to all orders within a given sub-
space as well as nonorthogonality corrections.

III. THE DENSITY MATRIX

The maximum information available on the final atom-
ic state formed in ion-surface collisions is contained in the
atomic density matrix p. In terms of the scattering ampli-
tudes a; the density matrix is given by

pM'(RO):<a]a;7> N (31

where the angular brackets refer to an ensemble average
(i.e., a partial trace) over unresolved observables such as
the final state of the target, electronic and nuclear spin de-
grees of freedom, etc. In particular, since the hole state of
the conduction band created by the electron transfer is not
detected, the ensemble average includes an incoherent sum
over all k, i.e., the double sum appearing in Eq. (31) after
inserting Eq. (25) is reduced to a single sum (or integral)
over all k values. For later reference we have in Eq. (31)
explicitly displayed the dependence of p on the cutoff pa-
rameter Ry. The diagonal elements of p describe the usu-
al substate cross sections. Off-diagonal elements are a
measure of the coherence between substate amplitudes.

In the following, we will consider the hydrogen atom.
We choose an orbital angular momentum representation
[the state label j stands for (n/m)] since spin-dependent
fine-structure effects can be safely neglected for light sys-
tems at intermediate velocities. We note in passing that
for heavier systems with larger spin-orbit splittings and
frequencies of the order of the inverse of the ion-surface
interaction time spin-dependent multiple scattering effects
become observable.’’ For hydrogen, the fine structure
leads only to effective depolarization®! of the emitted radi-
ation due to averaging over quantum beat oscillations.

The hydrogenic density matrix for a given n manifold
can be parametrized in terms of quantum mechanical ex-
pectation values of dynamical atomic observables such as
the orbital angular momentum L and the Runge-Lenz
vector??

n
Z[%(pr—LXp)—z,,r/r], (32)
where Z, is the ionic charge of the projectile. This allows
a meaningful physical interpretation and even an intuitive
semiclassical visualization of coherences between quan-
tum scattering amplitudes in terms of parameters for a

classical orbit. For later reference we give all expectation
values of rank-1 tensors in terms of the n=2 density ma-
trix

(A, )=Tr(pA,)/Trp= —2V2 Relpyp0.211)/Ttp , (33a)
(A,)=2Relpy00,210)/T1p , (33b)
((LX A), ) =2V21Im(py00,21,)/Trp , (33¢)
((LX A),)=—21Im(py00,21,)/Trp , (33d)
(L,)=—2V2Im(py,,10)/Tip . (33e)

Note that the y component of the polar vectors A and
L X A as well as the x and z components of the axial vec-
tor L vanish because of the reflection symmetry with
respect to the x-z plane. Classically, A characterizes the
orientation of the major axis of the Kepler ellipse. The
magnitude | A | is proportional to the eccentricity of the
orbit, or equivalently, to the dipole moment of the charge
cloud. The expectation value (L,) gives the atomic
orientation (circulation) of the electron. The vector L X A
points along the direction of the orbital velocity vector at
the perihelion.

In addition, the density matrix can be related to the
three normalized Stokes parameters S /I, M /I, and C/I,
which characterize the polarization state of elliptically po-
larized light emitted in radiative decay following anisotro-
pic (e.g., collisional) excitation. For a doublet (*P-2S)
transition and photon emission in the y direction, the
Stokes parameters are given by>*

14v2 Im,

s s a0
I Tpio10+ 11p1,11—3p11,1-1

3( — + _
_Ai: P10,10—P11,11 TP11,1—1 , (34b)
I Tp10,10+ L1p11,11—3p11,1-1
C —6\/2Rep11'10
C_ , (34¢)
I Tpior0+1lp1,11—3p11,1-1

where we have suppressed the principal quantum number
in the state label. In (34) we have included the depolariza-
tion factors due to the fine structure but have neglected
small additional depolarization effects caused by the hy-
perfine structure. The meaning of the relative Stokes pa-
rameters is as follows: S /I is roughly proportional to
(—L,), the atomic orientation [see Eq. (33¢)], and gives
the circular polarization; the Stokes parameters M /I and
C /I give the linear polarization (i.e., the quadrupole de-
formation of the charge cloud) relative to the quantization
axis and relative to the 45° line in the x-z plane, respec-
tively. The experimental Stokes parameter M /I and C/I
are often defined relative to the beam (V) axis rather than
relative to the surface normal (Z) (see also Figs. 12 and
14). In this case, Egs. (34b) and (34c) have to be
transformed according to standard rotation formulas for
rank-2 tensors.

We note that the experimental observation of the coher-
ence parameters of mixed parity [Eqgs. (33a)—(33d)] re-
quires the perturbation of the excited states by external
electric fields.?*
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IV. NUMERICAL RESULTS

In this section we discuss the first numerical applica-
tion of the KRS theory to the n=2 density matrix in hy-
drogen following grazing-incidence scattering (6=5°) of
protons at a gold surface. In addition to the Sommerfeld
model for the target Hamiltonian (Eq. 4) we will invoke a
few more “technical” approximations in order to keep the
numerics at a reasonable level of complexity. The latter
seems to be appropriate in view of the overall simplicity
of the description of the static structure of the target.

A. The Wigner-Weisskopf approximation

The most restrictive approximation we use is the
Wigner-Weisskopf?® (WW) approximation to the self-

J

(k, —igg )M j(k,—i€,)

energy matrix in analogy with the standard treatment of
radiative decay. The error introduced by the WW approx-
imation is largest for strong coupling between the atomic
levels and the solid, i.e., at small distances R <<(r),.
However, this region does not effectively contribute to the
formation of atomic states as we will show below. In the
WW approximation, the position of the pole in the self-
energy matrix is approximated by its unperturbed value,
ie.,

2(s)=2(—i(g,+in)), (35)

with 7=07%. The self-energy matrix Eq. (23) becomes
now with the help of a standard distribution identity

,—isa)]rl

3 i —igg)

<¢1‘Vf|¢j>+PP2

€4 —Ek

“_in 3 Mk Ak, —ig)8(e, —8) . (36)
k

In Appendix A we show that for Sommerfeld model wave function in the limit of complete delocalization (i.e., box

volume V— « ),

El(:Ek s

(37)

i.e., the initial-channel distortion is negligible. We note that Eq. (37) does not hold in general for localized target states.
Using (37) and the channel decomposition of H [Eq. (3)], Eq. (36) can be rewritten as

3 (—igg)=(¢; | Vs| ¢j'>+PP

Equation (38) displays explicitly the importance of mul-
tichannel effects in the rearrangement process: In WW
approximation the energy shift due to virtual transitions
into off-shell intermediate states (the PP integral) and the
damping term (containing the energy conserving & func-
tion) are determined by different channel potentials. If
one neglects the orthogonality correction from the onset
as it is the case in a single-channel model, the entrance-
channel potential ¥; would also determine the energy
shift yielding an unphysical nonzero value in the asymp-
totic limit R — . The latter follows from the fact that
the overlap ¢y | #;) does not vanish in the limit R — oo
for states ¢, belonging to the positive-energy continuum
of the metal.

As discussed in Sec. 1I, the Pauli exclusion principle
should be incorporated into the imaginary part of the
self-energy matrix in order to remove spurious lifetime ef-
fects due to closed decay channels. In the WW approxi-
mation [Eq. (38)], this can be easily accomplished by re-
defining

B (i) =05 [dK 18,1 Vi 1) | e, —e)
X[1—f(k—v;, D], (39

where f(k,T) is the Fermi distribution function at tem-

fd3k |<¢1\Vfl¢k>|

€4 —Ek

2:)3 [k (e; | Vildd | e —e) . (38)

f

perature T (to be set =0 in the following).

In addition to the WW approximation, we use the fol-
lowing approximation in evaluating the channel-potential
matrix elements: We neglect the image potentials in the
“two-center” matrix elements (~(@; | ¥; | ¢y )) since they
are defined only outside the surface where the matrix ele-
ments decay exponentially [note that g, <0 in Eq. (39)].
On the other hand, the “one-center” matrix elements

~(@; | Vs |d;)) as well as the two-center matrix element

~{¢; | Vs |dx)) in Eq. (38) are of long range. The latter
follows from the fact that for off-shell energy values
gx > 0 in the second term of Eq. (38), the target wave func-
tion is no longer exponentially damped. For these matrix
elements we use a multipole expansion [Appendix B, Eq.
(B2)] retaining all terms up to the order R ~°.

B. Self-energy matrix

The diagonal elements of the self-energy matrix [Eq.
(23 ] prior to the diagonalization play the role of “diabat-
ic” complex potential curves. The real part Xj; is
displayed for the n=2 manifold in Fig. 2. We do not fmd
level crossings near the surface (1=R <40 a.u.). Note,
however, that at asymptotically large distances (R > 10?
a.u.) crossings will occur when small interatomic interac-
tions (Lamb shift, fine structure) equal the perturbations
due to the surface. These crossings will be considered as
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E(102 au)

FIG. 2. Real part of the diagonal elements of the self-energy
matrix, 2;, as a function of the distance R from the jellium
surface. Quantization axis is along the surface normal.

diabatic (i.e., nonavoided).

It is instructive to analyze the distinct physical contri-
butions contained in the diabatic potential curves as
shown in Fig. 3 for the 2p+1 state. At large distances
(R 210 a.u.), the monopole term of the image potential
[Eq. (B2)] dominates. For neutral atoms the dipole term
vanishes while the quadrupole term (~R %) leads to a
significant state-dependent modification of the R ~! term
at distances R > (r),. State-dependent shifts will play an
important role for the phases of off-diagonal elements of
the density matrix. We note that for R << (r),, the mul-
tipole expansion, as well as for R <A, the concept of a

sh —-— IMAGE POTENTIAL
\ R™" TERM ONLY
\ —— IMAGE POTENTIAL

AN - DI‘STOR‘TION
<jlVvylj>
. w= VIRTUAL INTER-
S~ MEDIATE STATES

N

E (10%qu.)
o

-6 1 1 1 1 1 i '
4 6 8 10 12 14 16
R (a.u)

FIG. 3. Contributions to the diagonal element of the self-
energy matrix, 2'2,,1,2,,1: — , monopole part of image po-

tential; , image potential to order R ~3; — — —, distortion
(¢;|V;l¢;); and - - - ., contributions from virtual intermedi-
ate states.
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classical image potential ceases to be valid. At intermedi-
ate distances, exit-channel distortion effects due to the
partial penetration of the atomic charge cloud into the
solid (~(@; |V, |$;)) become important. They are of
the same order of magnitude as image charge effects and
give rise to additional state-dependent contributions. Fi-
nally, the energy shift due to virtual transitions into inter-
mediate states (somewhat analogous to the Lamb shift)
provides the dominant contribution at small distances and
goes to zero like R ~2 in the limit R — oo as expected. We
note this is only the case when the appropriate ortho-
gonality correction is used. Within a single-channel
theory neglecting N;, this term approaches a finite value
at asymptotic distances due to spurious overlap contribu-
tions.

Turning now to imaginary parts, the damping constants
37; (Fig. 4), we observe dramatic deviations from the
mono-exponential decay frequently used in analytically
solvable models. The pronounced local minimum for
— 25525 is caused by the radial node of the 2s wave func-
tion. Due to the exclusion principle correction to =" [Eq.
(39)], the damping constants become velocity dependent.
In the velocity range under consideration (v ~ 1 a.u.) these
corrections are smaller than 10% and can be neglected.
We note, however, that the corrections can become more
pronounced for lower velocities and lower-lying states
where the Pauli principle severely restricts the number of
open decay channels in a kinematic resonance.

The real part, 2);,, , and the imaginary part, 235,2p, Of
the only nonvanishing off-diagonal element of X are
shown in Fig. 5. The magnitude of the real part is of the

10

1 L ! 1 1 (
4 6 8 10 12 14 16

R {au)

FIG. 4. Negative imaginary part (half of the damping con-
stant) of the diagonal elements of the self-energy matrix,
—Z};=v;,/2, as a function of the distance R from the jellium
surface. The surface normal is the quantization axis.
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FIG. 5. Real and imaginary parts of the off-diagonal element
of the self-energy matrix, 21"21’0’ as a function of the distance R

from the jellium surface. The surface normal is the quantiza-
tion axis.

same order of magnitude as the splitting between the dia-
batic energy curves for the 2s and the 2p, state. This
gives rise to a strong state mixture even at large distances
from the surface. The off-diagonal elements decay
asymptotically with the same power law (R ~2) as the di-
agonal elements. Thus the state mixture in degenerate
manifolds persists as R — . The long-range 2s-2p cou-
pling is due to the coupling to virtual intermediate states
[the image potential part in ¥V in the second term of Eq.
(38)]. This long-range interaction is absent for neutral
atoms if only the static image potential [the first term in
Eq. (38)] is taken into account. In this latter case the 2s-
2p, coupling decays like R —*.

Upon diagonalization of the self-energy matrix in the
(2s,2po) subspace, the complex adiabatic self-energies as a
function of R can be found. The real parts, 2} (Fig. 6),
show the expected level repulsion while the pronounced
minimum in the diabatic curve =Y 5 is smeared out in the
adiabatic curve due to the 2s-2p, coupling (Fig. 7). Be-
cause of the absence of level crossings, the transformation
matrix U is a slowly varying function of R as shown for
the moduli of U,; and U,, in Fig. 8. The coefficients
U,; and U,, give the admixture of the 2s and 2p, states
to the energetically lower-lying state |#;), which corre-
sponds to a perturbed 2s state in the limit of weak cou-
pling. A stronger variation has been observed for the
phases in U. We neglect the distance dependence of U in
the following, using a constant matrix [U(R=6 a.u.)]
where capture is most likely to occur (see Fig. 9). The nu-
merical values are found to be insensitive to variations of
the value of R between 4 <R <8. Since the R dependence
of |¢;) is completely determined by matrix elements Uj;.,
the adiabatic criterion [Eq. (30)] is approximately satis-
fied.
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251

E (107" au.)

FIG. 6. Real part of the self-energies, =;(j=1,2) (“adiabatic”
potential curves) as a function of the distance a from the jellium
surface. Note that adiabatic and diabatic are identical for the
states 2p +1.

C. Incoherent loss processes

The nonperturbative KRS theory treats resonant cap-
ture and resonant loss self-consistently. However,
resonant ionization is not the only loss process that de-
pletes the population of a given excited manifold. Col-
lisions between projectile electrons and target electrons in

10-1

102

(au.)

£

103

10

1 1 1 L 1 1

2 4 6 8 10 12 1%
R (a.u.)

FIG. 7. Imaginary part of the self-energies, 2}, as a function
of the distance R from the jellium surface.
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FIG. 8. Moduli of the expansion coefficients U, and U, of
the eigenstate ¢, of the self-energy matrix in terms of the atomic
states 2s and 2p, respectively.

the vicinity of the surface cause additional nonresonant
ionization (or transitions to other n levels). A realistic
description of ion-surface scattering requires the incor-
poration of doubly inelastic processes leading to both tar-
get and projectile excitation. Since such an excited two-
electron final state is not included in the one-electron state
space and is experimentally not resolved, we treat doubly
inelastic scattering events as incoherent loss processes, i.e.,
as a sink for probability flux neglecting thereby possible
effects on relative phases of scattering amplitudes. Ac-
cordingly, we add to the decay constant (—Z27) a state-
independent damping term I'; /2,

- 10%dp/dR, lou)

Rylou)

FIG. 9. Rate of change of capture probability (—dp/dR,)
for all substates H (2/m) for P—>Au (v=0.7 a.u., §=5°) with or
without incoherent loss. (a) I'; =0, see Eq. (40); (b) I';5£0. The
surface normal is the quantization axis.

[-3/(R)]=[-Z/(R)]+T(R)/2, (40)

with the damping due to the incoherent scattering given
by
vn (R)
i=———. 41
I “D
In Eq. (41), n(R) and n(0) denote the target electron den-
sity at the distance R from the surface and in the bulk,
respectively. As a crude estimate we use the value A; =5
a.u. for the inelastic bulk mean free path?® A; for free
electrons.

D. Distance of excited-state formation

The dependence of the capture probability p;,+1 25+1 as
a function of the initial distance of the outward propaga-
tion, R, is displayed in Fig. 10. We find at small R, an
order-of-magnitude discrepancy between the KRS theory
and the first-order approximation. The nonperturbative
treatment yields a characteristic saturation behavior for
R <3 au, i.e., p becomes independent of R. At small
distances the continual creation and destruction of excited
states leads to an excitation equilibrium. This loss of
memory justifies the crude approximation for the trajecto-
ry near the point of closest approach mentioned above and
the restriction of the electronic evolution to the outgoing
portion of the trajectory. At large values of R, p ap-
proaches the first-order (Born) approximation results.!?
In the present case, the validity of the Born approxima-
tion for the transfer at large distances is based on the

P 2p#

2 3 A 5 6 7 8
Ry (a.u)

FIG. 10. Probability p(Ro) for capture into the 2p+1 state
for HY 4+ Au (v=1, 6=5°) as function of the lower limit R, of
the outward R (¢) integration. The surface normal is the quanti-
zation axis. — — —, Born approximation; , present KRS
theory.
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weakness of the coupling rather than the high projectile
speed collisions. We also note that second-order Thomas
double scattering?’ is not important in this case since the
planar channel potential V, does not support a 60°
scattering event back into forward direction as required
for the kinematics of the Thomas process. This is not to
say that other off-shell second-order contributions
describing scattering into continuum intermediate states
and not being included in the finite-dimensional matrix
equation [Eq. (22)] are always unimportant. In fact, for
collisions at high velocities involving the atomic target
core and resembling more closely ion-atom collision, the
Thomas process is expected to contribute significantly.

The saturation behavior of p due to the presence of loss
processes has also important implications concerning the
relative importance of nonresonant and resonant process-
es. While based on a first-order estimate, the nonresonant
capture probability is small compared to the probability
for resonant transfer; the simultaneous presence of a
strong loss channel reduces the relative effectiveness of a
kinetic resonance compared to nonresonant processes
where the probability flux is small in both directions. The
neglect of nonresonant capture processes needs therefore
additional justification on a case-by-case basis. For
P— Au scattering at v=1, for example, we find that the
first-order nonresonant capture into the ls state (without
taking into account loss) is smaller than the KRS proba-
bility p,_, including loss processes. This indicates that
the kinematic resonance is indeed the dominant mode of
formation of neutral hydrogen H(n=2).

The velocity dependence of p (Fig. 11) is displayed only
over a fairly narrow range of velocities vp <v <2vfr. The
rapid decay of p at higher v clearly indicates that capture
from inner shells becomes important for v>1. On the
other hand, while for v < vy the present formulation is ex-
pected to provide a realistic description, its full numerical
treatment poses a formidable task in view of the rapidly
oscillating phase factors [Eq. (25)]. Even at intermediate
velocities, the oscillating structure of the integrands limits
the numerical accuracy which is estimated to be in the

10! T T 1 1 T

CAPTURE PROBABILITY

L 1 1 | 1 |
06 0.7 08 [0k} 1.0 14 12 1.3
vio.u)

FIG. 11. Diagonal elements of the density matrix p;; as a
function of v. The surface normal is the quantization axis.
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area of 10%. Saddle-point approximation techniques'#?®

are probably more adequate to treat the limit v <<vg. The
same is true for the limit 6—0.

The most probable distance for the formation can be in-
ferred from the rate of change in probability, —dp/dR,
[Fig. 9]. Roughly, capture takes place at a distance
R=(r),_, from the jellium surface, corresponding to
distance of R ={r),_,+a/2 (a is the lattice constant)
from the outermost atomic layer of a real metal surface.?’
This explains the qualitative agreement with earlier Born
approximation calculations'> when a phenomenological
cutoff Ry=(r), was introduced. We note a qualitative
similarity of the present (—dp/dR;) curve with the spa-
tial weighting function®® for capture derived within a
fixed-ion approximation for hyperthermal surface scatter-
ing. The oscillatory structures are due to the strong 2s-
2po mixing near the surface.

A simple physical picture emerges: At distances
R << (r), the coupling of atomic levels to the unoccupied
levels in the solid is so strong that the formation of excit-
ed states is followed by loss. At large distances
(R >>(r),), the coupling is so weak that the probability
flux in both directions is small despite the resonant nature
of the process. The final-state formation effectively takes
place in the transition region between these two regions.

The influence of incoherent loss processes is also
displayed in Fig. 9. The major effect of a nonzero T,
[Fig. 9(b)] is an overall reduction of p and a slight shift of
the distance of formation towards larger distances com-
pared to calculation with I'; =0 [Fig. 9(a)]. We note that
coherence parameters and polarizations are only slightly
affected.

The present calculation reveals a state and velocity
dependence of the excited-state formation. Formation of
the 2p (m = *1) and the 2s states generally take place at
smaller R than formation of the 2p, state. For v>1 we
find p(Rg) to oscillate around its equilibrium value for
small R,. The onset of this effect can be already observed
at v=0.7. The effective distance of formation is fairly
delocalized with a width AR =3—4 a.u.

E. Coherence parameters

In this section we discuss results for the complete n=2
density matrix.

A characteristic feature in the elliptical polarization
(Fig. 12) is the strong circular polarization S /I pointing
to a rotating charge cloud in agreement with the classical
density gradient model.!!~!?> We also find relatively large
values of C/I, while first-order'? and Anderson-model'*
calculations give C/I=0. The large values for the linear
polarization parameter, M /I, not observed in the experi-
ment result from the enhanced resonant ionization proba-
bility of the 2p, state (aligned along the surface normal
chosen as quantization axis) relative to corresponding loss
probability of the 2p+1 state (parallel to the surface
plane). The polarization parameters, in particular M /I,
are rather sensitive to the input data for the static ion-
surface interaction (e.g., the self-energy matrix) used in
the present dynamical treatment for charge exchange.
The significance of the numerical values employing a
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FIG. 12. Relative Stokes parameters S/I, M /I, and C /I for
the doublet transition H (22P—>12S) as a function of v. M /I
and C/I are defined relative to the ¥ axis (see text).

Sommerfeld model for target structure should therefore
not be overestimated. An attractive alternative for future
investigations would be to employ an R-dependent
phenomenological self-energy matrix as static input that
reproduces the experimental (or theoretical) shift and
width of energy levels of adsorbed atoms at equilibrium
distances from the surface.

Combining the information on the polarization with the
results for other coherence parameters (Fig. 13) a com-
plete quasiclassical picture (Fig. 14) of the electronic orbit
formed in ion-surface interation can be constructed. The
values of (A4,) and (A4,) indicate that the electron is in
front of the projectile and is located between the surface
and the projectile. This is completely consistent with the
orientation of the major axis of the elliptic polarization as
defined by M /I>0 and C/I <0. According to S /I (pro-
portional to { —L, )) the rotation of the electron is clock-
wise in accordance with the density gradient model. The
results for the small coherence parameters {((LX A)) can

T T T T T T

0.6 07 08 09 1.0 (K} 1.2 1.3
viau)
FIG. 13. Coherence parameters {A4,), {4,), ((LXA),),
and ((LX A),) as a function of v. The surface normal is the
quantization axis.

'
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<

FIG. 14. Classical Kepler orbit as predicted by quantum-
mechanical expectation values at v =0.82 (schematically). Only
the relative orientation of various vectors to each other is signi-
ficant; their magnitude is arbitrary.

be consistently combined with (L,) and (A) to form a
classical orbit at certain velocities near v=0.8 as
displayed in Fig. 14. We note that the number of statisti-
cally independent quantum-mechanical expectation values
for rank-1 tensors [Eq. (33)] exceeds the number of in-
dependent classical orbital parameters for a single ellipse.
The fact that the quantum-mechanical expectation values
turn out to be interrelated in such a way that they can be
consistently combined to a single classical orbital picture
clearly indicates the physical significance of such a classi-
cal interpretation even though such a correspondence is
far from being exact. The latter is underlined by the fact
that the direction of the L X A vector cannot be accom-
modated within the simple picture at other velocities.

V. RELATION TO OTHER THEORIES

The present KRS theory for resonant charge transfer
contains several previously suggested models as special
cases. In order to make the physical content of the
present formulation more transparent we briefly discuss
its relation to other models.

A. Anderson-model Hamiltonian

Recently, a treatment of resonant charge transfer em-
ploying a time-dependent Anderson-model Hamiltonian
has been proposed.'#?® An essential difference to the
present formulation is its single-channel character neglect-
ing nonorthogonality connection and lacking the identifi-
cation of channel potentials. In addition, the authors in-
voke several additional model assumptions regarding the
coupling matrix elements. The latter complicates a quan-
titative comparison. We nevertheless can reproduce the
basic Anderson-model Hamiltonian result [Eq. (8) in Ref.
14] if we apply in addition to all the approximations used
in Sec. IV the following assumptions: (a) N;=0in Z, (b)
neglect of all higher-order multipoles of the image in-
teractions in ¥V, beyond the R —1 term, (c) neglect of the
principal part integral in Eq. (38) which would contain
now V; rather than ¥V, and would approach a nonzero
value at infinity, (d) use of the diabatic instead of the adi-
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abatic [Egs. (28) and (29)] transformation, and (e) neglect
of the Pauli correction in £ [Eq. (39)].

B. Bassel-Gerjuoy and related approximations

Nonorthogonality corrections have been previously
treated in various approximations in high-energy ion-atom
collisions. A well-known example is the first-order per-
turbation approximation to a two-state close-coupling
model suggested by Bassel and Gerjuoy.*!

The present formulation can be reduced to the Bassel-
Gerjuoy approximation in two steps: (a) If one retains the
nonorthogonality correction N; in B; but neglects all ma-
trix elements M; as well as off-diagonal elements
(¢; | Vs | ;) (j+j') in Z, one arrives at a distorted-wave
version of the Bassel-Gerjuoy approximation. (b) If one,
in addition to the step (a), neglects the diagonal distortions
in both the entrance channel, (¢, | V;| i), and the exit
channel, (¢;|V,|¢;), the standard Bassel-Gerjuoy ap-
proximation is recovered.

C. The Born approximation

The Born approximation to charge transfer, usually re-
ferred to as the Oppenheimer-Brinkman-Kramers (OBK)
approximation,’! follows from Eq. (25) if one neglects the
self-energy matrix as well as channel distortions and the
orthogonalization correction altogether. The OBK ap-
proximation as well as the Bassel-Gerjuoy approximation
do not account for back-coupling, i.e., loss is not treated
self-consistently. This leads to unphysically large contri-
butions from small distances. However, one can improve
the approximation by introducing a cutoff’* R > (7),, in
order to account for loss on a phenomenological level.

VI. CONCLUDING REMARKS

We have presented a nonperturbative theory for
resonant charge transfer at intermediate distance through
a kinematic resonance. It treats resonant capture and
resonant loss self-consistently. The multichannel nature
of the process manifests itself in the influence of
nonorthogonality corrections and in the presence of dif-
ferent channel potentials which play an important role.
In particular, the energy shift of an atomic level near a jel-
lium surface described by a semi-infinite Sommerfeld
electron gas approaches the correct asymptotic value of
the free atom only if nonorthogonality corrections are tak-
en into account. The numerical results for electron pick-
up into the substates of the »=2 manifold in proton-gold
surface collisions show that the formation of excited
states preferentially takes place at intermediate distances
R=(r), from the jellium surface. From an analysis of
the complete H(n=2) density matrix the following pic-
ture of the charge cloud asymmetry emerges: The center
of gravity of the electronic charge cloud is in front of the
receding proton and is located between the proton and the
surface. The sense of circulation is in accordance with the

BURGDORFER, KUPFER, AND GABRIEL 35

classical density gradient model.'"'!?

While quantitatively different from earlier Born ap-
proximation calculations,'? many qualitative features have
been confirmed. Additional effects beyond the resonant
charge exchange, such as electron loss due to doubly in-
elastic processes, are found to give non-negligible contri-
butions.

Several limitations of the present model are worth men-
tioning and point to avenues of further developments: In
the present investigation we have focused on resonant
transitions between bound states (tunneling or subbarrier
processes). At small distances from the surface projectile
states can become unbound due to the surface interaction
leading to classically allowed “over the barrier” transi-
tions. The influence of those processes is presently under
investigation. At high collision velocities v>1 a.u.,
broadened resonances with localized inner-shell levels of
the target not yet taken into account become important.
At low velocities v <<vp, saddle-point approximation
techniques should be implemented in order to investigate
the approach of the static limit and its relation to the
fixed-ion approximation since the full numerical treat-
ment becomes unworkable in this region. For highly
charged ions with many excited states in (static) resonance
with the occupied conduction band, the relative motion
mediating kinematic resonances ceases to be of crucial im-
portance for the transfer. In this case, the large amount
of well-localized potential energy rather than the kinetic
energy induces inelastic processes. Finally, the present
treatment is restricted to the independent-particle model.
The formation of H™ in grazing-incidence scattering of
protons® pointing to the possibility of correlated two-
electron processes requires a study of correlated two-
electron wave function in an ion-surface potential.

The picture of a kinematic resonance (Fig. 1) also im-
plies the possibility of forming highly excited Rydberg
states (n— o0 ) and near-threshold continuum states. For
sufficiently high v (=vr) the Galilei-shifted band struc-
ture overlaps with the threshold region. This would allow
resonant capture into low-lying continuum states of the
projectile. The recently observed electron spectra®?—3*
display a broad peak near the projectile velocity with an-
isotropic structures®* due to the low symmetry of ion-
surface interaction.

APPENDIX A

In this appendix, we show that the distortion in Eq. (19)
is negligible for completely delocalized Sommerfeld wave
functions for the conduction band for a semi-infinite elec-
tron gas, i.e.,

}m1<mi%1mfa0, (A1)

where 7" is the periodicity volume. We note first that the
channel potential V; [Eq. (7)] is well defined only for
coordinates outside the surface. Inside the solid we may
assume perfect screening. According to Eq. (10) the ma-
trix element (A1) is of the form
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(A2)
I
where we have here chosen the origin of the coordinate yimage_ pl 4 pl
system to coincide with the jellium surface deviating from
the original choice [see Egs. (1) and (2) and Appendix B]. q . 1 (B1)

It is sufficient to discuss the first term of (A2) since the
others can be treated analogously. Introducing cylindrical
coordinates we get

T 4k 1
d db2 —28z
7‘ k +82 f Zf [b2+(R __2)2]1/2

(A3)

where by is of the order of #°'/3. Performing the b in-
tegral we find for finite bg

8k} o
_%mfo dze ®{[b3+(R —2?]'"*— |R —z |}.
(A4)

For all bound states of the metal with § real and positive
the z integral converges and is for large but finite
bo(by >>R) of the form

- 8k2
sz 52 (constby —const’) . (AS)

In the limit 7 — « and bg o« 273 the first term behaves
like 7"~2/3 while the second goes like " ~!. The distor-
tion is therefore negligible for conduction-band states.

APPENDIX B

Adopting a coordinate frame with the proton at the ori-
gin the total image potential felt by the electron is given
by

- [x24p2+(z+2R)?]'? 4z+R)’

where ¢ is the charge of the ion prior to capture and
z2 —R. A straightforward multipole expansion leads to

1 1

.-( =

)_ z
2R 17 7T 4R?

Vimage —

(g—1)

22
TE <q~2/3)3z—2—’——§r2 +O(R™Y).

-+

(B2)

Note that the monopole term (~R ~!) is nonzero even for
singly charged ions which together with the electron form
a neutral atom. This is due to the fact that the corre-
sponding interactions of the ion with the image charges
are not included in the potential energy in the electronic
Hamiltonian [Egs. (3) and (B1)]. On the other hand, the
dipole term (~R ~2) vanishes for neutral atoms (g=1).
In this case, the term R ~3 induces static state-dependent
splittings to lowest order. For brevity we will refer to the
latter as the quadrupolar term even though it also includes
a scalar contribution. We note that the multipole approxi-
mation breaks down for small R <<{r) compared to the
radius of the excited projectile state.
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