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Locking equation with colored noise: Continued-fraction solution versus decoupling theory
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The locking equation in the presence of colored noise is studied. This system models, for exam-

ple, the mean beat frequency &pl of a ring-laser gyroscope in which weak noise with (dimension-
less) noise correlation times r= 10 2-102 is used experimentally to overcome the locking. The
non-Markovian, colored-noise dynamics is solved by use of a matrix-continued-fraction technique.
The thusly calculated stationary probability and the mean beat frequency are compared to the
decoupling theory introduced recently by Hanggi and co-workers lPhys. Rev. A 32, 695 (1985);
33, 4459 (1986)], as well as to the conventional small-noise-correlation-time approximation. The
decoupling approximation, resulting in a Fokker-Planck equation with an effective diffusion which

must be evaluated self-consistently, yields satisfactory agreement over the whole regime of physi-

cally relevant correlation times z. The small-correlation-time approximation, however, breaks
down for moderate-to-large z. The mean beat frequency (p) decreases at constant noise intensity
with increasing noise color; i.e., increasing the noise correlation time z increases the tendency to
lock.

The effect of frequency locking is a ubiquitous
phenomenon in nonlinear mechanics, optics, and electron-
ics. This effect was apparently recognized long ago.
Thus, for example, Van der Pol, ' who started to develop
the theory, remarks that "the synchronous timekeeping of
two clocks hung on the same wall was already known to
Huygens. " Let us consider a nonlinear oscillator with a
positive feedback, oscillating at some frequency mo, set by
the type of nonlinearity of the amplifier. This free-
running frequency can be shifted if we introduce an exter-
nal signal of frequency co, . The detuning will be denoted
by a =coo —co, . Then the time variation of the phase
difference p between the actual phase ri and the synchron-
ization phase tl„i.e., p = ri

—ri„canbe modeled, as shown

by Adler, by the so-called "locking equation"

!t!=a+b sing .

Here, the parameter b characterizes the effectiveness of
the synchronization signal. Moreover, it is undesirable, if
not impossible, to completely isolate the physical system
from its surroundings. The infIuence of the environment
is represented by an additive noise term e(t ), whose
strength of correlation D in the following will be assumed
to be independent of the system variable!/!(t). In particu-
lar, we assume for s(t) Gaussian statistics with vanishing
mean and finite correlation time (colored noise)

&s(r)s(s)& =(D/r)exp( —
( r —s (/r) .

For the idealized situation of a white-noise source (i.e.,
&correlated random forces; r 0) Eqs. (1) and (2) have
been studied by Stratonovich, and have since been ap-

plied in a multitude of physical systems. For example,
this model of a Brownian motion in tilted sinusoidal po-
tential (sometimes with an additional second-order inertia
term) has attracted attention in solid-state physics when

describing superionic conductors, overdamped soliton
transport, or the dynamics in Josephson junctions, or
also in chemical physics for the description of the rotation
of dipoles in an external field.

A particularly interesting application of (1) relates to
ring-laser gyroscopes. In this latter case, the stochastic
variable p(t) denotes the phase difference between two

counterpropagating electromagnetic waves in a ring reso-
nator. A rotation of the resonator around an axis perpen-
dicular to the plane of the gyroscope causes between the
two waves a Sagnac frequency shift a proportional to the
rotation rate. Furthermore, the backscattering from the
mirrors of the resonator couples the counterpropagating
waves in a nonlinear fashion as described in (1),wherein b

denotes the backscattering coeScient. The physics of the
optical gyroscope is as follows: For small rotation rates
~a ~

~ ~b ~, the two waves lock, yielding a vanishing
mean beat frequency p. The existence of this dead band
constitutes a problem for the functioning of the gyroscope.
Thus, in order to avoid locking one deliberately introduces
external noise, resulting in a nonvanishing mean beat fre-
quency. The case of white noise arising from spontaneous
emission of the laser atoms has been studied in Refs. 10
and l l. Experimentally' the noise is introduced into the
system by cementing one of the resonator mirrors on a
piezoceramic element which is driven by a noise genera-
tor. Necessarily the correlation time i of such imposed
noise is nonzero. As a result of the noise, the area 2 of the
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Bt

B D B[(a+b sin(ji)P]+ —
2Bp a/ 2

t t 8 (t)
ds exp( —

~
t —s ~/z) 8(y(t) —y)

0 8e(s)

(3a)

wherein the functional derivative 8&(t)/Se(s) is given by
[H(t ) denotes the Heaviside step function]

ring, as well as its perimeter P, start to Auctuate. Because
the Sagnac frequency a is proportional to 2, and inversely
proportional to P, one obtains for (1) an additive correla-
tion noise source s(t) characterized by (2). Typical mir-
ror displacements' are of the order of O. l pm and the
bandwidth of the noise ranges from a few Hz to kHz. In
units of the backscattering coefficient b, typically of a few
hundred hertz, this translates into dimensionless correla-
tion times bz that range between 10 and 10, and noise
correlation strengths D/b (corresponding to ffuctuations
of the mirror displacement) that range between 10 and
unity. Therefore, (1) supplemented by the additive
colored noise (2) defines a non-Markovian dynamics for
p(t ). Thus the physics of the optical gyroscope is ruled by
small noise intensities D and moderate-to-large correla-
tion times ~. Formally, the single-event probability
P =P(t, p) of the non-Markovian process p(t) obeys the
exact equation '

two-dimensional Fokker-Planck process P =P(t, p, a),

D P[(a+b sing+ c)P]+z ' (eP) +

(4)
However, neither (3) nor (4) can be solved analytically in
a closed form; in particular, detailed balance does not hold
for the Markovian dynamics in (4). Only the matrix-
continued-fraction (MCF) method provides a formally
exact solution of Eq. (4). ' However, the solutions can
only be evaluated on a computer. Suitable approximate
treatments of colored noise are therefore of great interest.
The usual approximation scheme, widely used in the pre-
vious literature, ' uses an expansion around the Markovi-
an limit (zero correlation time), with bz being a small pa-
rameter. In our case, this yields' a Fokker-Planck equa-
tion for P =P(t, p) similar to multiplicative-noise process

Bp a a2

Bt Bp
[(a+b sin(t)P]+D [(I +bzcosg)P] .

2

(5)
A different approximation scheme, which is tailored to

weak noise, but otherwise does not restrict the magnitude
of the noise correlation time, decouples' ' the correla-
tion in (3a) from the average of the functional derivative
(3b). With (3b), we then obtain the decoupling approxi-
mation

6 (t) "' B '(r)=H(t —s)exp dr
8e(s) "~ By

(3b)
ap a [(a+b sing)P] + D B P

t 1
—bz cosp

(6)

Alternatively, if we represent the noise by the stochastic
diff'erential equation for an Ornstein-Uhlenbeck process,
i.e., d= —e/z+ zt(t) with

(rt(t ) rt(s)) = (2D/z') B(t —s),
we can recast ' the non-Markovian dynamics (3) as the

I

Comparing this equation to the corresponding Fokker-
Planck equation for white noise [i.e. , Eq. (6) for z 0], we
note that the influence of colored noise is contained in a
renormalized diffusion coefficient involving the average
(cosp) which must be determined self-consistently via the
corresponding stationary probability Pss(p). Making use
of the white-noise results we find

~ ttt+ 2n

Pss(p) = [4tt Id, (d2)I;d, (12)exp( —tzdi)] 'exp[di(t+d2cosp] exp[ —(di @+d2cosy)]dy, (7a)

where I;„denotes the Bessel function of imaginary order
and argument. ' In contrast to Refs. 3 and 4, however,
the coefficients di 2 now depend on the noise correlation
time z as well as on the average (cos(li), i.e.,

di =—(1 —bz(cosp)), d2= ——(1 —bz(cosp))
a b

D D
(7b)

Therefore, Eq. (7a) is an implicit expression. Similarly,
replacing the coefficients di and d2 in Ref. 3 by Eq. (7b)
the mean beat frequency (p) within this decoupling ap-
proximation (6) reads

sinh (ttd i )
(j)= (tp) —to, =a

the probability P(t, p, e) into a series
OO Oo

P (t, y, s) = g g S„(t)exp(in') /t'p(a) P (a),
2& m on

(9)
where /i' (e) are the (orthonormalized) Hermite func-
tions. Substituting (9) into (4) yields for the coefficients
S„(t)a three-term vector recurrence relation which can
be solved 4' by the MCF method. The stationary proba-
bility Pss =Pss(p) and the physically important mean
beat frequency (p) =a+b(sing) are then given' in terms
of the stationary values [S„]=lim, [S„(t)]as

p OO Oo

Pss((ji) =
J~ lim P(t, p, r)de = g S„exp(in&),Oot~ OO J2tz n

(IOa)
In the remainder of the present article we compare the

two diff'erent approximation schemes (5) and (6) with the
MCF approach applied to Eq. (4). We first expand

and

(p) =a —J2ttb I mt i (lob)



4884 VOGEL, LEIBER, RISKEN, HANGGI, AND SCHLEICH

I ~ I ~ J I ~ I ~ 1 ~ ~ I I ~3 I I ~ ~ & ~ I I I I ~ I I I I I 1x10
(a)

I ~ I % ~ I0 I ~ I
1

~

a= 0.5

t=5

jj,'—T = 0.5
0.5—

0=1
T=5

0.5—

a= 0.5

(a)

10

&sin2$&

0.8—

0.7—

0.6
10

FIG. 1. EExact stationary probability Pss =Pss(p) [Eq.
(10a)] (solid line) corn pared with the decoupling approxima-
tion, (6) and (7) (dashed line), for b = I and weak noise D =0.1.
a) Stationary probability in the locking regime (a =0.5) for

two noise-correlation times z =0.5 d =5. Than i= . The small-noise-
correlation-time approximation is shown for v=0.5 b a d

ine. ) Stationary probability at the threshold to the unlocked
regime (a =1) for z=5.

For the explicit form of the MCF' d t
0

s etermining the
coefticients S„werefer to Ref. 14.

In the remainder of the present article we have ex-
pressed all quantities in units of b and set b =1. Fn se = . figure

a epicts the normalized stationary probability
Pss=Pss((li) in the locked regime, i.e., for ~a

~

=0.5, at
weak noise D =0.1 for two diferent noise correlation
times z=0.5 and z=5. Within this locked regime the ex-
act probability (solid line) and the decoupling appro

'
g approxima-

(6) (dashed curve) are practically indistinguishable.
The small-correlation-time approximation (5) which ex-
ists only for suSciently small z, however, exhibits an
overshoot for the maximal probability. In Fig. 1(b) we
show Pss =Pss(p) for z =5 at the threshold to the (deter-
ministically) unlocked regime, i.e., tt =1. The stationary
probability now exhibits a typical asymmetry. Again, the

The w
ecoupling approximation shows the same asymm t

e width, however, is slightly larger, which explains the
undershoot for the maximal value. I F' . 2 d
colored-noise results for the noise-modified mean beat fre-
quency (p) and the moment (sin(2tlt)). The decoupling ap-
proximation yields qualitatively reliable results over the

tion tim
w ole regime of small-to-moderate-to-large noise cor l-

n times. For a small noise correlation time, the conven-
tiona approximation yields good results startin w th th

ct slope. The approximation starts to fail, as must be

moderate-to-large z values. The better agreement for (p)
at small z & 0.5 is accidental because the decoupling ap-
proximation for the stationary probability Pss actually
exceeds in quality that of the small-correlation-time ap-
proximation [see Fig. 1(a)]. Indeed, other transport
quantities such as (sin(2&)) or (cosp), etc. , no longer are
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FIG. 2. Mean beat frequency &p) =a+ b&sinp) and mean
va ue &sin2$) for b =1 and weak noise D =0.1 as a function of
the noise correlation timime r. Solid lines represent exact results

as e ines are based on theevaluated via the MCF method d h d l

decoupling scheme (6) and (7), and doted curves correspond to
the small-noise-ise-correlation-time approximation (5). (a) Mean
beat frequency, (p) in the locked regime a =0.5. (b) Mean
value &sin2 ) for a =
old a =1

a =0.5. (c) Mean beat frequency (p& at th h-

, and (d) in the unlocked regime (a =1.5).
a — a res-
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produced with such good accuracy [see Fig. 2(b)]. In Fig.
(b) the Hanggi ansatz closely fits the exact result over

the whole z regime. Thus, there occurs within the conven-
tional scheme (5) a fortuitous cancellation of errors for
the evaluation of (p) at small noise correlation t'ion imes

w hach does not show up for other transport
coeScients.

In conclusion, we have studied the role of noise color in

the locking equation. For ring-laser gyroscopes colored
noise of a relatively long correlation time plays an impor-
tant role. As depicted in Fig. 2, noise color at a fixed noise
intensity D tends to reduce the mean beat frequency (p);
i.e., the tendency "to lock" increases unavoidably with in-

creasing noise correlation time z. This effect can be readi-
ly understood by referring to the decoupling approapproxima-
ton ( ). Note that for (cosp) ( 0 an increase in z results

in a decrease for the effective noise strength. The role of
noise color on other quantities of interest in the gyro, such
as, e.g. , the variance of the mean beat frequency can, of
course, be studied analogously.

Also at Center for Advanced Studies and Department f Ph
s and Astronomy, University of New Mexico, Albuquerque,

New Mexico 87131.
'Stated in a footnote, in B. Van der Pol, Philos. Mag. 3, No. 13,

65 (1927).

2R. Adler, Proc. IRE 34, 351 (1946).
3R. L. Stratonovich, Topics in the Theory of Random Noise

(Gordon and Breach, New York, 1967) Vol. II Ch
p. 222.

o. , ap. 9,

4H. Riskenen, in The Fokker Planck Equation, Methods of-Solu



LOCKING EQUATION WITH COLORED NOISE: CONTINUED-. . . 4885

tions and Applications, Springer Series in Synergetics, Vol.
18, edited by H. Haken (Springer, Berlin, 1984).

5W. Dietrich, P. Fulde, and I. Peschl, Adv. Phys. 29, 527
(1980).

A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, Physica D
1, 1 (1980);T. Schneider, E. P. Stoll, and R. Morf, Phys. Rev.
B 18, 1417 (1978).

V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364
(1969); Y. M. Ivanchenko and L. A. Zil'berman, Zh. Eksp.
Teor. Fiz. 55, 2395 (1968) [Sov. Phys. JETP 28, 1272
(1969)].

W. T. Coffey, Adv. Mol. Relax. Interact. Processes 17, 169
(1980); G. Wyllie, Phys. Rep. 61, 329 (1980).

W. W. Chow, J. Gea-Banacloche, L. Pedrotti, V. Sanders,
W. Schleich, and M. O. Scully, Rev. Mod. Phys. 57, 61
(1985).
J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre, and
H. Risken, Phys. Rev. A 25, 2226 (1982).

''J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich, and
M. O. Scully, Phys. Rev. A 25, 2214 (1982); J. D. Cresser,
ibid 26, 398 .(1982).
G. S. Kruglik, A. A. Kutsak, and G. M. Kuznetsov, Zh. Prikla.
Spektrosk. 16, 58 (1972) [Sov. J. Appl. Spectrosc. 16, 44
(1972)];G. S. Kruglik, B. A. Blazhnov, G. M. Kuznetsov, and
A. A. Kutsak, ibid 17, 35. 8 (1972) [ibid 17, 1100 .(1972)].

'sP. Hanggi, Z. Phys. B 31, 407 (1978).
' K. Vogel, H. Risken, W. Schleich, M. James, F. Moss, and

P. V. E. Mc Clintock, Phys. Rev. A 35, 463 (1987); K. Vogel,
Diploma thesis, University of Ulm, 1985 (unpublished).

'5M. Lax, Rev. Mod. Phys. 38, 541 (1966); N. G. van Kampen,
Phys. Rep. 24, 171 (1976); R. F. Fox, Phys. Lett. 94A, 281
(1981); J. M. Sancho, M. San Miguel, S. L. Katz, and J. D.
Gunton, Phys. Rev. A 26, 1589 (1982); K. Lindenberg and
B.J. West, Physica A 128, 25 (1984); A. Schenzle and T. Tel,
Phys. Rev. A 32, 596 (1985); L. A. Lugiato and R. J.
Horowicz, J. Opt. Soc. 2, 971 (1985); see also Ref. 3.
P. Hanggi, T. J. Mroczkowski, F. Moss, and P. V. E. Mc Clin-
tock, Phys. Rev. A 32, 695 (1985).
A different, rather appealing derivation of the decoupling ap-
proximation using functional-integral calculus can be found in
R. F. Fox and R. Roy, Phys. Rev. A 35, 1838 (1987).

' F. Moss, P. Hanggi, R. Mannella, and P. V. E. McClintock,
Phys. Rev. A 33, 4459 (1986).

~sl. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Academic, New York, 1965), relation 8.406;
see also Ref. 3, p. 238; for zero detuning, a =0, the solution
(7) becomes

Pss [2rclo(dz) 1
' exp(dqcosp) .

A solution of the Klein-Kramers equation for this tilted cosine
potential based on the MCF method has been given by
H. Risken and H. D. Vollmer, Z. Phys. B 33, 297 (1979);
H. D. Vollmer and H. Risken, ibid. 34, 313 (1979); see also
Chaps. 9 and 11 of Ref. 4 for a review.


