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The adiabatic X electronic terms of highly excited states of the He —alkali-metal atom systems are
determined as the roots of a transcendental equation whose only required inputs are the alkali-metal

quantum defects, the e -He s-wave phase shifts and, of course, the internuclear distance R. The re-

sults obtained for relatively low excited states are in reasonable agreement with more elaborate cal-
culations. It is found that the notion of adiabatic quantum defects requires R(a.u. ) & 2n, n being the
principal quantum number. The method is generalized to the case where a small external electric
field 8' is present. Then the energy levels strongly depend on the angle between 8' and the internu-

clear axis. Numerical applications to He-H are presented.

I. INTRODUCTION

Adiabatic energy levels for systems consisting of a Ryd-
berg atom and a ground-state rare-gas atom at an internu-
clear distance R have been the subject of numerous
theoretical works (see, e.g. , Refs. 1—12 and reference
therein). The subject is of interest for the investigation of
pressure effects on the spectral lines of highly excited
atoms, and for analyzing very-low-energy collisions pro-
cesses. It also is an interesting theoretical challenge as ab
initio variational calculations require a large basis set of
wave functions for highly excited states and therefore
seem to be inadequate. The way to bypass these difficul-
ties traces back to Fermi. ' The presence of the rare-gas
atom inside the Rydberg atom is interpreted as a modifi-
cation of the boundary conditions for the electronic wave
function. This idea, which is the same as &he one of
quantum-defect theory (see, e.g. , Refs. 13 and 14) then al-
lows one to express the adiabatic energy levels in terms of
scattering data for low-energy collisions between a free
electron and the rare gas. In its most elementary form,
the shifts of energy levels are determined using the popu-
lar Fermi pseudopotential' 2srL5' '(R —r) within first-
order perturbation theory. I. is the e —rare-gas scatter-
ing length, and r refers to the e position vector. It
should be noted, however, that the use of the Fermi pseu-
dopotential within a diagonalization procedure is not very
convenient for highly excited states as the presence of
numerous nearly degenerate states may require a large
truncated basis. A more elaborate formulation, which is
not a perturbative one, is obtained when using the explicit
expression for the Coulomb Green function, as done for
instance in Refs. 7—12 and in the present paper.

Section II of this paper derives the basic equations
[Eqs. (24)] for determining adiabatic energy levels X in a
simple, self-contained way. It does not require any ac-
quaintance with quantum-defect theory, or multiple-
scattering theory. To first order in the expansion of the

cotangent of the s-wave phase shift for the e -He scatter-
ing, the result is essentially the one obtained in 1972 by
Dalidchik and Ivanov in a paper apparently not well
known, as it appears to be ignored in numerous subse-
quent publications on the topic. It is also found in Sec. II
that the notion of an adiabatic quantum defect requires
R (2v, where —p/(2v ) corresponds to the adiabatic en-
ergy. p represents the reduced mass of the electron and
the alkali-metal core in a.u. From this point on, p will be
replaced by unity in the formulas, for the sake of simplici-
ty.

To our knowledge, no application of the method of
Dalidchick and Ivanov has been made to alkali-metal-
atom —rare-gas systems. Recently, there have been some16

results concerning relatively low excited states of the
Na-He systems on the basis of the model-potential ap-
proach. It is therefore of interest to compare the results
presently obtained, with these more elaborate calculations.
This is the purpose of Sec. III. As explained in Sec. II,
the present approach requires the e —rare-gas interaction
be short range. The helium atom, having a small polari-
zability, is therefore a good candidate. Comparisons for
the ¹ Ne system are, however, also reported in Sec. III,
in order to test the influence of polarization effects. Fi-
nally, variation of the adiabatic quantum defects with the
internuclear distances are also presented in Sec. III.

Section IV extends the result of Sec. II to the cases
where a small external electric field 8' is present. The
adiabatic energy levels then depend on the angle 0 be-
tween 8' and the internuclear axis R. Numerical applica-
tions for the system H-He are presented. Section V
discusses and concludes the work.

It is important to note here that throughout this paper,
the term adiabatic energy levels means the adiabatic elec-
tronic energies, and does not include the interaction be-
tween the positive alkali-metal core and the rare gas. This
last term, which is an additive one, has never been taken
into account. The results are then directly related to
molecular ionization energies.
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II. BASIC FORMULATION

A. Basic Hamiltonian and its significance

In order to take into account the modifications of the
boundary conditions for the electronic wave functions, re-
quired by the presence of He and the alkali-metal core
structure, we believe that the most convenient way is to
introduce separable short-range interactions in the elec-
tronic Hamiltonian:
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with 3 an Hermitian matrix of dimension equal to the
I

where Y denotes spherical harmonics with respect to an
arbitrary axis z. The sum over l in Eq. (1) runs only over
l values associated with nonzero alkali-metal quantum de-
fects d1 ( l & 3). The terms V1 correspond to the departure
from a pure Coulomb field due to the alkali-metal core.
The term V& is a projector onto the s wave relative to He,
and is sufficient to describe the e -He interaction at low
energy where the s-wave contribution is dominant. The
factors r1 and p

/ in Eqs. (2) and (3b) are just a matter
of convenience in order that aI and a have the dimension
of an energy.

Among the X eigenvalues of H [Eq. (1)], those, to be
denoted —1/(2v ), which are different from the hydro-
genic eigenvalues —1/(2n ), are easily shown to be solu-
tions of

and the m independent function S1 is defined by

$1(v,r, r') = (r, l, m
~

G (v)
~

r', l, m ) . (5b)

B. Solution in terms of physical data

The scattering .of a free electron of kinetic energy p /2
by the separable potential V& is exactly soluble. All the
information is contained in the s-wave phase shift 5(p)
determined by

At this stage, some remarks are necessary. First, the in-
troduction from the outset of an interaction V& of range
p+0 is an advantage since a subsequent expansion in a
power series of p will be responsible for taking into ac-
count the classical local momentum of the Rydberg elec-
tron. Second, all the parameters aI, rI, a,p appear only, at
the end of the calculation, through their associated physi-
cal data, i.e., quantum defects and scattering phase shift
(see Sec. IIB). The Hamiltonian H of Eq. (1) certainly
does not represent any "realistic" interaction. It is only a
very convenient tool in the search for the expected general
relation between adiabatic energy levels and physical
atomic data. Thus a general relation is expected to be ap-
proximately valid for any short-range interaction. ' The
most critical point is then to incorporate the long-range
polarization interactions into the effective short-range in-
teractions, as is done when using the experimental atomic
data for alkali-metal quantum defects and s-wave phase
shifts for e —rare-gas scattering. The discussion of this
point is postponed to the end of Sec. III.
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with the free Green operator,

Go(z) =(z —p /2)

Now the term /I ~1 of Eq. (4a) can be written as
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where y = r1 —r2 ~, 2x =r&+r2. W and ~ are the
Whittaker functions as defined in Ref. 19, satisfying the
second-order differential equation

f(2x/v) = —(vp /2) f (2x/v) (10)

where y =
~

r& —r2 ~, 2x =r&+r2. W and ~ are the
Whittaker functions as defined in Ref. 19, satisfying the
second-order differential equation

p =2/x —1/v

Developing the product of Whittaker functions in Eq. (9)
in a Taylor series in the vicinity of 2x/v, using Eq. (10)
and neglecting all derivatives of p„, one obtains the
quasiclassical approximation '
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p /2 —I/r+g& V~ provides a relation between a~ and
the physical quantum defects dI,
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For both r &2v and l/v«1, 8' can be expressed in
terms of the Bessel functions [Eq. (A3)], so that

A~+2 I+2—2mrI Jz~+~(+SrI)[cot(~v)+cot(~d~)] . (23)

where the argument of the Whittaker functions is 2x/v.
This approximation requires y/v « 1. In Eq. (8), one has
R —p&r; &R+p, i =1,2. For R large enough and p
small enough, r ~+r2 —2R in Eq. (12). Recalling that detP =0 (24a)

From Eqs. (17), (21), and (23) it is seen that the condi-
tion detA =0 reduces to
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In the purely hydrogenic case, the adiabatic energy levels
are obtained by solving A]& ——0. Taking the first-order
term in the expansion of p cot5(p), i.e., —1/L, one recov-
ers the result of Komarov and Presnyakov. The idea of
a classical coupling between the electron position and its
momentum [Eq. (11)] has been used by several authors
(see, e.g. , Refs. 3 and 10).

For nonhydrogenic cases, the other elements of the ma-
trix A must be evaluated. For A ~ I+2, one obtains by in-
cluding one closure relation in Eq. (4c),
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For r &2v, ~ can be expressed in terms of Bessel func-
tions [Appendix, Eq. (A 1)]. Thus,
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There remains finally the task of evaluating AI+2 ~+2.
The exact solution of the atomic Hamiltonian

as ppz & 1, A» finally can be expressed as a function of
the physical phase shift 5(p),
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valid if R )5, one obtains
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The P matrix [Eqs. (26a), (26b), and (24d)] then becomes a
periodic function of v, with period unity.

C. A qualitative feature of the spectra

Before coming to quantitative results (Sec. III), an im-

portant qualitative property of the adiabatic energy spec-
tra must be emphasized. If a discrete eigenvalue c; of a
Hamiltonian A has a degeneracy degree n;, then the ad-
dition of a separable potential a

~

g)(g'
~

to ~ leaves

n; —1 states unaffected and reduces the degeneracy at
most by one degree. This can be seen as follows. An
eigenvalue z of A '=A +a

~ g) (g
~

different from the

all other matrix elements being equal to zero. The equa-
tion (24a) detP =0 provides the adiabatic energies
—1/(2v ) in terms of the alkali-metal quantum defects d~

and the s-wave phase shift of e —rare-gas scattering. In
the case of one quantum defect and within the approxima-
tion p cot[5(p)]=—1/L one recovers the result of Dalid-
chik and Ivanov.

In the last part of this section it is seen that for R & 2v
the adiabatic energies take the limiting form
—1/I2[n —d(R)] I with n an integer and d(R) an adia-
batic quantum defect. For R &2v the Whittaker func-
tions in Eqs. (24b) and (24c) can be expressed in terms of
Bessel functions [Eqs. (Al) and (A3)]. Using Eq. (11) and
the further approximations

Jo(VSR ) Yo(V'SR )+J&(V'SR ) Y~(V'SR )—0, (25a)

Jo(V'SR )+J)(V'SR )=(m&2R ) (25b)
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eigenvalues E; of 4 must satisfy the equation
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z is nondegenerate as its corresponding eigenvectors must
be proportional to (z —A )

'
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resentation of (z —A ) ', Eq. (27a) takes the form
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with the positive numerators f; defined by

where IjI denotes the set of quantum numbers defining
an eigenstate

~ y; (J) ) of A, with energy E;. The left-
hand side of Eq. (27b) is clearly a decreasing function of z
for z between two successive poles e;,E;+~. Thus, Eq.
(27a) has only one root between e; and E;+& (it may have
no root in the cases where f; or f;+ &

is zero).
The question now arises why this property is also

relevant to the physical problem of interest, i.e., alkali-
metal Rydberg states perturbed by He. This can be under-
stood as follows. For an atomic excited state, as the dis-
tance from the nucleus increases, the electronic wave
function oscillates more and more slowly in the classical
domain. Thus, except at small internuclear distances
from the nucleus, the e -He interaction looks more and
more pointlike with respect to the local period of oscilla-
tion of the wave function. If a pointlike interaction is di-
agonalized within a set of degenerate states, as done when
using the Fermi pseudopotential, it is possible to perform
a change of basis such that all, except one new wave func-
tion, are zero at the point of interaction (see, e.g., Ref. 6).
Thus, except in the cases where all the wave functions are
zero at the point considered, the degeneracy is reduced by
one degree.

This qualitative property seems less justified at small
internuclear distances where the wave functions oscillate
more rapidly. It should be noted, however, that for a
given value of l, the hydrogenic wave functions are essen-
tially zero in the nonclassical domain

r &n I 1 —[1—l(l +1)/n ]'~ I=l(l +1)/2 .

Thus, among the n degenerate hydrogenic wave func-
tions only those corresponding to small values of l are to
be taken into account at small internuclear distances.
Moreover, for alkali-metal atoms the levels with small
values of l are no longer degenerate with the hydrogenic
levels, so that the problem is avoided. For hydrogen how-
ever, the rare-gas atom could reduce the degeneracy by
more than one degree at small internuclear distances, con-
trary to the prediction of the present approach.

It is seen in Fig. 1 that the agreement between the re-
sults given by Eqs. (24) and the results of Valiron et al. 's

is surprisingly good for such low principal quantum num-
bers, except at small internuclear distances for the 5x lev-
el. For p~ cot[5(p~)] we have used spline interpolation
from the experimental results of Williams ' together with
the value —1/L, L =1.19, at zero energy. It should be
noted that for R &2v, pz becomes imaginary. In those
cases, 5(p~) could still be extracted from experimental
data within the framework of effective-range theory. In
the present paper we use —1/L for pz cot[5(p~ )] if the
case R &2v occurs. In such cases the asymptotic levels
are generally already reached. In Fig. 1 we also report the
results obtained if the term pz cot[5(pz)] is replaced by—1/L for all R values in Eq. (24b). It is seen that the
agreement with the results of Valiron et al. ' is then no
longer as good, especially for the 6p level at small internu-
clear distances.

Figure 2 reports the same comparisons for the ¹ Ne
case. p~ cot[5(p~ )] was again calculated from the experi-
mental results of Williams ' together with the value
—1/L, L =0.24, at zero energy. As the neon has a
greater polarizability than helium, the comparison is ex-
pected to be less favorable. However, it still remains
good. The importance of taking into account the classical
local momentum of the Rydberg electron is manifest in
Fig. 2, especially for the Sx level. The scattering cross
section for e -Ne collision varies indeed much more with
the energy than for e -He collision. This point was also
noted in Ref. 16 within the framework of the Fermi pseu-
dopotential.

In order to see the limits of the present method, we
have considered still more lower levels, and for the alkali-
metal atom exhibiting the greatest polarizability, i.e., cesi-

E(a. u. )

—0. 0 1.'15

—0. 0180

-0.0185

—0. 01SO

—0. 0195

III. NUMERICAL APPLICATIONS

The best way to test the present results [Eqs. (24)] is to
compare them with the results of more elaborate calcula-
tions taking explicitly into account long-range forces due
to polarization effects. The most excited X levels we have
found for which such calculations have been published'
are the 6p, 5x levels of ¹ He. The letter x is for a level
which correlates to the hydrogenic level —p/(2n ).

I

20
R (a. u. )

5x

FIG. 1. Adiabatic ionization energies for X5 and X6~ levels
of Na-He. Solid curves: present results computed from Eqs.
(24). F data of Valiron et al. , reported from Fig. 9 of Ref. 16.
Dashed curves: results computed from Eqs. C,

'24) when
p~ cot[5(pz )] is approximated by —1/L.
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—0. 0180

E( a. u. )

—0.0185

—0. 0 190
Y Y Y~ E'

—0. 01.95

-0 ~ 0200
20

R (a. u. )

5x

um. Fine structure is not taken into account. Compar-
ison with the results of Pascale obtained by using a pseu-
dopotential method are reported in Fig. 3 for the Ss, 6d,
7p levels of Cs-He. It is seen that the agreement is only
qualitative for the 6d level. A possible explanation of this
fact is that the energy of the considered levels, about
—0.04 a.u. to be compared to —0.02 a.u. in the preceding
cases of ¹He,¹Ne(see Figs. 1 and 2), is too low; for
such energies, the conditions l/v«1 are not well satis-

—0. 03

FIG. 2. Adiabatic ionization energies for X5, and X6~ levels
of Na-Ne. As in Fig. 1. Ydata reported from Fig. 10, Ref. 16.

fied, and the polarization of Cs may be too large for the
present method to be valid.

In Sec. II A the question was whether or not incorporat-
ing polarization effects into effective short-range interac-
tions, as done when solving Eqs. (24) with experimental
atomic data for dI, 6, is a reasonable approxim. ation. The
comparisons carried out above provide a positive answer,
at least for light atoms. For heavier rare-gas atoms (Ar,
Kr, Xe) having a larger polarizability, the question still
remains open. For these heavier rare gases, a more re-
fined treatment of polarizability effects may be necessary.
A method for isolating polarization effects in a perturba-
tive treatment has been proposed by Ivanov.

Finally, graphs in Fig. 4 report the fractional part
D(R) of the quantum defects d(R) for H-He and the
alkali-metal —He systems, computed according to Eqs.
(24a), (26a), (26b), and (24d). It is recalled that the notion
of adiabatic quantum defects requires R &2v. For the
quantum defects di of the alkali atoms, we use the values
reported in Table III of Ref. 24. Fine structure has not
been taken into account. It is seen that the X quantum
defects do not reach the hydrogenic asymptotic value

[D =1 in Figs. 4(a)—4(f)] for R =100 a.u. For this value
of R it can be seen that the value of the X quantum de-
fects are approximately the same for hydrogen and all al-
kali metals. The asymptotic values for the X, p d f quan-
turn defects are, to the contrary, reached much more rap-
idly.

IV. INFLUENCE OF A SMALL ELECTRIC FIELD 8'

By small field, we mean within the domain of the linear
hydrogenic Stark effect. The rare-gas atom has polar
coordinates R, O, @=0, relative to a frame x,y, z centered
on the alkali-metal nucleus and whose axis z is parallel to
8'. The Hamiltonian therefore becomes

E( a. u.)

V V' 85r H =p /2 1/r+g VI+—e Vpe +8'z (28)

Cz-He
(29)

and the kets
~

r, I, m ) are defined relative to z,

with V~ and V& defined by Eqs. (2) and (3a) where now

~
g) =exp( iRz p)p ~

~

—p, 0,0)

L, r, l, m)=m ~r, l, m) . (30)
—0. 04 -q E'd

yYYYy Y
sr Qp

The adiabatic energy levels are now functions of R and
0. All the procedures of Sec. II can be repeated with
Gs(v), the Coulomb-Stark Green operator given by

G, (v)—:[—1/(2v ) —p /2+1/r —8'z] (31)

I

10 20

R (a. u. )

FIG. 3. Adiabatic ionization energies for some excited X lev-

els of Cs-He. Solid curves: present results computed from Eqs.
(24). Y results of Pascale (Ref. 22), when the core-core interac-
tion has been removed.

in place of G(v) [Eq. (5a)]. Two main differences, how-
ever, occur. First, G, (v) commutes only with L, and no
longer with L . Second, the (r

~
G, (v)

~

r') are unknown.
In the domain of the linear hydrogenic Stark effect, the
hydrogenic states

~
n,f,g ) whose wave functions

(r
~
n,f,g ) are separable in parabolic coordinates, remain

approximate eigenstates of the Coulomb-Stark Hamiltoni-
an with shifted eigenvalues,
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FIG 4. Fractional part D(R) of the adiabatic X quantum defects for alkali-metal —He system computed from Eqs. (24a), (26a),
(26b), and (24d). R & 2v (see text).

(p /2 —1/r+8'z)
~

n,f,g)
=[—1/(2n )+ ,'n(f —g)8']

~
n,f,g), —(32)

where

b (v, n, f,g ) = [—1/(2v ) + ( 1/2n ) —,' n (f—g)8']—
—[—1/(2v )+1/(2n )] (35)

~

n,f,g ) =g ~
n, l, m ) (1,m

~
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The value of F in the Clebsch-Gordan coefficients of Eq.
(33} is (n —1)/2. This suggests the following approxima-
tion for G, (v):

G, (v)=G(v)+g ~n,fg)(n, f g ~b(v, ri,f g)
fg

(34)

with n the closest integer to v and b(v, n,f,g) the follow-
ing difference:

It is seen that the Coulomb-Stark Green function
(r'

~
G, (v)

~

r) has, within this approximation, the correct
divergent behaviors for the limiting cases r'~r (v fixed}
and ( —1/2v )—+ —1/2n + , n(f —g)8' (r'—,r fixed) For.
v~n, it diverges only if f—g =0 as should be the case.
It will be seen later on that this approximation is essen-
tially equivalent to a result previously obtained by Har-
min for the determination of the Stark spectra of alkali-
metal atoms [ Vz ——0 in Eq. (28)].

Among the eigenvalues of H [Eqs. (28)], those, to be
denoted —1/(2v ), which are different from
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—1/(2n )+ ,' —n(f —g)8', are easily shown to be solutions
of

detW =0
with W a Hermitian matrix defined by

~»=&&
l

e 'G. (»e '
l g& —I/a,

——(g i
e 'G, (v)rP

i
rt, l, m )

2+12+1+m, ] '

(36a)

(36b)

(36c)

2+1' 2+1'+m, 2+12+1+m

=r! r! (rl, l', m
~
G, (v)

~
rl, l, m) —&t! /&(, (36d)

all other matrix elements being equal to zero.
1+l +l+m corresponds to the position of

~

r!,l, m) if
the set of

~
rl, l, m ) is ordered according to increasing l

values, and for fixed I increasing I values.
At this stage it is of interest to look at the symmetry

properties of M. If II denotes the parity operator,
II exp( ivrL&)—corresponds to a reflection through the xz
plane. As G, commutes with II exp( i'&), a—nd as

exp( —i~L~)
~
l, m ) =( —1)'

~

l, —m ), (37)

II l m) =(—I)'~ l m),
one obtains

(ri, l, m
~
G, (v)

~
rl, l, m)

(38)

Using the relation

=(rt, l', —m
~
G, (v)

~
r!,l, m) . (39)—

(l,m'
~

exp( i9L~)
~

l, m—)
—:d' (8)=(—1) d (8),

one also obtains

(g
~

exp(iOL&)G, (v) rl, l, m )

(40)

=( —1) (g
~

exp(i9L&)G, (v)
~
rt, l, —m ) . (41)

Finally, as G, commutes with L,„achange of basis corre-
sponding to ordering the set

~
rl, l, m ) in order of increas-

ing I values, and for fixed I increasing I values leads M
to be block diagonalized.

For r (2n the radial part R„l(r) of ( r
~
n, l, m ) satisfies

R„!(r)=c(n,l)J2!+t(v 8r )/v r, (42a)

c(n l) —
( 1)" ! &/2n

1&&, 2+ !2+!+~ —"~o('I )P t,!+2

+c(n, l) g (FfFg
~

lm )(R
~

n,f,g )
fg

Xb(v, n,f,g), (43c)

detB =0
with

(44a)

B ~

1 + 1,1+ 1 r 2+ 1' 2+1'+m, 2+12+1+m
(44b)

Eqs. (44) are essentially equivalent to a result previously
obtained by Harmin [see Eqs. (2.15'), (2.11), (3.4), and
(3.5) of Ref. 25]. Results obtained by solving Eqs. (44) for
Na, m =0, n = 10, 8'=2000 V/cm are reported in
column -3 of Table I. Column 2 reports the results ob-
tained according to the very accurate method of Zimmer-
man et aI. using 43 basis vectors for diagonalization of
the Hamiltonian. The comparison is good. The largest
differences are for the first and last line which correlate,
as 8' —+0, to the nonhydrogenic 11p and 11s level, respec-
tively. Column 1 displays the hydrogenic values accord-
ing to first-order perturbation theory [Eq. (32)] for com-
parison.

The second particular case now considered is H-He,
n = 10, and 8'=2000 V/cm. Equation (43a) reduces here
to/hatt ——0, as all V! are zero. The unnormalized eigen-

TABLE I. Na Stark spectrum for n =10, I =0, 8'=2000
V/cm. Units are cm '. Column I. Hydrogenic energies to
first-order perturbation theory [see Eq. (32), and multiply by the
reduced mass Na+ e expressed in a.u.]. Column II: Na stark
spectrum computed according to the method of Zimmerman
et aI. (Ref. 24). Column III: Na Stark spectrum computed ac-
cording to Eqs. (44).

+2+ 1' +!' +m, 2+!2+!+m

1' 1~ll'P!+2, 1+2+( 1) (!rn )

Xg (1'm FfFg ) (FfFg lm )b (v, n,f,g), (43d)
fg

all other matrix elements being equal to zero. Two partic-
ular cases of the preceding result are now considered.

First, if Vz
——0 in Eq. (28), the physical problem

reduces to the Stark spectrum of alkali-metal atoms. For
a given value of m, the Eq. (43a) reduces to

X [(n +I)!/(n —l —I)!]'". (42b)

detg =0
with

pt! ——P!!+2m g ~
(R

~
n,f g )

~
b(v, n,fg),

fg

(43a)

(43b)

Then, a tedious but elementary calculation analogous to
that of Sec. II B shows that the condition detM =0
reduces to

1085.82
1088.38
1090.94
1093.51
1096.07
1098.63
1101.19
1103.75
1106.31
1108.87

1064.91
1087.53
1090.60
1093.56
1096.47
1099.37
1102.27
1105.18
1108.15
1178.22

1064.69
1087.51
1090.58
1093.54
1096.46
1099.36
1102.26
1105.18
1108.17
1177.95
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=G, (v)exp( iO—L~)exp( —iRz p)
~ p, 0,0) . (45)

These states are then denoted 2' in usual spectroscopic
notations. All states A" which change sign under the re-
flection remain unperturbated. For t9=0 or ~, the prob-
lem still has rotational symmetry along the internuclear
axis, and the perturbed states are X states, a particular
case of A' states.

Results for O=O, ~,m/2 are presented in Figs. 5(a)—5(c),
respectively. For 0'=0, it is seen that the lowest excited
levels remain practically unaffected by the presence of
helium, except at small internuclear distances. The inter-
pretation of this fact is clear; the hydrogenic states with
the lowest excitation energy (E& 1100 cm ') also have
their wave functions essentially localized in the direction
z &0, i.e., in the direction opposite to that of He. The
highest excited levels, to the contrary, are seen to be
strongly perturbed by He. For 0=~ the situation is re-
versed. The lowest excited levels are strongly perturbed
by He. A series of avoided crossings occurs as the degree
of excitation raises and R decreases. The most excited
state is then strongly repelled at the top of Fig. 5(b) for
R &75 a.u. For O=m/2, the perturbed levels not only
correlate to the n = 10 hydrogenic Stark levels with
m =0, but also with the all 19 (2n —1) of the hydrogenic
Stark levels. The states which are perturbed for all R
values are then those near the middle, i.e., those with ener-

states associated with the roots v are
G, (v)exp( i—OL~)

~
g). These states remain invariant by

reflection though the plane containing z and the internu-
clear axis,

exp( —i~L~)IIG, (v)e xp( i O—L~)exp( —iRz p)
~ p, 0,0)

=G, (v)exp[ i (O—+sr)L~]exp(iRz p)II
~
p, 0,0)

gy close to —I/2n, whose wave functions cover appreci-
ably both domains z &0, z &0. Finally, Fig. 6 shows the
angular dependence for a particular value of R (R =50
a.u. ).

V. DISCUSSION AND CONCLUSION

The first point to be discussed now concerns the
H, A, . . . or 3" adiabatic energy levels. They remain
unaffected in the present approach as only the s wave rel-
ative to the rare gas is taken into account. A classical ar-
gument shows that these levels should indeed be less sensi-
tive to the presence of the rare gas except at small internu-
clear distances. From a classical point of view, the angu-
lar momentum of the Rydberg electron located at a point
x, at a perpendicular distance a from the internuclear
axis, is, relative to this axis, less than or equal to ( ap„). It
is therefore less than unity, except for x small, as the
e —rare-gas interaction is essentially short ranged and p„
[Eq. (11)]decreases for increasing x.

The second point to be discussed concerns the applica-
tions of the present work to collisional processes. Adia-
batic energy levels are relevant for describing a collision if
the Born-Oppenheimer approximation holds. This re-
quires typically n ( 12 for thermal collisions but higher n
values are also relevant for subthermal collisions. Com-
puting the dynamical couplings in the Born-Oppenheimer
approximation requires the knowledge of the adiabatic
electronic wave functions. It will now briefly be discussed
how these functions could be approximated within the
present framework. The case of zero external electric
field is considered for the sake of simplicity but generali-
zation to the case where a small external electric field is
present is straightforward. The (unnormalized) eigenstate
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FIG. 5. Adiabatic ionization energies for the H-He system in the presence of an electric field 8', computed from Eqs. (43). n = 10,
8'=2000 V/cm, 0 is the angle between 8' and the internuclear axis H-He oriented from H+ to He. The arrows correspond to the
atomic hydrogenic energy levels computed to first-order Stark perturbation [Eq. {32)].
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To conclude, the Green-function approach provides a
very convenient way for computing adiabatic electronic
energy levels for Rydberg alkali-metal —light-rare-gas sys-
tems directly from the knowledge of physical atomic data
(quantum defects and s-wave scattering phase shifts).
Pseudopotential or model-potential calculations already
provide a great simplification when compared to the ab
initio calculations. We would like to emphasize that the
Green-function method is still much more simple, since it
avoids the construction of pseudopotentials or model po-
tentials. For low excited states, ab initio, pseudopotential
or model-potential calculations remain necessary and pro-
vide an interesting test of the present approach. For very
excited levels, the Green-function approach seems to be
the only tractable method. It has, moreover, the advan-
tage of flexibility as exemplified by the possibility of tak-
ing into account the influence of a small electric field. Fi-
nally this method allows one to understand how nonhy-
drogenic systems are simply related to the Coulomb prob-
lem.

FIG. 6. As in Fig. 5, but R fixed {R =50) and 0 in abscissa.
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APPENDIX: BESSEL FUNCTIONS
AS LIMITING CASES OF WHITTAKER FUNCTIONS

~„~+,~2(2r/v)=v 'V'2r Jz&+, (v 8r ) . (A 1)

This approximation requires r (2v.
Using the definition of 8' pg2 in terms of ~ z&2 and

&~2 [see Eq. (18a) of Sec. 2 of Ref. 19], together with
the relation I (z)I (1—z) =m/sin(mz) one then obtains

The first-order term of the expansion of ~„&~2 in
terms of Bessel functions [see Eq. (16) of Sec. 7 of Ref.
19] yields

W &&2(2r/v) —[V'2r /sin(mv)][ —v ~"+"~ I (v+(p+1)/2)sinIm[ +v(@+1)/2]IJ&(V 8r )

+v'" "~ I (v+(1 —p)/2)sinI~[v+. (1—p)/2) IJ &(~8r )] . (A2)

Now if p/(2v) «1,
v '"+" I (v+(p+1)/2)

=1(v)=v'" " '1(v+(I —p)/2) .

Recalling the definition of Y„ in terms of J& and J
[see Eq. (9.1.2) of Ref. 20], one obtains

W I+)gp(2r/v)

——I (v)V 2r j sin[rr(v —I)]I'2&+, (v 8r )

+cos[~(v l)]J2~+&(~Sr )] .—

This approximation requires both r & 2v and I/v « 1.

(A3)
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