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We investigate the adiabatic eigenfunctions and eigenvalues (and therefore the effective potentials)
associated with the hyperspherical harmonic expansion of the wave function for three particles on a
line subject to §-function interactions. Because of the special separability of the potential matrix ele-
ments, we obtain the effective potentials as the solutions of a transcendental equation and we also
obtain the eigenfunctions in closed form. We demonstrate that the long-range (large hyper-radius p)
behavior of the effective potentials is qualitatively different from the long-range behavior of the po-

tential matrix elements.

I. INTRODUCTION

The standard method of solving the quantum-
mechanical two-body problem involves expanding the
wave function into a series of partial waves, using spheri-
cal harmonics as basis functions. For central potentials,
one then obtains an infinite set of uncoupled ordinary dif-
ferential equations in a single radial variable r. These can
then be solved for the bound-state energies and scattering
phase shifts. These quantities provide a complete descrip-
tion of the two-particle scattering, and also enable one to
calculate the contribution of two-body collision effects to
equilibrium and nonequilibrium properties of gases.

For the three-body problem, the analogue of the
partial-wave series is an expansion of the wave function
using hyperspherical harmonics as basis functions.!
Again, there is a single radial coordinate, p, which is a
measure of the overall size of the three-body system, and
again Schrodinger’s equation reduces to a set of ordinary
differential equations in this radial coordinate. The prin-
cipal difference is that these equations are now coupled
via the potential terms, and so their solution is a much
more complex procedure than in the two-body case.

Nevertheless, the hyperspherical harmonic (HH)
method has been used extensively and with considerable
success in the study of bound-state problems. We men-
tion just a few investigators whose work we have found
especially close to our own: Fabre de la Ripelle and Bal-
lot? in nuclear physics; Fano, Macek, and Lin® in atomic
physics. There have also been limited applications to
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scattering problems and rearrangement collisions.

Our involvement in hyperspherical harmonics arises
from our interest in statistical mechanics. For dilute
fluids, the corrections to equilibrium properties due to
three-body collision processes are contained in the third
virial coefficient, or the third cluster coefficient in the
fugacity expansion for the pressure. The connection be-
tween this quantity and the HH formulation of three-body
scattering has been worked out in detail for both three-
dimensional* and two-dimensional® systems, with two-
body bound states excluded, but so far there have only
been calculations for certain limiting cases. Progress in
doing more extensive calculations has been severely limit-
ed by the numerical complexity of solving the coupled
differential-equation system. In practice, one works with
a finite set of equations, which is then increased to
demonstrate convergence. This leads to problems in both
numerical stability of solutions, and in computer time and
storage capacity. Thus some systematic approximation
procedure is desirable.

A key approximation which has been found to be very
useful in atomic and nuclear physics (see previous refer-
ences) is the so-called adiabatic approximation (AA), and
various modifications of it. Essentially, one expands the
wave function in terms of new basis functions which are
eigenfunctions of the angular plus interaction-potential
part of the Hamiltonian (written in hyperspherical coordi-
nates, as functions of p and angles). The expansion coeffi-
¢ients then satisfy a set of coupled differential equations
in p only. This is exact, but by neglecting the coupling
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terms entirely (that is, the off-diagonal elements), one ob-
tains a set of uncoupled differential equations in the vari-
able p, which have the form of two-body Schrodinger
equations, but with an effective potential replacing the
original potentials.

The AA results in a considerable simplification of the
problem. The calculation can now be performed in two
separate steps, the first being a matrix diagonalization in
order to find the effective potentials, point by point, and
the second being the solution of the modified radial equa-
tion with this effective potential. In the case of atomic
physics, this approach gives qualitative understanding of
several-electron processes, in a way which is difficult to
obtain otherwise. Nevertheless, questions still remain re-
garding the extent of its validity, and the implications of
its shortcomings, as well as the nature of the convergence
as the size of the truncated set of equations is increased.

Thus it is very desirable to investigate the validity of
the method within the context of an exactly soluble sys-
tem. Unfortunately, for the quantum-mechanical three-
body problem there are no realistic cases for which the ex-
act solutions are known. Thus we have to restrict our-
selves to the somewhat artificial situation of three parti-
cles on a straight line. For the case of equal-mass parti-
cles interacting via equal-strength 8-function potentials,
both the bound-state and scattering solutions are known
exactly.>”  Also, the thermodynamics of a one-
dimensional gas with repulsive §-function interactions has
been worked out.®

There is no problem in adapting the HH method to one
dimension,’ and it also turns out that in the present case
one can proceed analytically a long way towards con-
structing the effective potentials. This enables us to inves-
tigate a number of interesting points, which may other-
wise have been obscured in a purely numerical calculation.
Particularly, we investigate the large-p behavior of the ef-
fective potential, and also the way in which the solutions
change as we increase the number of differential equations
in the truncated set. We can also write analytical, closed-
form, expressions for the elements of the adiabatic basis.
This is important both in itself, and as a tool for the fur-
ther exploration of the solutions of the transformed cou-
pled (nonapproximated) set of equations.

A word should be said about statistics. A complete set
of unsymmetrized harmonics for our model is the set of
exponentials (277')_1/Zexp( iKe) with K =0, +1, £2,....
From this we can construct symmetrized combinations
(cosines and sines) which transform as I'; and T'; (sym-
metric and antisymmetric one-dimensional representa-
tions) and also select pairs, of either exponentials or sines
and cosines, which transform as members of the two-
dimensional representation I'y. We have done this. (See
also the independent work of Perez et al.'®) However, for
our purpose, which is to study three identical spinless par-
ticles described by fully symmetric wave functions (I";)
which include the lowest harmonic, K =0, we can
equivalently and much more simply use the unsym-
metrized set of exponentials subject to the condition
K =0(mod 6). This makes much more apparent the prod-
uct structure of the matrix elements and leads to the same
sum rules as the more formal procedure.

II. THE HYPERSPHERICAL HARMONIC METHOD

We consider a system of three identical particles mov-
ing in one dimension and interacting via two-body poten-
tials V(|x;—x;|), x1,X,,x3 being the Cartesian coordi-
nates of the particles. The center-of-mass coordinate R
and the Jacobi coordinates &,7 are defined by

R=(3)"2x+x34x3),

X +x
E=(3)"? —12 2 xs ], 2.1)
772(%)1/2()61—)(2).

We now introduce the “hyperspherical” coordinates p,6
which for the present case are simply plane polar coordi-
nates,

n=pcosh, E=psind, 0<O <27 . (2.2)

Then Schrodinger’s equation for the three particles, with
center-of-mass motion removed, is

# (13 9 1 3?
~3m o appaerp2 302 W(p,0)+V(p,0)Y(p,0)
=E¢(p,0), (2.3)
where
V(p,0)=V(V2p|cos | )+ V[V2p|cos(0—2m/3)|]

+V(V2p|cos(0+2m/3]) . (2.4)

The hyperspherical harmonic (or K-harmonic) expansion
of the wave function takes the form

© 1 iK6
(p,0)= - ( , 2.5
Yip E P dx(p) vV 2m (2.5)

K=—w

and inserting this in (2.3) leads to the infinite set of cou-
pled ordinary differential equations

# | a2 K-+
“om gp—z_ ¢K(P)+% Vix(p)dg(p)
where
1 b (K '—
VKK'(p)=E o e(K KwV(p,O)d@. 2.7

The procedure now is to truncate the set (2.6) at some
value K., and solve the resulting finite set. This should
then be repeated with increasing K,,, until the numerical
values, for the particular bound-state energies or scatter-
ing quantities that we are interested in, have converged.

However, in this paper we do not wish to solve the
truncated set exactly, but rather to investigate an approxi-
mation method, the adiabatic approximation, which un-
couples the equations of the set, and reduces the problem
to that of solving a single differential equation.

We start by writing (2.6) in the form

d*® 2mE
2 + 2
dp #i

P -MP=0, (2.8)
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where @ is a vector with components ¢x and M is the
square matrix with elements

2__ 1
St zﬁ—’;’ Viexp) - (2.9)

M is Hermitian, and so can be diagonalized by a unitary
matrix U. Let

MKK'(,D)Z >
p

U'MU=A, (2.10)

where yTU=I and A=A(p) is a diagonal matrix. Also
define ® by

o=U'e. (2.11)
Then, multiplying (2.8) on the left by U, we find
d*® 2mE~ x ..+d?Ux +dU d®
—+—P-AP+U —P+2U ———=0
dp® # dp® dp dp
(2.12)

The AA (also called the extreme adiabatic approximation)
consists of neglecting all the p derivatives of U; that is,
we assume that U is a slowly varying function of p. Thus
4® (mEG A®=o0.
dp #i
A is a diagonal matrix whose elements Ag can be labeled
by the quantum number K according to the requirement
that

(2.13)

K*— 5
, V—0.
P

Thus in the AA we have to solve the set of uncoupled
equations

Agx— (2.14)

dZJK 2mE ~ KZ—% ~
+ — |Ax+ =0, (2.15)
dpz ﬁz ¢K K pz ¢K
where
2_ 1
Ag=Ag——— (2.16)
P

Note that (2.15) is formally equivalent to the radial
Scrhédinger equation for two particles in two dimensions
interacting via the potential Ag.

The above formulates the AA in terms of matrix diago-
nalization. An alternative, but entirely equivalent, treat-
ment is given in Appendix A.

III. 3-FUNCTION INTERACTION

We now apply the above scheme to a particularly sim-
ple case: three identical particles on a straight line in-
teracting via equal-strength 8 functions. This system can
be solved exactly,G'7 and the motivation behind our treat-
ment is to find how well the HH method, with the AA,
reproduces these exact solutions.

The two-body potential is

Vi|x;—x; | )=g8(x; —x;) , (3.1)

where g is the strength of the interaction. Transforming
to hyperspherical coordinates gives, for the sum of the
three binary potentials [see (2.1)],

V(p,m:?.gz_p[s( | cos6 | )+8( | cos(0—27/3)|)

+8( | cos(6+2m7/3)|)] . (3.2)

Note that although the 8-function potential is highly
singular, nevertheless V(p,0) is a smooth, differentiable
function of p; the discontinuities are entirely in 6. Thus
we expect the AA to be valid for this potential.

It is a straightforward calculations to show that the po-
tential matrix elements (2.7) are

1 3g iK' =K /2
T \/Z_Zp

0, otherwise .

, K—K'=0(mod6)
VKK'(p):

(3.3)

Note that the nonzero elements of Vgg/(p) are precisely
equal to three time the matrix elements of V(|x;—x,]|)
and are proportional to p~!. Also, Vxx(p) vanishes un-
less K=K'(mod 6), this property being, in fact, a conse-
quence of the invariance of V(p,0) under permutation of
the particles, and so not peculiar to the §-function interac-
tion. Thus the complete set of equations (2.6) is divided
into six distinct subsets, corresponding to K =n(mod 6),
n=0,1,...,5. The equations within each subset are cou-
pled, but there is no coupling to a member of any other
subset. This means that each of the six subsets of equa-
tions can be treated entirely separately. Thus, in the fol-
lowing, we assume that K =K'(mod 6).
The AA involves diagonalizing the matrix

2 1

- 4 8KK’+£e —iKw/2giK'T/2 (3.4)
p

MKK'(p )=

where ¢ =(2m /#*)(3g/mV'2). In general, one would ex-
pect to have to do this numerically. But in the present
case, because the potential term in (3.4) is separable, one
can proceed analytically.

Consider first the more general problem of finding the
eigenvalues and eigenvectors of an N XN matrix H with
elements

Hij=h;6;; +Afig; , (3.5)

where h;, f;, gi, and A are arbitrary. We thus wish to find
X; and € such that

zHinj=€Xi . (3.6)
J
Substituting (3.5) into (3.6) leads to
Afi
X;i= p—y %)g,-xj . (3.7

Multiplying each side by g; and summing over i gives,
upon cancelling the common factor ,;8:X;,
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fi8i

i

This is a polynomial in €, the roots of which are eigen-
values of H.!! Equation (3.7) shows that the correspond-
ing (unnormalized) eigenvectors have components
Ji
X:=A——— . (3.9)
Y e—h;

Applying this to the present case, we find that M has
eigenvalues Ak satisfying

c 1
-5 — (3.10)
p KE K?—5
Ag — —
p
In terms of the effective potential Ag defined by (2.16),
(3.10) is

1=

1

> K?’—K”

Ag+———
P

(3.11)

The (unnormalized) eigenvector corresponding to Ag has
components
c
h-s— (3.12)
KZ_KIZ
P

Comparison with (2.10) shows that the columns of U are
the normalized eigenvectors; that is,

Uk =X&73 | X2 (3.13)
<

The procedure now is to solve (3.11) for Ag and substi-

tute in (3.12) to get X'®). Equation (3.11) holds when

K,K' take either a finite or infinite range of values. In

the latter case, we can do the sum explicitly, as will now

be shown. We restrict ourselves to the case where

K =0(mod 6); other cases can be treated similarly.
Let

K'=6k'", (3.14)
2
22=(p/6) AK+%} : (3.15)
P
Then (3.11) becomes
d 1
1=£5 —_— 3.16
36 e ZZ_kIZ ( )
The standard result!?
e 1 T
= ZZ—kZZ?COt(WZ)’ z£0,%+1, ... 3.17)
applied to (3.16) gives
wz tan(wz)=(m7/6)%oc . (3.18)
Once this has been solved for z, Ag is found from
Ag =[22—(K /6)*)(6/p)* . (3.19)

Equation (3.18) defines z as a multivalued function of p.
Its solutions are given by the intersections of the curves
y=mztan(mz) (3.20)
and
y=(m/6)%c . (3.21)
This is illustrated in Fig. 1. To determine the appropriate
branch, we first note that (see Appendix B)

c/p, p—0, K=0

Ag ~ (3.22)
2c/p, p—0, K50
Thus from (3.15) we have
z—K/6, p—O0, (3.23)

and this establishes that, for a given Ks£0, we must
choose the solution of (3.18) satisfying
Kr m

KT T
——<mZ< 4+ .

6 > 6 5 (3.24)

For K=0 and ¢ >0, the range is O <7z <7 /2. Finally,
for K =0 and ¢ <0 we must proceed somewhat different-
ly. In Fig. 1 there is no intersection for this case, the
reason being that z as defined by (3.18) is imaginary. It is
clear that in this case (3.15) and (3.18) must be replaced by

&= —(p/6)*Ay
and

¢ tanh(m&) = —(7/6)%pc .

(3.25)

(3.26)

The equations y =7¢ tanh(76) and y = —(7/6)%pc have a
real point of intersection.

B E—
T

T
= (g) .
|
\
|

< '1/
y=mztan nz
2
=10( 3]

[
ol

0 0.5 10 15 2.0 25

FIG. 1. Plot of y =7z tanwz as a function of z, together with
the lines y:(7r/6)2pc, for the cases p=10, c==1. The inter-
sections determine the adiabatic effective potentials Ax via Eq.
(3.19).
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FIG. 2. Adiabatic effective potentials Ak, derived from an
infinite set of coupled equations, as functions of the hyperradius
p for the repulsive case ¢ =1.

IV. THE EFFECTIVE POTENTIAL Ag

We now wish to look in detail at the effective potential
Ag derived in Sec. III. For an infinite set of equations,
Ay is determined by (3.18) and (3.19). One way of finding
z is to write (3.18), using (3.24), as

zZ= —IS + Larctan
T 6w 36

ﬂl] @.1)
z

and iterate, starting with z=K /6 (or z small for the case
K =0). Ag is then given by (3.19). For the exceptional
case Ag(c <0), (3.25) and (3.26) can be written as

\/—Aoz—%/tanh 17631/—% ) 4.2)

which can again be solved by iteration.
The results of some of these calculations are shown in
Figs. 2 and 3, where we plot Ag against p for K=0, 6,

FIG. 3. Adiabatic effective potentials Ak, derived from an
infinite set of coupled equations, as functions of the hyperradius
p for the attractive case c = —1.
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and 12, and ¢==*1. (There is no loss in generality in tak-
ing these values for c, since any other value simply re-
scales Ag and p as Ag/c? and p|c|. Also, we do not
need to consider negative values of K, since using the
symmetric basis would lead to the use of only non-
negative indices. Formally, we can verify that
A—K = AK )

A word should be said about the curve crossings in Fig.
3. These are, of course, crossings of the effective poten-
tials, Ag; the adiabatic eigenvalues Ag, which are related
to Ag by (2.16), exhibit no such crossings. This is evident
graphically, or it can be proved using the equations defin-
ing Ak given above.

A. Analysis of the results

The most striking feature of these graphs is the
behavior of Ay (c=—1) for large p, and this will be dis-
cussed below. Let us start with the other curves, which go
to zero for large p. The original potential matrix element
was

2m

— Vikx'(p)=

e—iK‘rr/ZeiK’n'/Z , (4.3)
#

<
p
and so behaved as p~! for both small and large p. The
limiting behavior of the effective potential Ag is studied
in Appendix B. We find that for small p the behavior is
still p~! [see (B2)], but for large p, Ay falls off as p~2 [al-
ways excepting the case A, (¢ <0)]; the leading terms are
given explicitly in (B9) and (B10). Thus there has been a
remodeling of the tail of the potential, with the original
p~! tail becoming a much more manageable p~2. One
finds a similar remodeling of the tail for three particles in
two dimensions, where the basic p_2 behavior of the ma-
trix elements is changed to a (;)2lnp)_l behavior for large

The general situation regarding long-range behavior is
as follows. A system of three particles subject to short-
range binary potentials can have significant interaction
even for large values of p, since for particular values of
the angles specific particles can be close together. (For ex-
ample, p and r;; can be large and r;; small,
rij=|r1;—1; | being the distance between particles i and
j.) Matrix elements which involve weighted integrals over
the angles, and therefore the configurations of the three
particles, will have long-range tails (which behave as p—¢
where d is the dimension). The actual long-range interac-
tion, in the AA given by the adiabatic potential, can have
a behavior which is analytically distinct from that of the
matrix elements.

The results given above are associated with three parti-
cles asymptotically free at large distances (with a wave
function equal to a function of p times the appropriate
adiabatic eigenfunction). The scattering of these particles
from each other will then be qualitatively affected by
changes in the tail. This is especially evident in the
threshold behavior of the phase shifts as a function of the
energy. For the one-dimensional case, a p~! tail gives a
phase shift which diverges for small values of the wave
number ¢ as g ~'Ing, whereas a p~? tail gives a constant.
This p~? tail dominates the low-energy scattering and the
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AA gives phase shifts of —37/2 and 3% /2 for the repul-
sive and attractive cases, respectively. A comparison with
the work of McGuire and Dodd® leads us to believe these
threshold values to be correct.

We now turn to the attractive case with K =0. The po-
tential Ay (¢ <0) shows quite exceptional behavior in that
it does not go to zero as p— o, but rather to —m*c2/36,
and also the approach to this limit is exponential, rather
than powerlike. [See Appendix B and especially (B19).]
Now, —72c%/36 is precisely the energy of the two-body
bound state for the 8-function potential g&8( | x; —x; | ).

To understand this, let us again suppose that p and 73
are large and that r|, is small. We can verify that, to
leading order in an expansion in p~! and therefore asymp-
totically correct, the derivatives in p in (2.3) give us the ki-
netic energy associated with the relative motion of particle
3 and the center of mass of particles 1 and 2. Still refer-
ring to (2.3), the derivative term in 6, divided by p? and
again to leading order, gives us the relative kinetic energy
between 1 and 2. Since the binary potentials are short
ranged we see that for small values of r;, the functional
equation for the adiabatic eigenfunction [Eq. (A9)] is sim-
ply the two-body Schrodinger equation. If the two-body
Hamiltonian admits a two-body bound state in its spec-
trum, that negative eigenvalue will appear as the asymp-
totic behavior of one of our effective potentials. The cor-
responding AA wave function (amplitude times eigen-
function) then either represents a solution which at large p
describes one particle (free) and a two-body bound state
or, if the potential depth and masses of the particles per-
mit it, a three-body bound state. In Sec. V, below, we
shall show that one further aspect of Ay (¢ <O0) is its pre-
diction of a single three-body bound state.

Before leaving these matters, we should emphasize that,
preceding us, much thought has been devoted to the
behavior of this adiabatic potential by investigators cen-
tered about Fano.> The initial investigations of asymptot-
ic bound-state situations was directed around the lines of
Macek and Lin.> Our model is useful due to its simplicity
and to the possibility of writing down exact expressions,
for example, for the adiabatic eigenfunctions for all p (see
Appendixes), and expansions for the effective potentials.
We have, of course, also obtained a wealth of numerical
data.

B. Convergence

It is of interest to study the way in which Ag obtained
from 2N +1 equations [which we denote by Ag(N)] ap-
proaches Ag obtained from the infinite set [denoted by
Ak ()], as N increases. This is a question of great prac-
tical importance in more complex cases, where Ag( o) is
not known exactly, and one can only calculate Ag(N) for
increasing values of N.

We restrict our discussion to A,. Figure 4 shows A, for
the repulsive case (c=+1) and N=0, 1, and 10. On the
scale used Ag( o) is indistinguishable from Ay(10). It is
seen that Ay(N) approaches Ag(co) quite smoothly and
quickly. The asymptotic approach to the limit is well
described by

Ag(N)=A¢(0)+a/N , (4.4)
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BoiN)

0 8 16 24 32

FIG. 4. Adiabatic effective potentials Ay(N), derived from
(2N +1) coupled equations, as functions of the hyperradius p
for the repulsive case ¢ =1. On the scale of the graph, Ay ) is
indistinguishable from Ay(10).

where a depends on p but is almost independent of N for
N > Nj. In the repulsive case, Nq~8 gives a good fit.

For the attractive case, the situation is rather different.
Figure 5 shows Ay(N) for c=—1 and N=0, 1, 10, 100,
and «. The approach to Ay( o) is now much slower, and
the rate depends strongly on p, being quite rapid for small
p and very slow for large p. In fact, there is a noncommu-
tivity between the limits p— o and N— «, as is clear
from (B3) and (B19). Thus one cannot hope to get the tail
of Ag(c <0) by straightforward solution of a finite set of

0 8 16 24 32
T T T
8y(0)
Bol)
-0 —
-0.2— 8p(10)
()
A(%)z £,(100)
03l By (=) _
0L —
-05 1 | l

FIG. 5. Adiabatic effective potentials Ay(N), derived from
(2N +1) coupled equations, as functions of the hyperradius p
for the attractive case ¢ = — 1.
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equations, even for very large N. Again, the approach to
the limit can be fitted to a relation of the type (4.4), but
Ny is now much larger, and also depends on p in such a
way that No— o0 as p— .

For the two-dimensional case,!* the overall picture is
very similar, except that a much larger number of har-
monics (several hundred) is required to attain convergence
in the asymptotic region, even in the repulsive case. Also,
the number of harmonics increases steadily as p is in-
creased.

V. THREE-BODY BOUND STATE

Three attractive delta-function bosons have one bound
state at the energy

B el
2m 9

We now investigate how closely the HH method approxi-
mates this value.

The simplest approximation is to take only the K=0
equation from (2.6), and neglect its coupling to the others
entirely. This gives the equation

d’¢o
dp?

(5.1

2mE
ﬁZ

c 1

P4t

+ do— $o=0 . (5.2)

This is related to Whittaker’s equation, and it is readily
shown that it has bounded solutions for energies

1 #c?
n"—m o’ n=0,1,2,... (5.3)
with the corresponding wave functions
d =e 2212 (2), (5.4)

where z=2p|c|/(2n+1) and L,(z) is the nth-order
Laguerre polynomial. The lowest energy level of the
series,
2.2
Ey=— T (5.5)
2m

reproduces the exact energy level (5.1) to within 10%.
(This was already pointed out by Amado and Coelho.%)
The value (5.5) is reasonable, given that it is a first ap-
proximation, but there is also the problem of the remain-
ing infinite sequence of spurious energy levels.

The next approximation would be to consider three cou-
pled equations (K,K’'=—6,0,6) from (2.6). In the AA,
this gives the effective potential
172
A= < + —122;— —

pp

18 ¢
pt P

(5.6)

Treating this as a perturbation on c/p, and employing
first-order perturbation theory, gives the lowest energy
level as
2.2
Ep——1.0287¢" (5.7
2m
This is an improvement on (5.5), but there still remains
the problem of the infinite number of energy levels, aris-

ing from the p~—! behavior of Ay as p— . As shown in
Appendix B, this long-range behavior of A, persists for
any finite number of coupled equations [see (B3)], so the
problem of the spurious energy levels remains.

But when we consider the infinite set of coupled equa-
tions the situation changes. A, now approaches its
asymptotic limit exponentially, as shown by (B19). This
is a crucial change of behavior, and a numerical investiga-
tion now confirms that there is now only one bound
state.!* A first-order perturbation calculation employing
the small-p series obtained from (3.26),

2.2 4.3 6 .4
Aozi_ Tog * 145807~ 37556307 +O®"
p—0 (5.8)
gives
E,3=—1.099’522—;2 , (5.9)

which is within 0.22% of the exact value (5.1).

VI. CONCLUSION

This paper is the first step in a comprehensive investi-
gation of the HH approach to the three-body problem in
the context of an exactly soluble model. We have shown
that, using the AA, many steps which normally have to be
done numerically can be done analytically, and that it is a
simple matter to calculate effective potentials, Ag(p).
This enables us to investigate convergence as a function of
the number of coupled equations used, and to analyze
closely the behavior of Ag(p) as a function of p.

The most significant feature is the behavior of Ag(p) as
p— . Whereas the original potential matrix elements
Vkkp) have a p~! behavior, in Ag(p) this is modified to
p 2, thus giving rise to a qualitatively different threshold
behavior for the scattering three-body phase shifts. An
exception is A(p) for the attractive case, where a p~!
behavior is retained for a finite number of equations, but
is changed completely (tending exponentially to the two-
body bound-state energy) for an infinite number of equa-
tions. This exponential decay gives the correct result of
only one three-body bound state (however, see Ref. 14),
and also gives the binding energy to within 0.22%.

Thus we see that the HH method with the AA works
well for the calculation of three-body bound states, and
this is in line with the results of other investigators. We
also think that in our results for the adiabatic potentials
and the adiabatic basis lie the correct starting points for a
fruitful investigation of the scattering and rearrangement
properties of the system, using configuration-space
methods. We propose to develop these topics in the fu-
ture.

Also for future publication is the investigation of the
terms neglected in going from (2.12) to (2.13). These in-
clude the diagonal elements of the matrix U'd?U/dp?,
which give a correction to the AA, and the off-diagonal
elements of the terms involving dU/dp and d*U/dp?,
which couple the adiabatic channels. Preliminary results
indicate that these will not drastically modify the
behavior we have found using the AA.
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APPENDIX A: ALTERNATIVE FORMULATION
OF ADIABATIC APPROXIMATION

The Schrodinger equation (2.3) can be written

32 2mE
——6;2“4— P2 6(p,0)=0, (A1)
where qb(p,@)zpl/zlb(p,ﬁ) and H, is the operator
1|3 1 2m

We now seek solutions of the eigenvalue-eigenfunction
equation

H,Bx(p,0)=Ax(p)B(p,0) , (A3)

where the label K has been assigned by the requirement

)

that Ax—(K>—7)/p*> as V(p,0)—0. Expanding
Bg(p,0) in HH as
oiK"0
By (p,0)=3 Ugrg(p)——=, (A4)
& %

allows (A3) to be put in the form

2
K" P
Comparison with (2.10) shows that Ag is the total effec-
tive potential and that Ugg- are just the elements of U. It
then follows from (2.5) and (2.11) that

E‘bk

That is, the g are the coefficients for the expansion of
the wave function in terms of the basis functions Bg(p,6).
Substituting (A6) into (A1), multiplying by Bg(p,6), in-
tegrating over 6 and making use of the orthonormality re-
lation

2 1

4 2m
dgrxr+ el Vi

UK“K :AKUK'K . (AS)

BK p, (A6)

2m
fo By (p,0)Bx(p,0)d0="8xx: , (A7)
gives
d’¢x | 2mE _
+ —Ax | g
dpz ﬁz K ¢K
2 - 3By | 3¢,
K K K
+ Bxs—— |éx +2 |Bx,—— =0,
% K g2 dx S 3p
(A8)
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where the brackets ( , ) denote an integral over 6. Neglect-
ing the p derivatives of Bg again leads to the AA, (2.15).
We thus see that for the AA we can either solve the dif-
ferential equation (A3) or diagonalize the matrix M given
by (2.9).
To demonstrate the first approach, we again consider
the 8-function interaction. Equation (A3) is

1| 3% 1 2m
S | =+ —V(p,0) | Bg(p,0
p2 892+4 +ﬁ2 (p,0) | Bk(p,0)
=AgBk(p,0) . (A9)
where
2m T <
—Vip, - (A10)
w PP 3p 2::
and 6, =(2u+1)m/6. For 646, (A10) is simply
2
+ Bg(p,0)=0, (A11)
892 QK k\p
where
gx =(+ +p* M)V P =p(Ax + K2 /pP)V/? . (A12)

The solutions in the six sectors are then connected by the
boundary conditions,

Bi(p,0,— ) =B (p,0,+) , (A13)
3Bx aBKI -
80 o+ a0 |o, 37PKPO) (A14)

This second condition follows upon integrating (A9) with
respect to 6 over a small interval including 6,,.

To be precise, we look for the completely symmetric
solution; that is, we seek a solution in the sector
| 0| <7/6 and require that it be repeated in the othe five
sectors. The above considerations, together with the in-
variance of the differential equation and boundary condi-
tions under 68— — 0, restrict By to have the general form

By (p,0)=Ag(p)cos |gx 9_3’31 , (A15)

where m is an integer determined by |0 —m®7/3| <7/6.
The boundary condition (A13) is satisfied, and (A 14) leads
to

_ mpc

z (A16)
qK 6 >

ggtan 6

which is precisely the relation determining the effective
potential found previously by the matrix-diagonalization
method. [In (3.18), z=gx/6.] It only remains to show
that K =0(mod 6), and this follows from the requirement
that, as ¢—0, (A15) tends to the free-particle solution

B (p,0)= A4 (p)cos(KO) . (A17)
(Note gx —K as Ax—0.)

Bg(p,0) satisfies the orthonormality condition (A7).
For K’'=K this determines Ak (p). We find
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2
fo [ By (p,0)1’d0=12[ Ag (p ]f ® cos? (gx0)d6 ,
(A18)
leading to
3 —1,2
Ag(p)= |7+ —sin | Lqx : (A19)
9k 3
which, upon use of (3.18), can be written
—1,2
2 2
9k TpC
Aulp)— mpe / 9K mpe
klp)=1m+ 3¢ 6 36
(A20)

For the case K =0, ¢ <0, it is convenient to rewrite the
above equations as

Bo(p,0)=A(p)cosh |7, 9—’—"{1 ) (A21)
where
—1/2
_ )2 2
90 mpc
A(p)— 1 | TPC / 9o | | mpc
olp)=m— |36 6 36 :
(A22)
and g, satisfies
Eotanh T :—EgLC . (A23)

We can also construct Bg(p,9) using the matrix ap-
proach. Inserting (3.13) into (A4), and restricting the sum
to be over K" =6n, leads to

1 1 & (—1)cos(6n6)

BP0 = 3 TV 36, 2. atwt
(A24)
where
[Mk(pP=3 [Xx'(p)|?
Kcz 2 ©
(36) ,,.z_w (z2—n??’ (A23)

and z=(p/6)Ax+K?%/p*)'/2. The above sums can be

done using!?

i cos(kx) cos[z(2mm—x)
k—-z_. (—1f z2—k? =T [zsinzﬂrr =] ’ (A26)

where (2m —1)m <x <(2m +1)7 and

& 1 7 | cos(mz) 2
—_— = | cosec(wz) | ,
2 | s T

(A27)

which can be obtained by differentiating (3.17) with
respect to z. We find

7 pc cos[z(2mm—66)]

Bk (p,0)= . :
k(p:6) Mg(p) V(2m) 36 z sin(7z)
(A28)
and
!l 1s 5 172
_pcl |16 T 2
Mg (p) 36 2 | pe + 5 cosec (7z) . (A29)

Inserting (A29) in (A28) leads to our previous results,
(A15) and (A19).

Thus we have demonstrated that the &-function case
can be solved by either the differential-equation approach,
based on (A3), or the matrix approach, based on (AS5). In
more complex cases, the usual approach would be via
(A5), using a matrix of finite dimension.

APPENDIX B: ASYMPTOTIC BEHAVIOR

1. Behavior as p—0

Consider the case where the AA is applied to 2N +1
equations with K and K’ varying from —6N to 6N.
Equation (3.11) can be written

c | €k 1
== | —/—+ —_— |, (B1)
p AK % KZ_K/2
(k'ptk) Bkt 3
p
where €p=1 and ex =2, K=40. It then follows that
Ag ~exc/p, p—O0. (B2)

This conclusion still applies if N =0, as can be estab-
lished directly from (3.18) and (3.19) [or (3.25) and (3.26)
for the case K =0, ¢ <0].

2. Behavior as p— o

The behavior of Ag is now somewhat more complicat-
ed, and we need to consider several cases.

a. 2N +1 equations, N finite

Ak is determined by (3.11). This expression has singu-
larities at Agx = —(K>—K'?)/p? and since Ag is a con-
tinuous function of p this means that it must be con-
strained to lie between two adjacent singularities for all p.
The particular interval can be determined by condition
(B2), and the asymptotic form can then be found from
(3.11). We find the following special cases:

Ao(c<0)=(2N+1)c+ IZN(IZ’+1)+0 % ,
P P P
p—o (B3)
—1
Ay (¢>0)= (2N +1)c 12N(2€V )+O “17 ,
P p p
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For all other cases,

a
—+0
p

where ag is the smallest positive (for ¢ >0) or negative
(for ¢ <0) solution of

N T
< aK+K2—K’2

1

Ag = | pooo (B5)
P

(B6)

b. Infinite set of equations

Except for Ay (¢ <0) (to be treated below), we now use
(3.18) and (3.19). Again, the singularity structure of (3.18)
determines the allowed interval for Ag, and this in turn
determines the asymptotic behavior. From (3.18) and
(3.24), we have

TZ= 561 ~+arctan % , (B7)
and using the expansion
T 1 1
tant=+_—-——++—— -, |t 1 B8
arctan 5~ + 30 [t] > (B8)

where the plus is for 7 >0 and the minus is for ¢ <0, we
arrive at the expansions

72 1
Ag (e>0)= KT T2 (g3 lio] L)
T p
p— o (B9)
—6|K 72 1
Ag (c<)=—8EIF9 T2 g spl o]l |
p T
p—,K#0 . (B10)
c. Infinite set of equations, K =0, ¢ <0
Equations (3.25 and (3.26) give
tanhwl=mp |c | /36§ , (B11)

where {=pV (—Ay)/6 is real and non-negative. Thus
0 <tanh7§ < 1 and so from (B11)

O<mplc|/366<1, (B12)
which gives
Ag< —7c?/36 . (B13)

Thus A, is always bounded above by —*c2/36, and, in
fact, from (B11) it follows that

Aolc <0)— —m%c?/36 as p— oo . (B14)
This is to be contrasted with the limiting behavior for a
finite set of equations, (B3).

To investigate in more detail the way in which Ag
(¢ <0) approaches the limit (B14), we write (B11) as

VI(—Ag)+|c| /6

7pV (—Ay)/6=71In A —rlel/6 | (B15)
Setting

V(—hg) =7 |c| /6+€ (B16)
gives

mp|c| /36+mpe/6=~+In(1+7|c| /3€) . (B17)
For € small, we have as a first approximation

7p|c| /36~5In(m|c| /3€), (B18)

which leads to

7c?

36

Aglc <0)~ — TS (1 demlelp/B8 ooy psoo

(B19)

Thus the approach to the limit is exponential, in contrast
to all other cases.
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