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We investigate the adiabatic eigenfunctions and eigenvalues (and therefore the effective potentials)
associated with the hyperspherical harmonic expansion of the wave function for three particles on a
line subject to 6-function interactions. Because of the special separability of the potential matrix ele-

ments, we obtain the effective potentials as the solutions of a transcendental equation and we also
obtain the eigenfunctions in closed form. We demonstrate that the long-range (large hyper-radius p)
behavior of the effective potentials is qualitatively different from the long-range behavior of the po-
tential matrix elements.

I. INTRODUCTION

The standard method of solving the quantum-
mechanical two-body problem involves expanding the
wave function into a series of partial waves, using spheri-
cal harmonics as basis functions. For central potentials,
one then obtains an infinite set of uncoupled ordinary dif-
ferential equations in a single radial variable r. These can
then be solved for the bound-state energies and scattering
phase shifts. These quantities provide a complete descrip-
tion of the two-particle scattering, and also enable one to
calculate the contribution of two-body collision effects to
equilibrium and nonequilibrium properties of gases.

For the three-body problem, the analogue of the
partial-wave series is an expansion of the wave function
using hyperspherical harmonics as basis functions. '

Again, there is a single radial coordinate, p, which is a
measure of the overall size of the three-body system, and
again Schrodinger's equation reduces to a set of ordinary
differential equations in this radial coordinate. The prin-
cipal difference is that these equations are now coupled
via the potential terms, and so their solution is a much
more complex procedure than in the two-body case.

Nevertheless, the hyperspherical harmonic (HH)
method has been used extensively and with considerable
success in the study of bound-state problems. We men-
tion just a few investigators whose work we have found
especially close to our own: Fabre de la Ripelle and Bal-
lot in nuclear physics; Fano, Macek, and Lin in atomic
physics. There have also been limited applications to

scattering problems and rearrangement collisions.
Our involvement in hyperspherical harmonics arises

from our interest in statistical mechanics. For dilute
fluids, the corrections to equilibrium properties due to
three-body collision processes are contained in the third
virial coefficient, or the third cluster coefficient in the
fugacity expansion for the pressure. The connection be-
tween this quantity and the HH formulation of three-body
scattering has been worked out in detail for both three-
dimensional and two-dimensional systems, with two-
body bound states excluded, but so far there have only
been calculations for certain limiting cases. Progress in
doing more extensive calculations has been severely limit-
ed by the numerical complexity of solving the coupled
differential-equation system. In practice, one works with
a finite set of equations, which is then increased to
demonstrate convergence. This leads to problems in both
numerical stability of solutions, and in computer time and
storage capacity. Thus some systematic approximation
procedure is desirable.

A key approximation which has been found to be very
useful in atomic and nuclear physics (see previous refer-
ences) is the so-called adiabatic approximation (AA), and
various modifications of it. Essentially, one expands the
wave function in terms of new basis functions which are
eigenfunctions of the angular plus interaction-potential
part of the Hamiltonian (written in hyperspherical coordi-
nates, as functions of p and angles). The expansion coeffi-
Aents then satisfy a set of coupled differential equations
in p only. This is exact, but by neglecting the coupling
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terms entirely (that is, the off-diagonal elements), one ob-
tains a set of uncoupled differential equations in the vari-
able p, which have the form of two-body Schrodinger
equations, but with an effective potential replacing the
original potentials.

The AA results in a considerable simplification of the
problem. The calculation can now be performed in two
separate steps, the first being a matrix diagonalization in
order to find the effective potentials, point by point, and
the second being the solution of the modified radial equa-
tion with this effective potential. In the case of atomic
physics, this approach gives qualitative understanding of
several-electron processes, in a way which is difficult to
obtain otherwise. Nevertheless, questions still remain re-
garding the extent of its validity, and the implications of
its shortcomings, as well as the nature of the convergence
as the size of the truncated set of equations is increased.

Thus it is very desirable to investigate the validity of
the method within the context of an exactly soluble sys-
tem. Unfortunately, for the quantum-mechanical three-
body problem there are no realistic cases for which the ex-
act solutions are known. Thus we have to restrict our-
selves to the somewhat artificial situation of three parti-
cles on a straight line. For the case of equal-mass parti-
cles interacting via equal-strength 6-function potentials,
both the bound-state and scattering solutions are known
exactly. ' Also, the thermodynamics of a one-
dimensional gas with repulsive 6-function interactions has
been worked out.

There is no problem in adapting the HH method to one
dimension, and it also turns out that in the present case
one can proceed analytically a long way towards con-
structing the effective potentials. This enables us to inves-
tigate a number of interesting points, which may other-
wise have been obscured in a purely numerical calculation.
Particularly, we investigate the large-p behavior of the ef-
fective potential, and also the way in which the solutions
change as we increase the number of differential equations
in the truncated set. We can also write analytical, closed-
form, expressions for the elements of the adiabatic basis.
This is important both in itself, and as a tool for the fur-
ther exploration of the solutions of the transformed cou-
pled (nonapproximated) set of equations.

A word should be said about statistics. A complete set
of unsymmetrized harmonics for our model is the set of
exponentials (2m) 'i exp(iKe) with K =0, +1, +2, . . . .
From this we can construct symmetrized combinations
(cosines and sines) which transform as I

&
and I

&
(sym-

metric and antisym metric one-dimensional representa-
tions) and also select pairs, of either exponentials or sines
and cosines, which transform as members of the two-
dimensional representation I q. We have done this. (See
also the independent work of Perez et al. '

) However, for
our purpose, which is to study three identical spinless par-
ticles described by fully symmetric wave functions (I,)

which include the lowest harmonic, K =0, we can
equivalently and much more simply use the unsym-
metrized set of exponentials subject to the condition
K =—0(mod 6). This makes much more apparent the prod-
uct structure of the matrix elements and leads to the same
sum rules as the more formal procedure.

II. THE HYPERSPHERICAL HARMONIC METHOD

g=( —, )
X1+X2

2
—X3 (2. 1)

g=( —, )'i (xi —xp) .

We now introduce the "hyperspherical" coordinates p, O

which for the present case are simply plane polar coordi-
nates,

q=pcos0, g=psin0, 0(0(2n . (2.2)

Then Schrodinger s equation for the three particles, with
center-of-mass motion removed, is

1 0 0 1
p +, , g(P, O)+ V(P, O)g(P, O)

2m p Bp Bp p Qg

= Eg(P, O), (2.3)

where

V(p, 0) = V(&2p
~

cos0
~
)+ V[&2P

i
cos(0 27r/3)—

~
]

+ V(~2P
i
cos(0+2vr/3

i
) . (2.4)

The hyperspherical harmonic (or K-harmonic) expansion
of the wave function takes the form

QO iK8

X p '"0~(p»)
&&(2~)

(2.&)

and inserting this in (2.3) leads to the infinite set of cou-
pled ordinary differential equations

K —
4

z Px (p)+ g V~+ (p)P~ (p)
p K'

d
2m dp

= EP~(p), (2.6)

where

Vzz'(p) = e V(p 0)d0 .
2m

(2.7)

The procedure now is to truncate the set (2.6) at some
value K,„and solve the resulting finite set. This should
then be repeated with increasing K,„until the numerical
values, for the particular bound-state energies or scatter-
ing quantities that we are interested in, have converged.

However, in this paper we do not wish to solve the
truncated set exactly, but rather to investigate an approxi-
mation method, the adiabatic approximation, which un-
couples the equations of the set, and reduces the problem
to that of solving a single differential equation.

We start by writing (2.6) in the form

d'e 2mE 4, —Me=0
2 Q2p

(2.8)

We consider a system of three identical particles mov-
ing in one dimension and interacting via two-body poten-
tials V(

i
x; —xj ~

), xi, xq, x3 being the Cartesian coordi-
nates of the particles. The center-of-mass coordinate R
and the Jacobi coordinates g, rI are defined by

R=( —, )'i (x&+xq+x3),
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2K —
4 2m

MKK'(P ) ~KK'+ KK'(P )
p g2

(2.9)

where N is a vector with components QK and M is the
square matrix with elements

where g is the strength of the interaction. Transforming
to hyperspherical coordinates gives, for the sum of the
three binary potentials [see (2.1)],

V(p, 8) = [5(
~

cos8
~
)+5(

~

cos(8 —2n. /3)
~

}
2p

M is Hermitian, and so can be diagonalized by a unitary
matrix U. Let +6(

~

cos(8+2~/3)
~
}] . (3.2)

U MU=A, (2.10)

@=U N. (2. 1 1)

Then, multiplying (2.8) on the left by U, we find

where U U=I and A=A(p) is a diagonal matrix. Also
define W by

Note that although the 6-function potential is highly
singular, nevertheless V(p, 8) is a smooth, differentiable
function of p; the discontinuities are entirely in 8. Thus
we expect the AA to be valid for this potential.

It is a straightforward calculations to show that the po-
tential matrix elements (2.7) are

d N 2mE — — gd U — ydU dN

(2.12)

1 3 e' ' K —K':—0(mod 6)
VKK(p)= ' ~ ~&p

0, otherwise .

The AA (also called the extreme adiabatic approximation)
consists of neglecting all the p derivatives of U; that is,
we assume that U is a slowly varying function of p. Thus

d'4 2mE @ ~~ 0
2 $2p

(2.13)

A is a diagonal matrix whose elements AK can be labeled
by the quantum number K according to the requirement
that

K ——,

V~O .
P

(2.14)

Thus in the AA we have to solve the set of uncoupled
equations

(3.3)

Note that the nonzero elements of VKK(p) are precisely
equal to three time the matrix elements of V(

~
x~ —xq

~

)

and are proportional to p '. Also, VKK (p) vanishes un-
less K=—K'(mod6), this property being, in fact, a conse-
quence of the invariance of V(p, 8) under permutation of
the particles, and so not peculiar to the 5-function interac-
tion. Thus the complete set of equations (2.6) is divided
into six distinct subsets, corresponding to K—=n(mod 6),
n=0, 1, . . . , 5. The equations within each subset are cou-
pled, but there is no coupling to a member of any other
subset. This means that each of the six subsets of equa-
tions can be treated entirely separately. Thus, in the fol-
lowing, we assume that K =K'(mod 6).

The AA involves diagonalizing the matrix

d 4K 2mE-+
~p 0K K+

dp

where

K —
4

NK=o (2.15)
MKK'(P }=

K —
4 —iKm /2ei K'm /2~KK' +p'
" p' (3.4)

~K =+K
K —

4

p
(2.16)

Note that (2.15) is formally equivalent to the radial
Scrhodinger equation for two particles in two dimensions
interacting via the potential AK.

The above formulates the AA in terms of matrix diago-
nalization. An alternative, but entirely equivalent, treat-
ment is given in Appendix A.

III. 5-FUNCTION INTERACTION

V(
~

x; —x~
~

)=g5(x; —xj), (3.1)

We now apply the above scheme to a particularly sim-
ple case: three identical particles on a straight line in-
teracting via equal-strength 5 functions. This system can
be solved exactly, ' and the motivation behind our treat-
ment is to find how well the HH method, with the AA,
reproduces these exact solutions.

The two-body potential is

where c=(2m/R )(3g/nU 2). In general, one would ex-
pect to have to do this numerically. But in the present
case, because the potential term in (3.4) is separable, one
can proceed analytically.

Consider first the more general problem of finding the
eigenvalues and eigenvectors of an N &N matrix H with
elements

H;J=h;5; +if;g (3.5)

gH;, 1') ——eX; . (3.6)

Substituting (3.5) into (3.6) leads to

Xj — g gJXJe —h;
(3.7)

Multiplying each side by g; and summing over i gives,
upon cancelling the common factor g,.g;g;,

where h;, f;, g;, and k are arbitrary. We thus wish to find
7; and e such that
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(3.8)
a multivalued function o p.

ctions of the curves
3.18) defines z as a mu

Its solutions are give y h t c in b the intersec i
l

This is a polynomiamial in e, emia, th roots of which are eigen-
that the correspond-

ing (unnormalized) eigenvectors ave
and

y =irz tan(irz)

y=( ir/6) pc .

(3.20)

(3.21)

(3.9) Fi . 1. To determine the appropriateThis is illustrated in ig.
branch, we first note that (see Appendix

c
(3.10)

p
b. defined by (2.16),In terms o t eef h ffective potential AK

(3.10) is

we find that M hasApplying t is oh' t the present case, we
eigenvalues AK satisfying

1

K' —
4

~2

c/p, p~0, K =0
K

Thus from (3.15) we have

z ~K/6, p~0,

(3.22)

(3.23)

c 1

p

(3.1 1)

—iK'm /2e
+K'(Kj

K —K'p ~K+
p

(2.10) shows that the columlumns of U areComparison with . s
the normalized eigenvec tors that is,

(3.12)

(3.13)
K

now is to solve (3.11) for b,z and substi-p

1 . I.inite or in inite ran e
e can do the sum explicit y, as w'the latter case, we can o e

to the case wheren. We restrict ourselves to e
can be treated similarly.K=O(mod 6); other cases can e

Let

ondin to AK hasThe (unnorma ize e'1' d) eigenvector correspo
'

g
components

for a iven K+0, we must
choose the solution of (3.18) satisfying

K~
6 2 6 2

(3.24)

c 0, the range is 0&~z &w/ .w/2. Finally,
~ .fc 0 we must procee somewfo K 0 d

1 there is no intersection or
(3.18) is imaginary. lt is

d(3. 18) tb 1 db
that z as defined y

clear that in this case (3.15) an

and

g = —(p/6) b,o (3.25)

erg tanh(irg) = —(ir/6) pc . (3.26)

tanh(ir ) and y = —(~/6) pc have aThe equations y = erg tan ir a
real point of intersection.

K' =6k',

K
z = (p/6) b, x +

p

Then (3.11) becomes

(3.14)

(3.15)

K=O K=1

y=1

K=2

k'= —oo Z

12The standard result

oo

applied to (3.16) gives

=—cot(irz), zgO, +1, . . .
z

(3.16)

(3.17)

y 0

0 05 10

T(Ztan nz

JT

s)
I

15 2. 0
2rrz tan(irz) =( /6~r) pc .

is found fromOnce t is ash h been solved for z, AK

Ax ——[z —(K/6) ](6/p 2 .

(3.18)

(3.19)

Z

FIG. 1. Plot of y =~z taz tan~z as a uncf tion of z, together with
c = + 1. The inter-c for the cases p=1, c =the lines y=(~/6) pc, or

otentials 5K via Eq.e the adiabatic effective posections determine t e a
(3.19).
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06—

04—
K

0.2—

0

and 12, and c==+1. (There is no loss in genera ity in tak-
values for c, since any other value simp y

1 es of K since using theneed to consider negative va ues o, s
ld lead to the use of only non-

verif thatnegative indices. Formally, we can veri y a

A word should be said about the curve crossing
'

g.in s in Fi
in s of the effective poten-3 These are, of course, crossings o e e

which are relate
'

1 5 the adiabatic eigenvaluestia s,
s. This is evidentto b, by (2.16), exhibit no such crossings.

b roved using the equations defin-graphically, or it can e prove u
ing Az given above.

12 200
P

ials 6, derived from anIG 2. Adiabatic effective potentia sF . . i

f the h erradiusinfinite set o coup ef 1 d equations, as functions o yp
p for the repulsive case c = l.

A. Analysis of the results

Th t striking feature of these graphs is the
avior of b, o (c = —1) for large p, and this wilwill be dis-

cussed below. Let us start wit t e o er
The ori inal potential matrix elementto zero for large p. e orig'

was

IV. THE EFFECTIVE POTENTIAL 4g 2m C —iKm /2 iK'n. /21'sex (p) =
fi p

(4.3)

k d tail at the effective potentia 1We now wish to loo in e ai
derived in Sec. III. For an infinite set of equations,

Ax is determined by (3.18) an
z is to write (3.18), using (3.24), as

K 1 npc 1
z =—+ —arctan

6 z
(4. 1)

g
'

h =E/6 (or z small for the case
(3.19). Fo th xceptional

rate starting wit z=
K =0). bK is then given by . . or
case bo(c &, . a0) (3.25) and (3.26) can be written as

/tanh
6

(4.2)

h can a ain be solved by iteration.whic can again
f these calculations are shown in

Figs. 2 and 3, where we plot Az against p or

12 16
l

-0.6—

'als 6 derived from anIG 3 Adiabatic effective potentia sF
f the h erradiusinfinite set o coup e ef 1 d equations, as functions o yp

p for the attractive case c = —1.

d as ' for both small and large p. The
tial 6 is studiedlimitin behavior of the effective potentia z is

2ill ' [see (B2)], but for large p, b, k falls off as p a—
( 0)]' the leading terms ares exce ting the case o c &

'
1 (B10). Thus there has been agiven explicitly

''
1 in (B9) and

1 'th the originalremodeling of the ta'il of the otentia, wi
na ea le ~ One' tail becoming a much more managea e p

elin of the tail for three particles infinds a similar remode g o

2 —i ftrix elements is changed to a (p lnp e avior
13

~ ~

p.
in ion -range behavior isThe general situation regar ing g-

follows. A system of three particles j hs subect to short-as o ows.
e binar potentials can aveh significant interaction

for particular values ofeven for large values o p,
the an les specific particles can be gn be close toget er. ort eang e

be large and r &z sma,
r. —r '

g
'

b tween particles r and
le and r &3 can e

~ ~r. —r being the istance e wr;, = fr; —r,
/ g

ei hted integrals overj. a rix eM t
'

lements which involve weig e
d therefore the configurations of the threethe angles, an e

ill have long-range tails (which behave p
~ ~

ve asparticles, wil ave ong-
n -ran e interac-d

'
the dimension). The actual long-r g

h AA iven by the adiabatic potent
a behavior which is analytically distinct from that of the

ciated with three parti-The results given above are associate wi
toticall free at large distances (with a wave

g
h th r will then be qualitative y a ec efrom eac ot er w'

in the tail. This is especially evidentnt in the
threshold behavior of the phase shifts as a

F r the one-dimensional case, a p
' tail gives aenergy. or e

se shift which diverges for small va uesphase s i t w ic
tail gives a constant.r as 'lnq, whereas a p

er scattering and thei n' tail dominates the low-energy scais p
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AA ives hase shifts of —3~/2 and 3~/2 for the repul-
and attractive cases, respectively. co psive an a r

the work of McGuire and Dodd leads us to e6 believe these
threshold values to be correct.

We now turn to the attractive case w ith K=O. The po-
tential o c & s( 0) hows quite exceptional behavior in that
it does not o to zero as p~ oo, but rather to —~ c
and also the approach to this limit is exponential, rather

1'k [S A endix B and especially (B19).]
o-bodNow —~ c /36 is precisely the energy of the two- o y

boun s a e orb d t te for the 6-function potential g5( ~x& —xz
~

and rTo understand this, let us again suppose that p an i3
d h t is small. We can verify that, toare large and t at r&z is sm

n in ' and therefore asymp-leading order in an expansion in p
k-totically correct, the derivatives in p

' . g'in (2.3) ive us the
d with the relative motion of particlenetic energy associate wi

'll3 d the center of mass of particles 1 and 2. Sti re er-an
e

' '
ided b andring to (2.3), the derivative term in 0, divided y p

1 d d r gives us the relative kinetic energyagain to leading or er, give
between I and . ince2. S' the binary potentials are short
ranged we see that for small values of r]2 the functiona
equation for the adiabatic eigenfunction [Eq. (A9)] is sim-

1 the two-body Schrodinger equation. If the two-body
Hamiltonian admits a two-body
trum that negative eigenvalue will appear as the asymp-
totic behavior of one of our effective po en

7

respon ing wd AA wave function (amplitude times eigen-
at lar e

'
n~ then either represents a solution which at arge pfunction' t en ei er

describes one particle (free) and a two- o y
or, if the potential depth and masses of the particles per-

h -bod bound state. In Sec. V, below, we
shall show that one further aspect of b.o (c & is i s p
d n of a single three-body bound state.iction 0 a

ld em hasize that,Before leaving these matters, we shou emp a
e in us, much thought has been devoted to the

ti ators cen-behavior o ish
' f this adiabatic potential by inves 'g

m tot-Fano. The initial investigations of asymp o-
ic bound-state situations was directed around e

d t the possibility of writing down exact expressions,
for exam le, for the adiabatic eigenfunctions for a p
A endixes), and expansions for the effec ive ptive otentials.
We have, of course, also obtained a wealth o

ppen ixes,
f numerical

data.

0.4—

0.3—

hp(Nj

0.1—

24 320 8 'l6

P

FIG. 4. Adiabatic effective potentials N) derived from
(2N+1) coupled equations, as functionctions of the hyperradius p
f h l case c= l. On the scale of the graph, 4p(ao) isfor the repu sive case c =
indistinguishable from Ap(10).

P

16 32

w ere a epenh d ds on p but is almost independent of N for
N N . In the repulsive case, No —8 gives a goo i .

For the attractive case, the situation is raor ea, ' '
rather different.
=0 1 10, 100,igure s ow

and oo. The approach to b,o( co ) is now much such slower, and
the rate depends strongly on p, be' g q pin uite ra id for small

p and very slow for large p. In fact, there is a noncommu-
tivity between the limits phoo and N~oo, as is c ear
from B3 and (B19). Thus one cannot hope to get the tail
of bo(c ~0) by straightforward solution of a finite set of

B. Convergence

ho(N) =b,o( oo )+aiN, (4.4)

It ' f interest to study the way in whwhich 6 obtained
from 2N+1 equations [which we denote by x-, p-

is o
(N)] a-

s b, obtained from the infinite set [denoted by
b, ( m )], as N increases. This is a question o gre p
t 1 importance in more comp. ex ca

, as
1 x cases where Ax. ( oo ) isica

* '
x ca

N fornot known exac y, antl and one can only calculate hx-( )

increasing values of N.
fWe restrict our discussion to 0. igu

~ ~ Fi ure 4 shows o or
Ã=0 1, and 10. On theth repulsive case (c =+1) and N=e

oo
' ' ' ' 6 10. It issca e use 0 oo1 d b, (co) is indistinguishable from b,o

smoothl andseen t at o ah b, (N) approaches b,o(oo ) quite smoo y a
limit is wellquickly. The asymptotic approach to the limi

described by

-0.2—
hp(N)

-(6 )

-0.3—

-0.5

FIG. 5. Adiabatic effective potentials Ap N) derived from
(2N + 1 coup e equa1) l d quations as functions of the hyperradius p
for the attractive case c = —1.
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equations, even for very large N. Again, the approach to
the limit can be fitted to a relation of the type (4.4), but
Xp is now much larger, and also depends on p in such a
way that %phoo as phoo.

For the two-dimensional case, ' the overall picture is
very similar, except that a much larger number of har-
monics (several hundred) is required to attain convergence
in the asymptotic region, even in the repulsive case. Also,
the number of harmonics increases steadily as p is in-
creased.

V. THREE-BODY BOUND STATE

Three attractive delta-function bosons have one bound
state at the energy

$2 2 2E=-
2m 9

(5.1)

We now investigate how closely the HH method approxi-
mates this value.

The simplest approximation is to take only the E=O
equation from (2.6), and neglect its coupling to the others
entirely. This gives the equation

d240 2mE~ c (5.2)
2 g2 p

1
$0——0.

4p2

This is related to Whittaker s equation, and it is readily
shown that it has bounded solutions for energies

E„=— 1 Ac
n =0, 1,2, . . .

(2n + 1)2 2m
(5.3)

with the corresponding wave functions

y(n) —z/2 1/2L ( ) (5.4)

where z =2p
~

c
~

l(2n + 1) and L„(z) is the nth-order
Laguerre polynomial. The lowest energy level of the
series,

g2 2

E =—
2m

(5.5)

c 18'p p'

1//2
182 c2

4 + 2p' p'
(5.6)

Treating this as a perturbation on c/p, and employing
first-order perturbation theory, gives the lowest energy
level as

g2 2

Ep ———1.028
2m

(5.7)

This is an improvement on (5.5), but there still remains
the problem of the infinite number of energy levels, aris-

reproduces the exact energy level (5.1) to within 10%%uo.

(This was already pointed out by Amado and Coelho. )

The value (5.5) is reasonable, given that it is a first ap-
proximation, but there is also the problem of the remain-
ing infinite sequence of spurious energy levels.

The next approximation would be to consider three cou-
pled equations (K,K'= —6,0,6) from (2.6). In the AA,
this gives the effective potential

ing from the p
' behavior of Ap as p~ oo . As shown in

Appendix B, this long-range behavior of Ap persists for
any finite number of coupled equations [see (B3)], so the
problem of the spurious energy levels remains.

But when we consider the infinite set of coupled equa-
tions the situation changes. Ap now approaches its
asymptotic limit exponentially, as shown by (B19). This
is a crucial change of behavior, and a numerical investiga-
tion now confirms that there is now only one bound
state. " A first-order perturbation calculation employing
the small-p series obtained from (3.26),

2 2 4 3 6 4
2 Q 3

108 14 580 2 755 620
c

0
p

p~0
gives

$2 2

Ez ———1.099
2m

which is within 0.22%%uo of the exact value (5.1).

(5.8)

(5.9)

VI. CONCLUSION

This paper is the first step in a comprehensive investi-
gation of the HH approach to the three-body problem in
the context of an exactly soluble model. We have shown
that, using the AA, many steps which normally have to be
done numerically can be done analytically, and that it is a
simple matter to calculate effective potentials, b,~(p).
This enables us to investigate convergence as a function of
the number of coupled equations used, and to analyze
closely the behavior of b,x.(p) as a function of p.

The most significant feature is the behavior of b,x (p) as
phoo. Whereas the original potential matrix elements
Vzx. (p) have a p behavior, in b,x(p) this is modified to
p, thus giving rise to a qualitatively different threshold
behavior for the scattering three-body phase shifts. An
exception is bo(p) for the attractive case, where a p
behavior is retained for a finite number of equations, but
is changed completely (tending exponentially to the two-
body bound-state energy) for an infinite number of equa-
tions. This exponential decay gives the correct result of
only one three-body bound state (however, see Ref. 14),
and also gives the binding energy to within 0.22%.

Thus we see that the HH method with the AA works
well for the calculation of three-body bound states, and
this is in line with the results of other investigators. We
also think that in our results for the adiabatic potentials
and the adiabatic basis lie the correct starting points for a
fruitful investigation of the scattering and rearrangement
properties of the system, using configuration-space
methods. We propose to develop these topics in the fu-
ture.

Also for future publication is the investigation of the
terms neglected in going from (2.12) to (2.13). These in-
clude the diagonal elements of the matrix U d U/dp,
which give a correction to the AA, and the off-diagonal
elements of the terms involving dU/dp and d U/dp,
which couple the adiabatic channels. Preliminary results
indicate that these will not drastically modify the
behavior we have found using the AA.
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where the brackets (, ) denote an integral over 0. Neglect-
ing the p derivatives of B~ again leads to the AA, (2.15).

We thus see that for the AA we can either solve the dif-
ferential equation (A3) or diagonalize the matrix M given
bY (2.9).

To demonstrate the first approach, we again consider
the 5-function interaction. Equation (A3) is

1 a2 1 2m
, + —+, V(p, O) Bx(p, O)

p' a0' 4

APPENDIX A: ALTERNATIVE FORMULATION
OF ADIABATIC APPROXIMATION where

=Ax.Bx(p, O) .

The Schrodinger equation (2.3) can be written

, +Hp —,$(p, O) =0,a 2mE

where $(p, O) =p' $(p, O) and H is the operator

a & 2m
, + — + , V(p, O) .

a0' 4

(A 1)

(A2)

V(p, O)= ——g 6(0—0„),
g2 '

3 p

and 0„=(2p+1)vr/6. For 0&0&, (A10) is simply

a2

a0
p, O) =0,

where

(A10)

(Al 1)

We now seek solutions of the eigenvalue-eigenfunction
equation

HpBg(p, O) =A~(p}Bg(p, O), (A3)

where the label K has been assigned by the requirement
that Ax ~(K' ——,

'
)/p as V(p, 0)~0. Expanding

BK(p, O) in HH as
iK"B

Bx(p 0)=g Ux"K(p) &&(2~)

allows (A3) to be put in the form

(A4)

K"

K ——, 2m
~K'K" + ~K'K" UK "K —+K UK'K

P
(A5)

W(p 0)=+0~(p»~(p 0) (A6)

That is, the Px are the coefficients for the expansion of
the wave function in terms of the basis functions Bx(p, O).
Substituting (A6) into (Al), multiplying by Bz (p, O), in-
tegrating over 0 and making use of the orthonormality re-
lation

27If BK(p, O}BK (p, O)d0=6xx (A7)
0

gives

2mE+ 2
K' K'

dp fi

Comparison with (2.10) shows that Ax is the total effec-
tive potential and that UKK are just the elements of U. It
then follows from (2.5) and (2.11) that

qK = ( '+p'Asc )—'"=p(~~+&'/p'} '" (A12}

The solutions in the six sectors are then connected by the
boundary conditions,

BK(p, Op
—) =BK(p,Oq+ ), (A13)

aa aa
pcBx(p,—O„) .

P P

(A 14)

This second condition follows upon integrating (A9) with
respect to 0 over a small interval including 0 .P

To be precise, we look for the completely symmetric
solution; that is, we seek a solution in the sector

~

0
~

& rr/6 and require that it be repeated in the othe five
sectors. The above considerations, together with the in-
variance of the differential equation and boundary condi-
tions under 0~ —0, restrict BK to have the general form

B~(p, O) =Ax(p)cos qx 0—
3

(A15)

where m is an integer determined by
~

0—m~/3
~

& rr/6.
The boundary condition (A13) is satisfied, and (A14) leads
to

7TPc
qKtan —

qK (A16)

Bz '(p, 0) =A x. (p)cos(K 0) . (A17)

which is precisely the relation determining the effective
potential found previously by the matrix-diagonalization
method. [In (3.18), z=qx-/6. ] It only remains to show
that K:—0(mod 6), and this follows from the requirement
that, as c~0, (A15) tends to the free-particle solution

BK, 2 px. +2 B~,
ap ap ap

=0

(A8)

(Note qx. ~K as b,K~0.)

Bx (p, 0) satisfies the orthonormality condition (A7).
For K'=K this determines Ax. (p). We find
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277 7I /6
f„[B&(p~)]'d~=»[~~(p)]' f

leading to

(A18)

which can be obtained by differentiating (3.17) with
respect to z. We find

Ir pc cos[z(2mir —60)]
~~(p) I/(2Ir) 36 z sin(Irz)

3
c4x(P) = 'Ir+ s111

—1/2

(A19)
and

(A28)

which, upon use of (3.18), can be written

2 2

—1/2

pc 1 18
Mx(P) = — + cosec (Irz)

36 z pc 2

1/2

(A29)

Ax(p) =
36

qK

6
77Pc

36

(A20)

For the case K=O, c &0, it is convenient to rewrite the
above equations as

Inserting (A29) in (A28) leads to our previous results,
(A15) and (A19).

Thus we have demonstrated that the 6-function case
can be solved by either the differential-equation approach,
based on (A3), or the matrix approach, based on (A5). In
more complex cases, the usual approach would be via
(A5), using a matrix of finite dimension.

m~
Bo(p 0) =Ho(p)cosh qo 3

where

(A21)

—1/2

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF a~(p)

1. Behavior as p ~0

~0(p)= 'Ir— &PC

36
qo

2

&pc
36

2 Consider the case where the AA is applied to 2N + 1

equations with K and K' varying from —6N to 6N.
Equation (3.11) can be written

and qo satisfies

(A22)
c1=- +
p K'

(K'~+K)

1

K —K'
~K+

p

(B1)

~qo
qotanh

6
TTPC

6
(A23)

where eo ——1 and eK ——2, K&O. It then follows that

AK -eKC/p) P~O . (82)

We can also construct B~(P,S) using the matrix ap-
proach. Inserting (3.13) into (A4), and restricting the sum
to be over K"=6n, leads to

This conclusion still applies if N= oo, as can be estab-
lished directly from (3.18) and (3.19) [or (3.25) and (3.26)
for the case K =0, c &0].

where

1 1 pc + ( —1)"cos(6n 8)
MK(p) ~/(2Ir) 36„z—n

(A24)

2. Behavior as phoo

The behavior of AK is now somewhat more complicat-
ed, and we need to consider several cases.

a. 2N+ I equations, N finite

[Mx (P)l'= 2 l
+II (P)

l

'
K'

2 2 oo
1

(36)' = (
' —n')' (A25)

and z=(p/6)b, x+K /p )' . The above sums can be
done us1Ilg

Ax- is determined by (3.11). This expression has singu-
larities at b,x ———(K —K' )/p, and since b, x. is a con-
tinuous function of p this means that it must be con-
strained to lie between two adjacent singularities for all p.
The particular interval can be determined by condition
(B2), and the asymptotic form can then be found from
(3.11). We find the following special cases:

(2N+ 1)c 12N(N+ 1) 1
bo c&0 = + +0

p p p
(A26)

where (2m —1)Ir & x & (2m + 1)Ir and

( —1)k cos(kx) cos[z(2m7r x)]-
z —k z Slnz7T

(B3)

1 Ir cos( Irz ) +Ircosec (Irz)
(z —k ) 2z

(A27)

(2N + 1)c
6N c)

p

12N(2N —1) 1+0
p p

p~ co (B4)
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For all other cases,

1+0, P~ oo
O'

. P'. (85)
0&up

i
c

i
/36(& 1, (812)

where /=pe( —b,o)/6 is real and non-negative. Thus
0 & tanhng & 1 and so from (Bl 1)

where ax. is the smallest positive (for c &0) or negative
(for c &0) solution of

which gives

1 =0
o,~+K —K2 &2

(86)
o& —~c /36. (813)

b Inf. inite set of equations

Except for bo (c &0) (to be treated below), we now use
(3.18) and (3.19). Again, the singularity structure of (3.18)
determines the allowed interval for Az, and this in turn
determines the asymptotic behavior. From (3.18) and
(3.24), we have

Thus Ao is always bounded above by —~ c /36, and, in
fact, from (Bl 1) it follows that

ho(c &0)~—~ c /36 as phoo . (814)

This is to be contrasted with the limiting behavior for a
finite set of equations, (83).

To investigate in more detail the way in which
(c & 0) approaches the limit (814), we write (811) as

Kw 7TPc~z = +arctan
6 36z

and using the expansion

1 1
arctant =+———+ —,t

~

~ 1
2 t 3t3

(87)

(88)

~( —Ap) +sr
~

c
~

/6
~p+( —6o) /6 = —,ln

Q( —b, p) —m
~

c
~

/6

Setting

(815)

6/K /+9
P

72
, (~K~+3)', +02 1 1

W C P P

(89)

where the plus is for t &0 and the minus is for t g0, we
arrive at the expansions

Q( —ho)=rr c
~

/6+e

gives

~ p c
~

/36+mph/6= —,in(1+m
i
c

~

/3e) .

For e small, we have as a first approximation

(816)

(817)

( () )
6

~

K
~
+9

P

72 1 1
( ~K —3)~ +0

7T C P P

n p ~

c
~

/36= , ln(7r
~

c —/3e),

which leads to

(818)

p~ oo, K&0 . (810)

c. Infinite set of equations, K =0, c & 0

2 2

b,o(c &0)- — (1+4e " ' ~ ' + ), p oo .
36

(819)
Equations (3.25 and (3.26) give

tanhng= up
~

c
~

/36/, (811)
Thus the approach to the limit is exponential, in contrast
to all other cases.
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~4More precisely, a careful numerical treatment, as well as con-
firming the existence of a bound state with E& given by (5.9),
also reveals a discrete level at —(fg g /2 pn )(n /36
+ 0.00097). Recalling that —(W c /2m)(w /36) is the ener-

gy of the two-body bound state, we see that this corresponds
to an extremely weakly bound three-body state, and is certain-
ly negligible to the level of accuracy we expect from the AA.
Its existence reflects the fact that the AA is an approxima-
tion, albeit a very good one as far as bound states in this
model are concerned.


