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Spatial correlations in multifractals
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We consider spatial correlations within multifractals or fractal measures p(x). Correlation
functions such as &p(x) p(x+r) "& are argued to scale as (R/a)~t "i(r/a)'t "i, where R is the
overall radius of the object and a a short cutoff. The exponents y and z are given in terms of the
scaling dimensions D~ of the multifractal. We note that the existence of this single scaling form
over the full range of r (a «r«R) is incompatible with any description of the measure as a su-
perposition of simple fractal sets of localized singularities.

The properties of multifractal sets, ' or fractal mea-
sures" (we use these terms synonymously), are relevant
in the description of many physical processes such as tur-
bulence, ' diff'usive growth, s ' electronic transport in
disordered systems, "' and chaos. A distinguishing
feature of a (normalized) fractal measure p. (x) is that
moments &p(x) "& of its probability distribution scale with
independent powers d„of the appropriately defined length
parameters:

&p "&=-(R/a) ",
d„—= (1 —n )D„D. —

(la)

Here R is the overall linear size of the set supporting the
measure —taken to be a fractal set X of dimension D and
"mass" M=(R/a); a is a short cutoff'. Angle brackets
denote averaging over all "sites" x (i.e., regions of linear
size a) where p. (x) does not vanish. Equation (la) still
applies if a is replaced by any arbitrary coarse-graining
length r &(R; this reflects the scale invariance of the whole
structure. Equation (lb) may be taken as the definition of
the scaling dimensions D„studied previously. ' These
are all equal to D only for the case of a simple fractal,
which will be called a "trivial" multifractal of fractal
measure.

In the present Rapid Communication, we indicate how
the exponents D„(or equivalently, d„) can be used to pre-
dict scaling laws for spatial correlation functions such as

measure can be generated recursively by a sequence of
partitions governed by a scale-invariant probability distri-
bution, ' as illustrated in Fig. 1. At the first step we
can identify a set of blobs i, each having a certain share p;
of the normalized measure (g,p; =1). Diff'erent blobs
may have very diff'erent values of p;; there exists a distri-
bution Pt„[p;], which is in general correlated with spatial
position. The subscript X ) 1 denotes the length rescaling
factor —the ratio between the size of a blob at one level
and that at the next iteration. (The choice of A, is some-
what arbitrary; it is often useful to consider a "thermo-
dynamic" limit, obtained by letting k ~.) At the next
iteration, the measure p; within each blob is divided
amongst the sub-blobs ij to give values p;~ with probabili-
ty distribution Pt, [p;~/p;]; here Pz[y] is the same function
as before. After many iterations (down to a scale a,
identified as the short cutoff) we obtain the measure
Pt/ki. . . =P(x)

To compute C „(r), we imagine iterating from the up-
permost level (at scale R) down to the scale r. Up to this
point, the two points that enter the calculation of C~„(r)
lie in the same blob, whereas at subsequent iterations they
do not. Thus we may write

C „(r)=-&P +")&[p(x)/Pl &&[p(x+r)/P]") . (3)

Here p denotes the total measure in a blob of radius =-r

C „(r)=&p(x) p(x+r)") . (2)

Here, as before, angle brackets denote an average only
over sites x 6 X. This form is trivially related to the
(more familiar) unrestricted correlation function,

C „(r)=—«p(x) p(x+r)"))
=C~„(r)(R/a) (r/a)

where d is the dimension of space, and double angle
brackets denote an average over all sites (empty and
nonempty).

We focus initially on fractal measures p(x) arising
from multiplicative random processes. ' ' Such a

FIG. 1. Schematic representation of the random partitioning
process described in the text. At each iteration, the measure p.;
assigned to blob i is shared among its constituent sub-blobs (ij )
in a nonuniform way; g,p;, -p;.

4907 1987 The American Physical Society



4908 M. E. CATES AND J. M. DEUTSCH

containing the two points. Since the term (P ") ac-
counts for all correlations between the points x and x+r,
the remaining average may be factored, as shown. From
Eq. (la) we then have (P +")=- (R/r) '", ([p(x)/
P] )=(r/a), and ([p(x+r)/p]") —= (r/a) ". Using
these relations in (3) we obtain the very simple result

C „(r)=(R/a) Y(r/a)', (a&««R), (4a)

y =dm+n (4b)

dm + dn dm+n (4c)

p(x) ~ Q rl, (x/g'), (5)j~]
where g is a rescaling factor and rlj. (y) is a random func-
tion with long-range correlations:

(rl, (x) tl, (x+r)")=8;,g „(r)+(I—6;, )(rl )(rl"&,

g „(r)=[A(rI"+ ) —(g"&(g )]r ~+(t& "&(rl

(J &0,~&0) .

(6)

Thus the random function gj at each iteration j is chosen
independently from an ensemble of such functions; the di-
lation factor (J in the argument in Eq. (5) provides for the
fact that after j iterations the short cutoff is at a =R/g~.
(The final value of a is R/g .) However, each function q~
is spatially correlated in a manner described by g „(r),
which, for illustrative purposes, we have taken to have a
power-law decay (—r ~) with position. It may then be

Note that C „(r) is independent of r (z =0) for any
"trivial" measure as previously defined. Thus, measure-
ment of spatial correlations can provide an unambiguous
quantitative test for multifractal behavior. By extending
the blob analysis, it is straightforward to compute scaling
forms similar to Eq. (4) for averages involving products of
the measure at more than two spatial positions. However,
the resulting expressions are cumbersome and will not be
given here.

In the above discussion we considered multifractals
which can be decomposed into blobs in an unambiguous
manner by virtue of their explicitly multiplicative con-
struction. However, we expect the blob picture to be quite
general for the purposes of obtaining scaling laws such as
Eq. (4). For example, while for many random multifrac-
tals (such as the hit probability in diffusion limited aggre-
gation ' ) the exact assignment of the boundaries be-
tween blobs is ambiguous, we expect Pq[y] to become in-
dependent of this assignment in the thermodynamic limit
of large X. This means that our results wi11 still apply for
the stated regime (a «r « R) although there will of
course be crossover effects near r/a = I and r/R = l.

A more interesting complication is if the partitioning of
the measure within neighboring blobs is not independent,
as was assumed above, but correlated. To show that this
does not spoil the argument, we have studied a model in
which the measure p(x) is generated recursively by a se-
quence of random multiplications

shown that

(p (x ) p (x+ r )")~ Qg „(r/(')
1V

~exp g h „(Inr —jina)

where h „(z) = In [g „(e')]. The asymptotic properties of
the sum in the exponential are readily found. In particu-
lar, since hm„(z) has a much sharper crossover behavior
than g „(r), long-range correlations of the form (6) are
harmless, and the results for dq do not depend on p. [In
fact, we obtain d~ =In((rl~))/In(g). l Moreover, Eq. (4)
can be explicitly confirmed for this entire class of models.
For a breakdown of that equation, the correlation function
g „(r) would have to approach its asymptotic value at
large r more slowly than with any negative power of r.

In addition to cases covered by the above arguments,
one is often interested in multifractals (such as some
strange attractors ' ) that arise by chaotic as opposed to
random processes. Insofar as such sets are indeed mul-
tifractals, it seems likely that an interpretation in terms of
blobs can still be made, although now Pz[y] is presumably
to be viewed as some kind of frequency distribution rath-
er than a probability. This view is supported by a further
argument in favor of Eq. (4), which can be given by con-
sidering the eA'ects of a coarse-graining operation. We
presume that if p (x ) is a fractal measure, then so is
0„(x) =p (x ) "/(p "). [The denominator ensures that
9„(x) is normalized. ] We then define a coarse-grained
quantity p(x) by

e„(x)=p(x) "/(p") =p(x) "/(p") . (7)

We now consider the product

r~ r~
(p(x) p(x)")—= l '

Ji J C „(x'—x")d x'd x" . (8)

The left side may be rewritten [using the second equality
in (7)] as

(pmpm) =(pm ") P P = (R/a) (l/a)'+„( &( ")

(
—

m)( —n)

where to obtain the final expression, Eq. (Ia) has been
used; y and z are as given in Eqs. (4b) and (4c). Clearly,
for Eqs. (8) and (9) to be compatible, C „(r) must obey
Eq. (4).

This last argument, though perhaps less transparent
physically than the one based on blobs, suggests the con-
jecture that Eq. (4) applies whenever the quantities in-
volved are well defined, i.e., for any object to which the
multifractal formalism embodied in Eqs. (Ia) and (lb) is
itself applicable. This conclusion will not surprise anyone
familiar with the success of blob arguments in describing
the spatial correlations of ordinary fractals. '"

p (x) = I D„p(x+ r )dDr,

with a similar equation for 9„(x). We now demand that
the operations of (i) coarse graining, and (ii) forming
8„(x) from p(x), can be performed in either order with
the same efI'ect. Then
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It is noteworthy, however, that the scaling law Eq. (4)
is incompatible wit/ the idea that a fractal measure or
multifractal can be represented as a superposition of sim-
ple fractal sets, having fractal dimension f(a), of local
singularities of strength a. (Singularities of "strength" a
are defined as points around which the measure 6p within
a small blob of linear size I behaves as bp —i'. ) In view of
the extent to which this "overlaid singularity' description
has been adopted in the recent literature, ' ' it is re-
markable that whenever Eq. (4) holds (and we have ar-
gued above that it holds generally), such a decomposition
is not possible.

To demonstrate this, we first presume that the decom-
position is possible, and then obtain a contradiction with
Eq. (4). In the overlaid singularity picture, it is well
known that the spectral function f(a) and the scaling di-
mensions Dq are related by the Legendre transform
(1 —q)D& =max, [f(a) —aq]. This follows directly from
applying the steepest descents method to the quantity

(R/a) '=—g p(x) —= da. (R/a) ' (a/R). r .

C „(r)=„dada'A„(r)(a/R)' (IOa)

„(r)
A...(r) =

Jt dada, 'Q„(r)
(1ob)

Q, ,(r ) =«p, (x )p, .(x+ r ))) . (IOc)

Now, the fractal sets p, are, presumably, correlated
with one another in a complicated way. Nonetheless,
since each p is itself a scale invariant set, the density-
product Q„.(r) must scale homogeneously under varia-
tion in the short cutoff a, so long as this always remains
much less than r:

Q„(r)—a' ", (a&(r «R) .

(We use "—"to indicate that there is also a dependence
on r and R, which is not relevant to our present discus-
sion. ) From this we obtain, using (lob),

[In the integral over a, (R/a) ' is the number of sites x
where p(x)=(a/R)'. ] The same formalism can be ex-
tended to predict correlation functions such as C „(r).
Denoting the density of the set of singularities correspond-
ing to a given a by p, (x), we have [using Eq. (2), and
paying attention to normalization factors]

sert Eq. (4) to obtain

, (p ) (R/g ) &&~ ~' ')
aa'

y(a, a', t) =m ax[y(m, n)+z(m, n)+a m
m, n

+ a'n+z(m, n)t],

(12a)

(12b)

ln (r/R )
ln(R/a)

(12c)

where y and z are as defined in Eqs. (4b) and (4c). Now,
if y were to vary linearly with t, say as

y(a, a', t ) = yp(a, a')+ yi(a, a' )t

then (12a) would give

A (r) =-(R/a)" "'(r/R)"' " -aaa'

(13)

which corresponds to an acceptable a dependence [cf. Eq.
(11)]. However, it is clear that in general y(a, a', r) de-
pends nonlinearly on t, once the minimization over m, n in
Eq. (12b) is carried out. [An exception is when the mea-
sure is trivial, since then z(m, n) =0.] Thus a single ex-
pression of the form (13) does not exist to describe all
values of a and r in the range a«r«R, which is the
domain of validity of Eq. (4); correspondingly the depen-
dence of A„.(r) on a cannot have the required scaling
form (11) over this range.

The above argument may appear somewhat delicate,
since one might naively expect that the inequalities
a«r«R would imply t 0, so that the unacceptable
nonlinear terms would vanish. However, for R »a, values
of r arise for which a «r «R (so that the scaling argu-
ments are valid) while t is of order unity (so that the
unacceptable nonlinearities arise). Specifically, this oc-
curs for all r of the form r =a'R' ' with s a parameter
obeying 0(s & 1.

We thus argue that Eq. (4), which describes the spatial
scaling of a multifractal or fractal measure p(x) in the
blob picture, and Eq. (11), which describes the spatial
scaling of the fractal sets [of dimension f(a)] of local
singularities (of strength a) into which p(x) is purported-
ly decomposable, cannot both be correct. Since we expect
Eq. (4) to hold generally, we conclude that the overlaid
singularity picture does not provide an adequate descrip-
tion of the spatial properties of multifractals. Blob con-
cepts' seem to provide a much more suitable description
of multifractal correlations. Note, however, that the spec-
tral function f(a) remains a useful object to study, since
it can be identified with the thermodynamic limit of the
partitioning probability Pi[y], when this is expressed in
scaling form by a suitable transformation to logarithmic
variables.

A„(r)—a '", (a&(r«R),

with a suitable choice of a(a, a').
To show that Eq. (11) is incompatible with Eq. (4), we

invert the double Legendre transform, Eq. (10a), and in-
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