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The quasiclassical ground-state energies exhibit typical analytic structures, as well as covariance
properties, with respect to certain symmetry transformations. Such symmetries enable us to define
corresponding classes of equivalent Hamiltonians. The scaling properties of the underlying phase-
space quantum have also been established. Here we shall consider spherically symmetrical Hamil-

tonians like p /m0+C„ /r '+C„ /r, where nl&2, n& ——2, and C„=O. C„(i=1,2) denote the

couplings, whereas n; are the power exponents. Generalizations towards exact or approximate ener-

gy levels, depending on the values of n& and nz, have also been performed. For nl ——2, this pro-
cedure leads us to reobtain the exact energy levels for n2 ——1 and n2 ———2, and to propose closed es-
timates for the other n2 values. The quasiclassical equivalence between the linear plus Coulomb po-
tential and the quartic anharmonic oscillator has also been established.

I. INTRODUCTION in which l=0. Accordingly, the GSE of Eq. (1.5) can be
parametrized as

Proofs have been given that useful analytic expressions
for the ground-state energies (USE's) of spherically
symmetrical Hamiltonians such as H(r, p) can be obtained
with the help of the quasiclassical minimization'

E~"'=g F(n)[g(d0+A, )]"~"

where

(1.6)

E =min5H (r),
where 5H(r) =H(r, A'd0/r) Her.e d0 denotes the underly-
ing phase-space quantum (PSQ). On the other hand, the
GSE's established in this manner exhibit typical analytic
structures, as well as covariance properties with respect to
certain symmetry transformations, which deserve further
attention. Generalizations towards exact or approximate
energy levels can also be performed. In what follows, we
would like to concentrate on the scaling and quasiclassical
symmetry properties characterizing the nonrelati vistic
Hamiltonian

(„j 2 C„C„
H„' (r,p) =

mo r 1 r2
(1.2)

where V„=C„ /r ' and V„=C„ /r ' are power poten-

tials. Particular cases such as

H„(r,p) = + V„,
m0

in which nC„&0 and n &2, as well as

2

a',"'~r,pi= + V, + V„,
ma

(1.4)

where n&2 and Cz&0, will also be discussed in some
more general terms. Above r = x and p =

~ p . Using
the parametrizations C„=may(n)l", , l, =A'/ma,
C2 ——mDXI], and x =r/l] leads to

2
1 ~„~ do+ y(n)E2" (x) = 5H2" (r) =

ma X X

na
F(n) = y0(n)

2

2/2 —n

(1.7)

In addition sgng(A+do) =1, where

g=sgn(2 —n) =sgn[ —ny(n)]=sgn(d0+A. ), (1.8)

II. SCALING PROPERTIES
OF THE PHASE-SPACE QUANTUM

Our approach originates from the idea of extending, in
a quasiclassical manner, the virial theorem towards the
limiting case of singular power functions like—ldp —dog~g, —r ' or g~y, —r . This proceeds with the
help of a suitable reordering of the square of the momen-

whereas n0 —— n ~, ya(n) = y(n) ~, and Ao= k
~

. The I
dependence concerns d 0. However, the centrifugal barrier
l(1 +1)/x will also be written down to illustrate the in-
fluence of scale factors. The dimensionless potential ener-
gy will be represented by V(x) whereas e(x) =5H(r)/mo
(i.e., the so-called energy "dispersion") will be referred to
as the Hamiltonian form.

This paper is organized as follows. In Sec. II we
analyze the scaling properties of da in terms of those of
the corresponding energy levels. Symmetry transforma-
tions of the Hamiltonian forms are discussed in Sec. III.
This leads us to establish the quasiclassical equivalence
between the quartic anharmonic oscillator and the linear
plus Coulomb potential in Sec. IV. Suitable parametriza-
tions concerning the energy levels of Eqs. (1.3) and (1.4)
will be given in Sec. V. The conclusions are presented in
Sec. VI. One appendix has also been included.
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rn2) do y(n i ) 1'(n2)
e=e„,' (x)=, + „+2 nl x

(2.1)

where 1=0. This works in terms of the quasiclassical
virial equation

n) 2 —n, 2 —n2
do = — y(n 1 )x ' — y(n2 )x

2 2
(2.2)

and of the concavity condition

turn operator, now in terms of dilations. We recognize
that the main problem is a suitable definition of do. In
this respect a useful input is to consider that do has mag-
nitude of the order of unity. This has the meaning of a
first or intermediary approximation. The understanding
is that the PSQ is in many soluble cases a smoothly vary-
ing function of the underlying couplings. Then step-
function approximations, i.e., the numerical description of
do in terms of one, two, or more constants, turn out to be
quite reasonable. The advantage of such approximations
is that they exhibit the convexity of the GSE with respect
to the couplings. Such couplings should occur linearly in
the Hamiltonian. Of course, there are potentials, as, e.g. ,
the power potentials (see below), for which do takes from
the very beginning constant values. In contradistinction,
the PSQ of Eq. (1.4) exhibits a nontrivial square-root
dependence on the C2 coupling. These results show that
the functional analytic properties of do are open for fur-
ther discussions. Accordingly, we shall continue our pre-
vious studies by establishing a first-order differential
equation for do, which comes from the scaling properties
of the USE.

Before beginning, we would like to mention that the
evaluation of the GSE in terms of quasiclassical parame-
trizations of energy minima has also been discussed previ-
ously. For this purpose, the usual virial and Feynman-
Hellman theorems have been used. However, absolute
constant do values have been invoked, so that further gen-
eralizations are necessary. Concrete improvements have
also been proposed. The main idea is to perform the en-
ergy minimization in terms of the rescaled eigenstates of a
soluble Hamiltonian. This in turn relies on the general
scaling-variational approach to the virial theorem. Such
results show that one should proceed further combining
suitably the usual and quasiclassical formulations of the
virial equation. For this purpose let us consider the
quasiclassical minimization of

in which 8& ——0/dpi and a2=a/ay2. This means that do
should be a decreasing function of y; as soon as c does the
same. The concavity conditions

Bando

=Co(0&x) +x Bie )x Bie

a,'d,' =C, (a,x)'+x'a', .)x'a,'. ,
(2.5)

should also be noticed. We can also make the identifica-
tion 1/x =—Be/Bdo, which is tied to Eq. (2.1). Then Eq.
(2.4) shows that the quasiclassical energy minimum is sub-
ject to the differential equation

Dc=a+
2 Ddo,

BF

Bdo

in which D denotes the differential operator

D = —,(2 n )1yi—B, +—,(2 —n )2ypB 2.

(2.6)

(2.7)

On the other hand, the usual virial and Feynman-Hellman
theorems show that the energy eigenvalue E fulfills the
scaling equation

DE =E, (2.8)

which also remains valid, of course, for the GSE. At this
point we want to stress that both E and c should exhibit
definitely the same scaling behavior. Combining Eqs.
(2.6) and (2.8), we then arrive at the differential equation

Ddo ——0, (2.9)

which shows that the most general solution to do has the
form do =f, (v). So far f, is a general non-negative func-
tion of the scaling variable

(2.10)

which is defined up to a power exponent. The typical
powerlike behavior of do can also be established using the

1/n
I 1/n

2new variables x/yi ' and x/y2 ' instead of x. Then
one would have in both cases do —v if 5=1/(n, —n2).
This in turn leads to the typical scaling variable

(2 —&2 &1 &2 &1 2j/ &1 &2

where n &n2. Thus the most general solution to do can
be expressed as do ——f2(u). Further constraints referring
to do come from the concrete analytic forms of the under-
lying potentials. Assuming, e.g. , that 2 )n» 0) n 2,
leads to the limits

y(n, ) y(n, )
Co=—n, (nl —2) +n2(nz —2) )0.

x x
(2.3) lim do ——lim do=f2(~)=do(ni)

r 1
~ —oo r2~0

(2.12)

1 1 2 1
02E = + 02dP Q 02dPtl2 X2 x

(2.4)

It is understood that Eq. (2.1) exhibits automatically the
GSE as soon as Eqs. (2.2) and (2.3) are fulfilled. Going
beyond the GSE, a more general quasiclassical extremiza-
tion can also be considered. Coming back to Eq. (2.1) and
performing the differentiation with respect to y& ——y(n &

)

and y2=y(n2) gives

1 1 2 1
B&E,= + c)ado ) BidPx2 x

lim do= lim do=f2(0)=do(n2),
r2

(2.13)

in so far as both V„and V„are attractive potentials.
I "2

Above do(n) is the PSQ characterizing the GSE of Eq.
(1.3). However, Eq. (2.12) [Eq. (2.13)f should be removed
if V„(V„) would be a repulsive potential. Further re-

] 2

quirements can also be invoked. Such requirements con-
cern the selection of concave (convex) monotonic func-
tions of the couplings. We may choose such qualitative
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E„=[(n 2)/—n]F(n)do" '" (2.14)

behaviors in agreement with corresponding data exhibited
by Eqs. (2.12) and (2.13).

We first recognize that constant d p values lead to
0;c & 0 and 0;c & 0, ' where i = 1,2. This indicates that
step-function approximations to dp mentioned above are
conceivable. Setting n~ ——2, Eq. (2.9) shows immediately
that do is independent of y(nq). Next let us perform the
n&~nz and y(n&)~y(nz) limits. Then u 1, so that do
becomes a constant. This is a nontrivial result, which
shows that the PSQ characterizing Eq. (1.3) is indepen-
dent of the coupling and depends on the power exponent
only. Under such conditions the GSE of Eq. (1.3) reads

generalize this result, thereby defining equivalence classes
of Harniltonian forms. Such classes remain invariant
under the symmetry transformations which will be dis-
cussed hereafter. For this purpose, let us define a new ra-
dial coordinate y and a new state function y(y) as

1
yP ——

X
(3.1)

g(x)=y y(y), (3.2)

respectively. Then the radial Laplace operator preserves
its form,

(2.15)

in which do do——(n) F.urther, one realizes immediately
that the coupling independence of dp is also preserved for
the logarithmic potential V(x) =g lnyx. This time

0
d2

c=g in@+a=g lny+ +g lnx
X

a' N —1a a' N —1a
ax 2 x ax y

—
ay 2 y ay

N —2 (1+p),

(3.3)

(3.4)

so that the scaling equation reads

—+g C=C+ g dp ——7. .g a
2 Bg X2 Bg

(2.16)

These results show that d 0 is independent of g and y. We
also observe that the above results concerning the super-
position of two power potentials are subject to a straight-
forward generalization towards the superposition
V= g,. V„of an arbitrary number of such potentials. In

t

such a case Eq. (2.6) becomes

—b,„+ + V(x) P=EgI (1+1)
(3.5)

becomes

A l(l+1) 2 1 p p E~y+, +, p+~
y y

2+v += 2+2 &

where N denotes the number of space dimensions. As we
are concerned with radial problems we shall set N=3. So
the originary Schrodinger equation

B.a~=E+, B.ad, ,
(3c

Bdp
(2.17)

in which

(3.6)

in which B.B= g,. B;y;, y; =y(n; ), 8; =8/By;, and

B;= —,
' (2 —n; )y;, whereas Co takes the form

X —2

4
(1—p') = ——,(1—p') . (3.7)

n;
Co ———g,. B;)0.

X
(2.18) This means that the above symmetry transformation

proceeds in terms of the mapping

g +P dp=0
~V

(2.19)

Other examples can be treated in a similar way. Just men-
tion that the screened Coulomb and exponential potentials
V(x) = —(g/x)exp( —yx) and V(x) = —g exp( —yx) yield
the scaling equations

1 2+2 2 Apx~ 2y py+
p

(3.&)

where p and p~ denote the squared radial rnomenta. It is
now a simple rnatter to write down the quasiclassical
counterparts of Eqs. (3.6) and (3.7). We have

and

g + —,y dp ——0. (2.20)

do l(1+1)+ + V(x) =s(x)
X X

(3.9)

Then the typical scaling variables are u =g /y and
u =g/y, respectively.

do A /(l+I) 2 p 1

, +,+, p+
X X X xP

E(x),

(3.10)
III. SYMMETRY TRANSFORMATIONS

OF HAMILTONIAN FORMS

Proofs have been given that the Schrodinger equation
with Coulomb potential can be mapped into the one for
the harmonic oscillator and conversely. " Here we shall

respectively. The latter PSQ has been denoted by do.
Next we observe that the p parameter can be chosen to
drop out the coordinate dependence of certain monomial
terms of Eq. (3.10). This leads to the onset of new eigen-
value terms, i.e., of new Hamiltonian forms.
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For the sake of discussion let us consider at the begin-
ning that V(x)= V„(x). Then Eq. (3.10) reads

IV. THE EQUIVALENCE BETWEEN THE LINEAR
PLUS COULOMB POTENTIAL AND THE QUARTIC

ANHARMONIC OSCILLATOR
do 1(1+1) 2 A p l (n)

2 2+2p —np 2+2p

Choosing the scale factor as

p=p&=
n —2

leads to the new Hamiltonian form

(3.12)

The quasiclassical symmetry properties characterizing
Eq. (1.2) are of further interest. Here we would like to
prove that the quartic anharmonic oscillator

d
Ei —— +px +A, 'x (4.1)

X

is equivalent to the linear plus Coulomb Hamiltonian

in which

d 0 l(1 +1) 2 A y(n*)+ 2 P + 2 +
X X x" (3.13) 2d 1 Q——+KX

X
(4.2)

whereas

1 (4 n)n—

4 (n —2)
(3.14)

Above p=@(—2), k'=y( —4), a= —y(1), and
ir=y( —1). This time general parametrization formula
for do, such as (A4) and (A5), are not available. Then we
shall prove the equivalence mentioned above using the
algebraic equations'

and

y(n*) = —p, E„,
e„~= —p~y(n),

(3.15)

and

p 2 9 2 27, 4 pc i+, c i
——dipFi — k'di —,d& ——0

4A.
' 2 4

(4.3)

n =p&n = 2n

n —2
(3.16)

e 2 92

C )+ C i+ CXKCi-
4d 2

K~ =0i+ ) (4.4)

4, 4„do(n*)+—do(n) =1, (3.17)
n

which has a self-evident meaning [see Eq. (A9)]. This is a
quite interesting result when opens the way to evaluate the
do(n)'s for 0& n &2 (n &0) in terms of those for n &0
(0& n &2). We also realize that Eq. (1.6) can be general-
ized using Eqs. (A5) and (A6). Then the consistency cri-
terion reads

-2 2 2d o=
2 —n

thereby preserving identically Eq. (3.17).

(3.18)

This gives n*E(0,2) if n G( —oo,O) and conversely. Re-
peating this procedure, we will come back to Eq. (3.11).
This means that the above transformations exhibit the
structure of a cyclic group. Indeed, the identity and in-
verse transformations are given by p= —1 and p= 1/p~,
respectively. In this way, the subclass of 0 & n & 2 Hamil-
tonians is converted into the one of n &0 Hamiltonians
and conversely. Then the n & 2 Hamiltonians build up an
equivalence class which remains invariant under the influ-
ence of such transformations. The main point is that
such symmetry transformations can help us to generalize
the GSE's of Eqs. (1.3) and (1.4) towards energy levels.
Such generalizations come from suitable parametrizations
of the PSQ, such as Eqs. (A4) and (A5), as shown in the
Appendix. The point is that these generalized expressions
for the PSQ are able to work consistently in conjunction
with the above symmetry transformations. This is a non-
trivial "covariance" behavior, which leads to sensible re-
sults. As a matter of fact, these relationships also enable
us to go beyond the starting evaluation of the GSE. Com-
ing back to Eq. (3.15), one then finds the covariance cri-
terion

which express the solutions to the quasiclassical minimi-
zation (1=0) of Eqs. (4. 1) and (4.2). Above do ——d~ and
do ——d &, respectively. Let us begin with Eq. (4.1). Taking
into account Eq. (3.8) leads to the following Hamiltonian
transforms:

2
E, 2=

X

3 +—x=—
4X 4 4

(4.5)

and

383=
X 9 2 9 2/3 9 4/3 9

(4.6)

and

2 3 2 4c2= + —4c,x +4Kx =4a
x 4x

(4.7)

/ 3C3=
X

5 4e 4&i 4
2 9 4/3 9 2/3 9

(4.8)

One realizes immediately that the third element of the
equivalence class involved in this manner is given by the
superposition between the n = —,

' and n = —, potentials.
Comparing Eqs. (4.1) and (4.7) leads to e, =4a, d, =d 2,
p= —4c.~, and A. '=4K, insofar as the n=2 term 4x

which are subject to cyclic transformations. Such
transformations work in terms of the scale factors
p&2 ————,, p23

————, , and p» ————, , which are responsible
for the mappings E~~c 2, Ez~E3, and E&~E 3, respective-
ly. The inverse transformations come from the inverted p
factors, such that p;z ——1/p~, . Starting from Eq. (4.2) and
proceeding quite similarly yields the transforms
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would be ignored. Then Eq. (4.3) reproduces identically
Eq. (4.4), provided that d 2

——4d, . Similarly, Eq. (4.3)
comes from Eq. (4.4) and (4.5) insofar as d

~

——4d 2,
whereas, this time, the term ——,', x should be

suppressed. Rescaled counterparts of Eqs. (4.5)—(4.8) can
also be invoked. In particular, Eqs. (4.5) and (4.7) can be
rescaled by the factors 4 and 4, respectively. This yields
the fixed d p results

and

Ep=
x

C)——+A. x = —p
4x

(4.9)

d 2

c.,= + —E)x +~x =a,1 3 p 4 (4.10)
x 16x

which express particular Hamiltonian forms relying on
the special selection of the same dp values. It is under-
stood that the general properties of dp under symmetry
transformations are subject to further investigations,
which go, however, beyond the scope of this paper. Note
that the above n =2 terms —

4 x and —„x can be in-

terpreted as Langer-Kemble corrections. ' The same
remains valid for the n=2 terms characterizing the other
Hamiltonian transforms. The mutual agreement between
the signs of the couplings and the GSE's is also fulfilled
in a self-consistent manner. Such results led us to say that
Eqs. (4.1) and (4.2) are subject to mutual equivalence. Of
course, the energy-level transforms, which are given by
the right-hand sides of Eqs. (4.5)—(4.10), work in conjunc-
tion with the corresponding Hamiltonian forms. The
equivalence-class affiliation of H4/3

' can be established in
a similar manner.

Next let us specialize somewhat by considering some
concrete examples. Starting, e.g. , from the anharmonic
oscillator p&=d

~
/x +x +x yields the corrected form

x
(4.1 1)

TABLE I. The dependence of d1 on the induced Coulomb
coupling for several l and n„values.

0
10
4
0

50
20
0

100
50
0

n,

0
0
3
5
0

15
25
0

25
50

4.648
54.184
59.020
60.130

375.060
418.964
427.982
914.572

1014.136
1049.208

1.629 672
11.696 143
12.500 154
12.682 433
51.714 501
56.258 025
57.176426

101.718 274
109.993 722
112.860 138

1.129 672
1.196 143
1.142 879
1.107 494
1.214 501
1.153 485
1.111302
1.218 274
1.166 543
1.112476

where a=c& and ~=A.'=1. Using available p& data, ' one
then finds immediately the corresponding d

&
estimates for

several n„and l values (@=A.'= I). Such d, estimates are
presented in Table I. This, in turn, induces the a depen-
dence of d&. This concerns, so far, the above particular
description of rescaled and corrected Hamiltonian
forms. ' The parametrization

TABLE II. The induced p dependence of dl for several l and
n„values.

0
1

1

2
0

10
50

n,

0
0
1

1

3
0

25

2.253
3.310
4.483
5.597
6.746
9 539'

39.444'

1.358 513
2.365 156
4.141 456
5.133 125
6.777 289

11.367 738
95.363 534

0.858 513
0.865 156
0.880 485
0.877 708
0.896 755
0.867 738
0.879 677

'These energies are WKB estimates.

d) ——(1+2n„)g+l+ —,
'

(4.12)

in which g is an adjustable parameter, has also been used.
One sees that g takes nearly constant values, as shown in
Table I. Further, the accuracy turns out to be better
within selected regions such as n, =0 and I » 0
(g=1.218) or l »0 and n »0 (g=1.166). A similar
analysis can be done for the inverse transformation. So
Eq. (4.10) shows that the anharmonic oscillator sets up via
E2"' ——a, p = —Y. &, and A,

' =~= 1, where the input
c&

——d ~/x +x —o. /x has been considered. Using energy
data, ' one then finds immediately the induced p depen-
dence of d&, now for a=0.1. These results are presented
in Table II. Equation (4.12) has also been used, this time
with g instead of g.

V. EXPLICIT EVALUATIONS OF ENERGY
LEVELS

Having now gained some experience with general prop-
erties of dp we are ready to discuss GSE's and energy lev-
els of Eqs. (1.3) and (1.4) in some more details. First let
us consider Eq. (1.3). We then observe immediately that
Eq. (2.14) reproduces the "exact" numerical evaluations of
the GSE presented in Ref. 17 for n & 0, in terms of certain
do(n) values, as shown in the second column of Table III.

—14

—0.5
0

d0(n)

2.165 871

1.886481

1.828 466

1.763 068

1.688 441

1.602 044

1.5
1.376 077

1 ~ 302 681
1.218 629

d wKB( )

0.75m

1.981 507

1.817 811

1.778 459

1.730 837

1.672 492

1.598 395
1.5
1 ~ 360 349

1.264 466
1.140 260

7
4

14
9

1.5
10
7

4
3

1.2

2
3

04
0+

d0(n*)

0.5
0.708 234

0.808 107

0.832 116
0.860 876

0.896 147

0.940 818
1

1.084 051

1.142 145

1.218 629

TABLE III. Numerical estimates of d0(n) for several n &2
values. For comparison, WKB estimates for n &0 have also
been inserted (Ref. 17).
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Further,

lim E„=F(—oo )do( —oo ),
n~ —oo

whereas V„(x) approaches the potential well

(5.1)

lim V„(x)= ' 0, x&1
(x), x)1 (5.2)

if F( —oo ) = 1. On the other hand, the exact USE charac-
terizing this potential well is ~, so that

lim do(n)=do( —oo)=rr . (5.3)

lim do(n) = —,
71 ~2

(5.4)

which comes from Eqs. (3.17) and (5.3). Moreover, Eq.
(2.14) approaches the GSE characterizing the logarithmic
potential' if do(0 )-=1.218629, as displayed in the last
row of Table III. Highly accurate numerical estimates
such as do( —1)=1.376083 54 and do( —4) =1.688432 59
can also be mentioned. Further, the n dependence of
do(n) has been displayed in Fig. 1. This shows that do(n)
is definitely a smoothly decreasing and convex function of
n. It is also interesting to notice that the GSE problem,
i.e., the do(n) problem, can be converted into the func-
tional equation

The WKB estimates for do ( n & 0) can also be established
using Eq. (5.15) of Ref. 1. This yields do ( —oo ) = 4

m. ,

instead of Eq. (5.3). Next, we can notice, quite satisfac-
torily, that Eqs. (3.16) and (3.17) enable us to establish re-

lated do (0& n &2) values. These estimates are given in

the last column of Table III. In particular,

lim = 1.218 629,S(r)
7~00 27

(5.6)

where S(r)=2&do(2/r) and where Eqs. (3.16) and (3.17)
have been used. Here r= 2/n H [1,oo ) and S(r) H [1,oo ).
This time S(r) is an increasing and convex function of r,
which is subject to the boundary conditions already men-
tioned above. One also has an arbitrary number of fixing
conditions at several concrete points, such as S(2)=4,
S(3)=6do( —, ), etc. We might notice that a useful ap-
proximation to d 0( n ) comes from the I/¹xpansion
method. ' Taking N=3 then leads to the approximation

1/2

do (n)= —+1 1 n

2 2 4
(5.7)

which has the virtue of reproducing exactly the limiting
value at n=2, as well as the well-known results concern-
ing the Coulomb potential and the harmonic oscillator.
However, this approximation ceases to be valid for large
negative n values, as do ( —oo)= oo. This disagrees with
Eq. (5.3).

To complete our discussion, let us now consider
nonzero 1 and n, values. We first realize that Eq. (A4), in
conjunction with A, =O, may be taken as a useful starting
point. Accordingly, we have to choose the general param-
etrization

do ——do(n;l, n„)=f0(n„)[do(n) ——,
' ]+1+.—,

' (5.8)

which exhibits covariance properties with respect to Eq.
(3.8), as proved in the Appendix. In general, we have to
take up the question of a suitable choice of fo(n, ). An
appealing idea is to consider a linear dependence on n„

(5.5)
fo(n, ) =A +Bn„, (5.9)

so that
where A and B are constants. Of course, we are aware
that further generalizations, requiring an extra bit of
analysis, may be necessary. However, Eq. (5.9) exhibits
the relevant attributes of the simplest possible choice.
This means that, whatever the exact general form of
fo(n„) might be, the linear choice (5.9) expresses a first
step towards further generalizations. This choice will
then be discussed in the rest of this paper. Next let us
turn to Eq. (4.12). This suggests writing the solution to
dp as

do ——(1+2n„)[C'do(n)+D']+1 + —,
'

(5.10)

-I Q -8 -6 -4 -2 0

where C' and D' are constants. This time one has a linear
dependence of rl on 10(n). Comparing Eqs. (5.9) and
(5.10) then leads immediately to 3 = —,8 =C'= —2D'.
Above 1, do(n) and n, have been interpreted, of course, as
independent variables. In consequence, one has just one
independent parameter, so that fo(n„) =A (1+2n„).
Hence, the linear description to dp emphasized above
reads

FICx. 1. n dependence of do(n). The numerical data of Table
III have been used. The dashed line from below reads

do(2) = 2, whereas the one from above displays the horizontal

asymptote do( —oo ) =m.. The dot-dashed line displays the
Coulomb case.

do(n;I, n„)=Po(n, n„)+1+ 2

where

130(n, n„)=( I+2n„)[do(n) ——,
' ],

(5.1 1)

(5.12)
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whereas 3=1 by virtue of the GSE. In practice,
and/or B can also be viewed as adjustable parameters.
Restricting ourselves to 3=1 and B=2 leads to

s„(l,n„) = F(n)[do(n;l, n, )] " '"n —2

n
(5.13)

which reproduces identically the well-known energy levels

of the Coulomb problem and of the harmonic oscillator.
Such agreements are not surprising, as they have also been
obtained within the WKB approach. However, the main
point is that Eq. (5.12) expresses a relevant approximation
to the energy levels characterizing other n &2 cases. For
this purpose, comparisons with some numerical data con-
cerning the energy levels of the linear and quartic po-
tentials are presented in Tables IV and V. The exact nu-

merical estimates would also be produced by Eq. (5.13) in

so far as one inserts do' '(n) instead of do(n) Su.ch effec-
tive do' '(n) values, together with the relative errors ~ to
the energy levels, have been quoted in these tables for
several 1 and n„values. In general, do' '(n) approaches
reasonably do(n), whereas the relative errors are admissi-

bly small. However, we observe that the relative errors
become somewhat larger if 1=0 and n„&0. Such cases,
for which the relative errors are larger than 5%, concern,
e.g., the (l, n„) pairs (0, 1), (0,5), and (0,25), as shown in

Table V. We could reduce such deviations choosing

B =2 —b,B (n „)-=1.873, (5.14)

do(n;1, 0)=do(n)+nz, (5.15)

where n„=O, in which nz
——1=0,1,2, . . . , plays the role

of the "principal" quantum number. Equation (5.15) can
also be generalized as

instead of B=2, where n = —4 and I=0. This shifting is
favored by the reasonable constancy of AB(n, ) around
AB:—0.127. However, the understanding is that within
the present minimization approach, the 1=0 choice con-
cerns the GSE. Accordingly, we have to take n, =O as
soon as 1=0. This also means that the quasiclassical
minimization singles out a preferred solution, i.e., the one
generated by n„=O. This corresponds to the accurate
solutions quoted above. Within a similar reasoning we
can also explain the good accuracy of the 1»n, results.
As a matter of fact, the accuracy of such solutions in-

creases with I. Such accurate solutions can then be
parametrized as

TABLE V. Comparison of c„(l,n„) with numerical energy
levels of H =p /2mo+r (n = —4).

0
1

0
2
1

3
5

0

10
0

20
50

n,

0
0
1

0
2
1

0
5

3
0

25
15
0

(exact)
&n

2.393 644
4.478 039
7.335 730
6.830 308

16.599 521
16.046 193
15.081 647
35.740 315
34.980 152
31.690 628

263.750 919
257.889 588
229.437 335

2.393 644
4.450 548
7.724 512
6.784 800

17.298 701
16.140 682
15.003 079
38.545 358
35.718 076
31.580 788

286.570 533
263.252 450
229.230 505

d(eff)
( )

1.688 432
1.700 878
1.636 951
1.706 972
1.643 081
1.678 085
1.714 685
1.620456
1.659 983
1.718 909
1.616 134
1.660 099
1.723 407

r%

0
—0.61

5.30
—0.66

4.21
0.59

—0.52
7.85
2. 1 1

—0.34
8.65
2.08

—0.09

for I » n„& 0, which works accurately for large n~
(1 »n„) values. This time nz ——1+2n„[do(n) ——,].

Coming back to Eqs. (2.12) and (2.13), further com-
ments are in order. First, —, &do(n&) &do(nz) if 2& n,
& n2. Next we take account of the horizontal asymptotes
do ——d (no~ ) and do ——do(n2). Accordingly, we have to
choose do as an increasing (decreasing) and convex (con-
cave) function of y(n2) [—y(n~)]. These latter couplings
have the general form —y(n)sgnn. Such proposals are
able to be supported by available data. Considering as an
example the linear plus Coulomb potential, one finds that
do is actually an increasing and convex function of
x=y( —1), as displayed in Fig. 2. (See Table VI.) These
do values are solutions to Eq. (4.4) obtained for some
available GSE data. Invoking general reliability
grounds, leads to consider that do should be, correspond-
ingly, a decreasing and concave function of a. Another
interesting observation is that Eqs. (2.12) and (2.13) can be

(n2j
combined with the algebraic equations for c„' to build up

1

accurate asymptotic formula for the GSE or for the ener-

gy levels. In particular, Eq. (4.4) works accurately in
terms of d, =do(1;l, n„) [d& ——do'"""(—1;l,n„)] if

do(n;l, n„« 1) =do(n)+nz(l »n„), (5.16)

TABLE IV. Comparison of c.„(l,n„) with some numerical en-

ergy levels of H =p /2mo+ r ( n = —1).

n„ (exact)
~n

1.855 757 08
3.244 607 62
2.6679
4.381 671 24
3.8768
3.3718

1.855 757
3.208 428
2.670 950
4.315 812
3.860 130
3.375 722

1.376 083
1.393 771
1.372 015
1.398 511
1.385 007
1.370 201

r%

0
—1.11

0.11
—1.50
—0.43

0.11

-005 0
I

Q4 0.6
I

0.8

FICx. 2. ~' dependence of do for the Hamiltonian form

d o /2~ 1 /~
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TABLE VI. Numerical dp estimates for n ~
——1, n2 ———1, and

y( —1)=2~' (+=2).
go(~o)

yp(4/n') y"' (5.23)

K

1

0.8
0.6
0.3
0.2

1.147 059
1.134654
1.118732
1.082 438
1.063 851

K

0.05
0

—0.02
—0.03
—0.04

1.021 662
1

0.989 279
0.983 273
0.976 651

Above qp &0. The same is valid for go(Ap), since

go(ko) = [do(n' & 2) —Ap] A p
—d p

2

n'

2
[( 1 —4kp)+( 1 —4A,p) ] (5.24)

a» ~~
~

(~&&
~

a
~

). The same remains valid for Eq.
(4.3), this time for p»Ap=

~

A,
'

~

(A. '&&pp ——
~
p,

~
) and

d
~
——do( —2;I,n„) [d

~

——d p'"""( 4; I,n,—)). Concrete man-
ifestations of such convergences have also been discussed
before. 2~

The Hamiltonian (1.5) can be treated in a similar way.
This time Eqs. (A5) and (A6) have to be used. We then
find the energy levels

e2"'(n & 2) = F(n)G„(kp)(do) (5.25)

where

In other words, the minimization of cz"' has been convert-
ed into the one of c 2" ', now with respect to the attractive
n' &2 potential V„'. Then the energy levels of Eq. (5.21)
come from Eq. (5.17) via Ez" ' E'2"——'(I, n„). This leads to
the extrapolation

E'2" (I,n„)= F(n)[dp(n;l, n„)] " '"n —2
n

if n &2, in which ny(n) &0 and

dp(n;1, n„)=Pp(n, n„)+[(I + —, ) +k]'

(5.17)

(5.18)
and

dp =( 1+2n„) dp
n

+[(I+—,
'

) —A. ]'~

(5.26)

Ap&(l+ —, ) (5.19)

by virtue of the linear parametrization of fp(n, ) discussed
above. Taking n=1 and —2, one sees immediately that
Eqs. (5.17) and (5.18) reproduce identically the exact ener-

gy levels established previously. This is a nontrivial gen-
eralization of the previous agreement concerning the
Coulomb problem and the harmonic oscillator. We also
realize that the accurate dp parametrizations are given, in
general, by dp ——dp(n;I, O) and dp dp(n;I, n, «——l). If
k & 0, the angular momentum is subject to the condition

G (A )=[g (A )]" '" '[ —' —A +(——A )' ] ' (527)

We would like to remark that a possible choice for a
direct generalization of Eq. (5.20) towards dp(n)&1 im-
plies some questionable points, so that it should be ig-
nored.

Finally, we have to mention that Eqs. (5.11)—(5.13)
reproduce identically the energy-levels established recently
to first I/N order, insofar as do(n)=do '(n) Then the.
dp evaluation which is responsible for such energy levels
reads

dp ——dp(n &2)= —, —A,p
—[(l+ —, ) —A,p]'~ &0, (5.20)

provided that it takes positive values needed. This condi-
tion is fulfilled immediately if l=0. Within the present
stage of our calculations one has, again do(n)=1. This
has the meaning of an intermediary symmetry condition,
as one might expect. Indeed, cz"' can be rewritten as

r

d p(n'&2) Xp

2
+V„' (y)

3'
(5.21)

in which l=O, n'=4/n H(0,2), and y =x "~, whereas

and

yp(4/n ')
qp= [Ao —do(4/n')]

gp(~o)
(5.22)

This leads to the onset of the stability condition A,p( 4.
Indeed, Eqs. (5.17) and (5.18) produce the l=O resonance '

characterizing Eq. (1.4) for n = 1, y(1) & 0, and A, & 0, in-
sofar as supercritical A,p& 4 values would be considered.
The case A. &0, n & 2, and g= —1 is of a special interest.
Now the only candidate satisfying the condition A,p&dp
1S

d p do '(n; —1—,n„)= I + —,+ —,(1+2n„)(2—n)'

which comes from Eqs. (5.7), (5.11), and (5.12).

(5.28)

VI. CONCLUSIONS

In this paper further steps towards a general quasiclas-
sical description of the energy levels of Eqs. (1.3)—(1 4)
have been formulated and discussed. The present ap-
proach is based upon the idea of combining Eq. (1.1) with
symmetry transformations, as well as with the scaling
properties of the underlying PSQ. This makes more effi-
cient the quasiclassical minimization proposed before. '

Like the usual virial method, one considers the problem of
obtaining energies without using wave functions. In this
respect Eqs. (5.13) and (5.17) reproduce exactly the well-
known results for n=1 and —2, and lead to useful and
closed approximations for the rest of the n's. The accura-
cy conditions read n, =0 and/or l »n„. This latter con-
dition exhibits certain similarities with the validity attri-
butes of the WKB method, which is a manifestation of
the common quasiclassical background. However, we
would like to recall that, in general, the WKB integrals
are hardly tractable. Accordingly, the present approach is
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quickly tractable and quite general, thereby opening the
way to perform efficient studies concerning qualitative
properties of several classes of potentials. We might no-
tice, however, that in order to make suitable choices
among admissible analytic candidates, confrontations
with numerical data have to be used. Iterative solutions
can also be done. This time we can take as starting points
the algebraic equations for the GSE, such as Eqs. (4.3)
and (4.4) mentioned above. In practice, we can then con-
sider the power-series expansions E( ——gk bku" and

d) ——gk cku", in which u =p /A,
' for Eq. (4.3), while

u =a /)r' for Eq. (4.4).
A particularly important interconnection concerns the

similarity between the quasiclassical minimization of
5H(r) and the usual minimization of the effective poten-
tial considered within the 1/N method. In addition,
both approaches are subject to mutual completions.
Indeed, the 1/N method enables us to establish useful da
estimates concerning the GSE and the energy levels, such
as Eqs. (5.7) and (5.28). In turn, such results are able to be
checked in terms of general symmetry transformations
and of other qualitative properties characterizing the
quasiclassical description of da. One realizes that Eq.
(5.7) fulfills the symmetry condition (3.17), whereas typi-
cal analytic structures and scaling properties are described

by Eqs. (1.6) and (2.9). Under such circumstances, dp

plays the role of the main parameter of the theory. Con-
crete manifestations of such interconnections for more
complex potentials are of further interest.

The basic assumptions about the concavity or convexity
attributes of d 0 have interesting consequences referring to
the negative regions of the underlying couplings. Such re-

gions refer, e.g. , to the A.
' &0 (p ~ 0) (Ref. 35) and the

((2 &0 (k'&0) (Ref. 36) phases of the anharmonic oscilla-
tor. One should then have a critical point A. '=A, ,' &0
(Ref. 38) at which dp(A, ') vanishes, whereas d()(p) tends
to infinity as (u~ —oo. Accordingly, dp(X') becomes
negative for X' & A.,', which signals the onset of resonances.
In contradistinction, the limit dp(p)~ oo may be under-

stood in terms of the scaling dp —(pp/)(, '
) ', where |), is a

critical exponent having the magnitude order of unity.
These few examples show that the limits d0~0 and
do~ ap involve nontrivial manifestations requiring fur-
ther attention. Of course, for more complicated poten-
tials, superpositions of convex and concave da contribu-
tions should also be considered, which is related to the ex-
istence of several scaling variables.
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APPENDIX: GENERAL PARAMETRIZATIONS
FOR dp AND dp

d() ——d'-+)(l, k)= —,+[)(.+(l+ —,
'

) ]' 2, (A2)

which serve as inputs for further generalizations. Alter-
natively, one would also have the proposal

d() ——d()+A, +l(1 +1), (A3)

which competes with (Al). This is a concrete manifesta-
tion of Eq. (4.9) of Ref. 1. Next we observe that d' —)(l, l, )

is subject to further generalizations. For this purpose, we
shall consider the more general parametrizations

dp ——d(+)(l, n„k, )

(A4)

and the same for d 0,

d() ——d'+'(l, n„A, ), (A5)

which rely on Eqs. (Al) and (A3), respectively. Equations
(A4) and (A5) have also been constructed by choosing the
positive sign in the front of the square root. This is, in
fact, the only representation which works irrespective of
the sign of A, , insofar as n &2 and ny(n) &0. In general,
fp(n„) is a positive function of the radial quantum num-
ber n, . Whether more general proposals are useful is an
open problem. As a matter of fact d'+'(l, n„O) turns out
to be fairly approximated by a bilinear function in n, and
I, where A, =O. We might notice that this choice seems
not to be unique, as biquadratic functions in n, and I can
also be invoked. However, we need to specify that such
a sensitivity has been checked for short-range Yukawa-
like potentials. Next, let us remember that d p( n )

expresses, in agreement with Eq. (2.14), the PSQ which is
responsible for the GSE of Eq. (1.3). Then the energy lev-
els of H„come from the combination of Eqs. (2.14) and
(A4), now for A, =O. Of course, for the GSE one has
fp(0) = 1. On the other hand, Eq. (1.6) can be rewritten as

E(n) n
y (n)(d2)2n/(n —2)

n
(A6)

if n & 2, which is tied to the symmetrical dp(n) =1 input.
Accordingly, dp+A, (1=0) can be rewritten as dp, where,
this time, Eq. (A6) has been used. One sees that Eq. (A6)
reproduces identically Eq. (2.14) if d'+'(0, 0,0)=1, i.e., if
d0 ——1. It is obvious that this symmetry ceases to be
preserved if dp(n)&1. The main point is that the com-
bination of Eqs. (A5) and (A6) leads to the extrapolation
of Eq. (1.6) towards energy levels, now for dp(n)~1.
Next we would like to anlayze the influence of the sym-
metry transformation (3.8) on Eqs. (A4) and (A5). Ac-
cordingly, Eq. (A5) becomes

The A, dependence of da has been discussed in Ref. 2
with the help of the condition

d p
——fp(n„)[dp(n*) ——,

' ]+p)(l + —,
' ), (A7)

d, =dp+ l, + 1 (l +1),
where A,&0. This equation has the typical solutions

(Al)
in which A, =A, where Eqs. (3.7) and (3.15) have been
used. For the sake of generality fp(n„) has also been re-
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2do PO 0

where p0
——

~ p~ ~

. Then

(A8)

quoted as fo(n, ). One realizes that Eqs. (A6) and (A7) en-
able us to establish the explicit form of E,. Under such

conditions Eq. (3.15) can be written equivalently as

do(n') = —,
' + [d0(n) ——,

' ],2 —7g
(A9)

provided that f0(n„)=fo(n„). In other words, the emer-
gence of the symmetry behavior is basically determined by
Eq. (A9). This also means that Eq. (A5) has been chosen
to be consistent with Eq. (3.8).
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