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Quantitative test of solvability theory for the Saffman-Taylor problem
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We report on a quantitative test of solvability theory in the case of pattern selection for viscous

fingering in a rectangular Hele-Shaw cell. We construct an effective two-dimensional theory that
properly takes into account the effect of film draining. In the parameter range where the theory
is applicable we find excellent agreement between our predictions and the experimental data.
This provides the first precise quantitative assessment of microscopic solvability in a physical sys-
tem.

Formation of nontrivial patterns in systems displaced
far from equilibrium is a subject of considerable current
interest. ' Among such systems, the ones most intensively
investigated are viscous fingering in a Hele-Shaw cell,
directional solidification of dilute binary mixtures, and
free dendritic growth in an undercooled melt. One of the
central questions in all these investigations is to under-
stand, for a given degree of nonequilibrium which drives
the system, the mechanism that governs the selection of
an asymptotic state out of various possibilities. The first
proposal was the hypothesis of marginal stability, which
asserted that the state ultimately selected out of a contin-
uum of possibilities is the one at the boundary between
stable and unstable regions. Another scenario proposed
more recently is that of "microscopic solvability, " which
essentially holds that when all the relevant physical pro-
cesses are taken into account there is only a discrete spec-
trum of asymptotic states available, and, of these, only one
extremal solution is stable and thus selected by the sys-
tem.

For theoretical analysis this is an extremely appealing
scenario as has been demonstrated recently by a number
of authors. " Of course an issue always at stake is the
proper identification and inclusion of the "relevant phys-
ics." An important issue open for study is then to test the
scenario precisely in experimentally realized situations.
Of the three commonly studied examples referred to
above, both directional solidification and free dendritic
growth are beset by severe problems. Either the model
equations describing the dynamics are of necessity
oversimplified, ' or they involve parameters that cannot
be measured independently and reliably. Thus, in testing
the predictions of one or another scenario of pattern selec-
tion, one is faced with the uncertainty that if a discrepan-
cy arises between experiment and theory, one does not
know whether to attribute it to the mechanism itself or to
the difficulties noted.

In view of this we turn to the example of viscous finger-
ing in a Hele-Shaw cell. In this case, for driving forces
not too high, all the equations of motion can be written
down with a great deal of confidence, and al1 the physical
parameters can be measured independently and accurate-
ly. We believe that at this time this problem is the prime
candidate for a precise quantitative test of ideas relating
to mechanisms of pattern selection.
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FIG. 1. Experimental arrangement for viscous fingering in a
Hele-Shaw cell.

In Fig. 1 the experimental arrangement to study viscous
fingering in rectangular geometry is shown schematically.
The type of situation which can be handled best theoreti-
cally is one in which a gas displaces a liquid between a
pair of uniformly spaced plates (of spacing b). The width
of the channel is w)&b. For a given driving force and thus
a given velocity U of the tip of the finger generated, a
specific fraction X(U) of the channel width is swept out.
In this example the problem of pattern selection reduces
essentially to a prediction of k(U) for given U, with an un-

derstanding of the mechanisms at work. If one were to ig-
nore the surface tension between the gas and the liquid,
one would find for a given value of U there are steady-
state finger solutions for any arbitrary k between 0 and l.
However, if the surface tension is incorporated, this con-
tinuum breaks down into a discrete infinity, '3' and the
solution with the smallest fractional width turns out to be
the only linearly stable one. " Hence it is reasonable to
expect that it is the selected one of the family. This sort of
selection has indeed been observed in simulations of model
equations. ' ' To this extent the scenario of microscopic
solvability (MS) seems to be obeyed. However, when it
comes to quantitative correspondence, there is a serious
disagreement (by a factor of 2 or greater) between experi-
mental values of U(k) and the theoretical ones based on
previously studied models. This can be seen in Fig. 2.
Our objective in this paper is to demonstrate that if all
relevant physics is properly included (in the parameter
range in which it is possible to do so) theory agrees with
experiments within the known error range of about 5%,
hence, we have a precise quantitative verification of MS as
the mechanism of pattern selection.
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V2p ~P (2)

The two-dimensional model traditionally used to de-
scribe the experimental situation has been the following'8
(refer to Fig. 1): In the liquid the velocity u of the fluid
averaged in the direction perpendicular to the plates is
given by

b2u= — Vp, (1)12'
where p is the pressure and p is the viscosity of the liquid.
The assumption of incompressible fluid flow yields

leaves behind a film of thickness t on each of the two
plates (we may ignore gravity for the experiments to
which we shall refer ) so that

u„(interface) =Ucoso(1 —2t/b), (5)

where 0 is the angle between the local normal and the
direction parallel to the walls. The thickness t depends on
Ucos8, and this variation in the meniscus shape along the
interface leads to an error in the boundary condition (4)
which ignores this eff'ect. When this crucial element of
physics is incorporated, Eq. (4) becomes'

On the walls one has

u-n=0, (3)

r

Kr r f pU cos0
4R b

(6)

where n is the unit normal to the wall. Far to the right the
velocity field is uniform, parallel to the walls and equal
(by mass conservation) to kU. Finally, the pressure drop
across the interface is given by the Laplace condition

ap = r/R, (4)
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FIG. 2. Comparison of experimental data and predictions of
various theories.

where z is the surface tension and R is the radius of cur-
vature in the plane of the plates. One can write Eqs.
(1)-(4) in appropriate units to show that there is only one
independent dimensionless parameter B, defined here by
8 =12pUw /rb, which should determine X. Experimen-
tal data in Fig. 2 clearly demonstrate that this is not the
case. In fact, there is one more independent parameter,
which we may choose as the ratio (b/w). Furthermore,
there is a serious discrepancy between the prediction of
this model and the experiment, the deviation increasing
with (b/w) The corre. cted theory, as presented below ex-
plains these observations and thus yields quantitative con-
sistency with the MS scenario appropriate to this problem.

The essential problem with the traditional theory is that
it does not properly take into account the three-dimen-
sional nature of the fluid flow at the interface. Park and
Homsy' demonstrated that, at the interface, the liquid

where f(x) is a power series in powers of x 't3, the first
term being proportional to x . The film thickness is pre-
dicted' to be of the form (for sufficiently small pU/r)

2/3

E =0.67 (7)
Z

and this has been experimentally verified by Tabeling and
Libchaber. This is the basis for our belief that we have a
complete theory represented by the modification in Eq.
(6) in at least some parameter range.

The effective two-dimensional (2D) theory of Ref. 13
(which we shall extend) has the inherent assumption that
u„=Ucos8, and thus from Eq. (5) the very basis of this
description breaks down unless t «b. This already con-
strains [from Eq. (7)I the velocity U to be sufficiently
small, and in our calculations this violation never exceeds
1.5%. Hence we may retain the 2D description, with,
however, the important modification represented by
Eq. (6).

The prefactor of only the first term in the series expan-
sion of f(x) is independent of the interfacial coordinate in
the transverse direction (and thus is consistent with the
2D description) and has been calculated by Park and
Homsy. We shall retain only this term, which sets obvious
restrictions on the magnitude of (pU/r). The new bound-
ary condition in place of Eq. (4) is

' 2/3

Rz+ 7 6zpUcosO (8)
4R b

Note that the modification of the boundary condition can-
not be thought of as a simple addition to Eq. (4), since
even the curvature term has a new prefactor. In essence,
both pieces of Eq. (8) involve the same physics. Since the
series expansion of f(x) is only in powers of x't, conver-
gence is rather weak in x. Thus truncation at the first
term will restrict the domain of (pU/r) in the present cal-
culation. There is clearly some scope for expanding the
domain of validity by extending the Park-Homsy analysis
and calculating higher order prefactors in Eq. (6), doing
an appropriate averaging over the transverse direction to
eliminate space dependence of hp in that direction.

One immediate consequence of Eq. (8) is that now,
when the equations are written in dimensionless form,
there are t~o independent control parameters determined
by 8 and (b/w) as noted above. This at least has the po-
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lnq(s) = ——Ps I' 8(s ')ds '

"o s'(s' —s) '

q(0) =1, 8(0) =0, q(1) =0,
where "P" indicates principal part and

xb rk)=
12@(l —A) Uw

2bk i
k2 =1.53

( )

(9)

(10)

(12)

(13)

The new variable s locates position along the finger, with
s =1 corresponding to the "nose" and s =0 corresponding
to the "tail." In the above system, 8(1) is left as a free
parameter. Physical solutions are those for which 8(1)
= —x/2, since the interface is required to be smooth at
the nose.

The first step toward numerically solving the system
(9)- (13) accurately is to have an analytic understanding
of 8(s) and q(s) in the neighborhood of the limits s =0,
s =1. This information is used to make appropriate trans-
formations on the independent variable s so that, with
respect to this new variable, a11 necessary derivatives are
bounded. We find that, with the new boundary condition,
the convergence of 0 and q at the tail end is algebraic in

distance from the tip rather than exponential (which is the
case in the old theory). In fact, as s 0,

8(s) —( —ins)

1
—

q (s) —( —Ins)

For s 1

8(1) —8(s) —J(I —s),
q(s) -(1—s),

(14)

(15)

when 8(1)= —x/2. For other (unphysical) values of 8(1)
(in which there is a cusp at the nose), there are actually
divergences in the derivatives (a point not mentioned in

Vanden Broeck's work, but one equally applicable). Since
the full singularity structure at the tip is not known [for
8(1)~ —x/2], we do not know if these divergences are re-
moved by the transformations. To obtain accurate numer-

tential to explain one aspect of the experiments. This also
has interesting implications for the number of control pa-
rameters for the radial Hele-Shaw fiow. ' To summa-
rize, the new model retains Eqs. (2) and (3) but replaces
Eq. (4) with Eq. (8). Now we turn our attention to the
problem of finding A, (U).

To solve systematically for all the steady-state fingers
we extend the formalism developed by Mc Lean and
Saffman' and Vanden Broeck' and write down a system
of integro-diferential equations incorporating the modi-
fied boundary condition. (Details of derivations will be
presented elsewhere. 3) The system is defined in terms of
two functions q(s) and 8(s) with 0 ~ s ~ 1. The equa-
tions and boundary conditions are

ical solutions, more care and more grid points are needed.
We have checked that the nuinerically obtained value of
8(I) converges rather quickly as the number of grid
points is increased. However, we also notice that the spec-
trum of X for physical solutions is rather insensitive to the
number of grid points (typically 50-100). As a check on
the numerical accuracy of our scheme, we reproduced
many of the results of SaAman and McLean and Vanden
Broeck.

Numerical calculations were carried out for parameter
values corresponding to the SaAman-Taylor and the more
accurate Tabeling-Libchaber experiments. Notice from
Fig. 2 that apart from changing the singularity structure
at the tail, the major efrect of the modified boundary con-
dition is to shift the physical solutions to higher values of
X compared to those for the old version of the theory. The
importance of this will be discussed further below. Essen-
tially the shift is a reflection of the extra pressure drop
across the interface, caused by the velocity-dependent
term, which causes a slowdown at the tip and enhanced
flow at the sides. The finger widens in response.

A full stability analysis for these solutions has not yet
been carried out. However, physical arguments strongly
suggest that the velocity-dependent term has a stabilizing
eAect. For the moment, given the structural similarities
between the solutions with and without the velocity-
dependent boundary condition, we shall assume that only
the solution with the smallest width is linearly stable. Fig-
ure 2 shows the experimental data and our predictions for
the experiments of Tabeling and Libchaber as well as
those of Saffman and Taylor. We are not certain about
the error bars associated with the latter experiment, and
the boxes shown are taken from the paper of Tabeling and
Libch aber.

The important predictions of the present theoretical
analysis to be noted in Fig. 2 are the following. (i) For a
given k the value of 1/B depends significantly on the value
of the second independent parameter (b jw), as is seen in

the experiments. (ii) For the experiments of Libchaber
and Tabeling, as (I/8) 0, our predictions agree with
the nominal experimental data to within 5%, which is also
the error range quoted for the experiment (arising mostly
from uncertainty in the measured value of the surface ten-
sion ). This should be compared with the traditional
theory which shows about a factor of 2 disagreement in

the same range of X. Note that Tabeling and Libchaber
attempted to account phenomenologically for the dis-

crepancy by constructing an eAective surface tension that
averaged the velocity-dependent correction over the inter-
face. Unlike our calculation this procedure introduces a
new parameter which has to be adjusted to fit the experi-
mental data and which cannot be computed from first
principles. As (I/8) increases, a gap between the predic-
tion and the experiment arises and is expected for the
reasons noted above. Theoretical values are missing for A,

very close to 1, since here k &
rises rapidly necessitating the

use of a very large number of grid points. Hence the com-
putation time goes up very rapidly as A, 1.

To summarize, we have produced what we feel is the
first demonstration that the MS scenario is indeed valid in

a precise quantitative way for the case of viscous fingering
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in a Hele-Shaw cell (although demonstrations of stability
remain to be made). At this time it is the only case in
which the equations of motion can be systematically de-
rived from first principles (the Navier-Stokes equation in
this case) and some aspects can also be tested indepen
denrly (film thickness, for example). We have stretched
the two-dimensional theory almost to the limit of its valid-
ity, and in the domain where our description is internally
consistent and accurate, there is quantitative agreement
with experiment. We should mention that there is one
more crucial implication of the boundary condition (6).
We pointed out that the extra pressure drop due to the
velocity-dependent correction leads to a more space-filling
structure. This is exactly what is seen in the case of radial
Hele-Shaw fingering with high rate of Auid displace-
ment. We conjecture that this is what leads to dense
branching morphology as opposed to fractal structure of

the interface. Further work is in progress to verify wheth-
er this will indeed explain the crossover between the two
apparently diff'erent growth morphologies as the velocity-
dependent correction is tuned.

After this paper was prepared we came across work of
Schwartz and DeGregoria which also reports some of
our results, although the point of view and the techniques
employed are considerably diff'erent.
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