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Quantum behavior of a four-wave mixer operated in a nonlinear regime
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A four-wave mixer model is presented for which exact analytic results can be obtained in a regime
where the usual perturbation procedures no longer apply. It is shown that under suitable conditions
the output of such a four-wave mixer consists of a superposition of macroscopically distinguishable
states. Such states can be identified with a homodyne detector which is able to observe the interfer-
ence between the macroscopically distinguishable components. Further, it is shown that the device
can act as an even-odd filter which will switch incoming pump light between two output ports de-

pending on whether there is an even or odd number of pump photons.

Four-wave mixers have been extensively discussed' as
sources of nonclassical light referred to as squeezed light.
In fact, three of the recently successful experimental ef-
forts to generate squeezed light employed four-wave
mixers. In order to generate squeezed light, four-wave
mixers are operated under conditions of small pump de-
pletion. In this regime, where the coupling between the
signal and pump modes is weak, an adequate theoretical
description of four-wave mixing is obtained via a pertur-
bation expansion to low orders in the signal amplitude
and the pump noise amplitude. Here we explore some
quantum phenomena arising when a four-wave mixer is
operated in a regime where the coupling between the
pump and signal modes is strong. A model is presented
for which exact analytic results can be obtained. It is
shown that for a suitable choice of coupling between the
signal and pump mode an initial state consisting of vacu-
um in the signal mode and coherent state light in the
pump mode will evolve into a state in which the light is in
a coherent superposition of being entirely in the signal
mode or entirely in the pump mode. This superposition is
generated because the device acts as an even-odd filter in
which incoming pump light is transferred to the signal
mode if the number of pump quanta is even. The two
parts of this coherent superposition will be macroscopical-
ly distinguishable if the initial pump state has a large am-
plitude. By combining the light in the signal and pump
mode via a beam splitter, a homodyne detector can be
used to exhibit the interference that arises between the two
macroscopically distinguishable parts of the coherent su-
perposition.

The possibility of generating coherent superpositions of
macroscopically distinguishable states via an amplitude
dispersive process which could be regarded as self-four-
wave mixing has already been discussed. ' ' " Here a
four-wave mixer is modeled more realistically in that
there is a separate signal and pump mode.

Let a and b denote the boson annihilation operators for
the pump and signal mode, respectively. Before describ-
ing the Hamiltonian it is useful to introduce the opera-

12

J = —,(a b+b a),
J = ——(a b —b a),3' (1)

J, = —,(a a bb), —1

which satisfy the usual angular-momentum commutation
relations. The Casmir invariant can be put into the form

J =——+1N
2 2

(2)

that is, 1n), 0)b is the fjm) , state given by j =n/2
and m =n/2.

The Hamiltonian is taken to be

H =co%+AJ (5)

The nonlinear term AJ, besides containing the usual
four-wave mixing terms —,

' A(atatbb+aab b ), has the
nonlinear term TAa ab b. It is reasonable to consider
such a Hamiltonian since realizable four-wave mixing
media will generally also exhibit a Kerr-effect nonlineari-
ty proportional to a ab b. ' Under the action of H an in-
itial state in) evolves into the state 1out) according to
the unitary transformation (we take A'= 1)

—i (coN+QJ~)t
1out, r ) =e " 1in), (6)

where t is the interaction time.
The initial state will consist of the pump in the

coherent state 1 a), and the signal in the vacuum state
10&b.

I
in& =

I
~ &. 1o &b .

where N is the operator for the total number of photons,

N=a a+b b.
It is useful to note that

J, 1n ), 10)b ——1n ), 10)b,
(4)

J 1n ), 10),= ——+1 1n ).10)„b,
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Since X commutes with J„,Eq. (6), using the number basis expansion for
I

a )„canreadily be put into the form

I
out, t) =e —( ~ '"i

j=0, 1/2, 1,3/2, .

(ae '~~)2J;nJ2g
V(2')i e IJ J& . (8)

—i(m. /2) J
One can now bring to bear the mathematical machinery for the rotation group. Since e performs a rotation by
an angle m. /2 about the y axis, Eq. (10) can be put into the form

I
out, t) =e

j=0, 1/2, 1,3/2,

(ae' ') J i(n'/2(J in(J ——i(n/2)J
e 'e 'e ' jj).

(2j)!
(93

Introducing the usual' rotation matrix elements

dJ „(/3)=(j,m
I
exp( iPJ—«) Ij,n ), (10)

—i(n. /2) J'
I j,j ) can be expanded in a

I j, m ) eigenbasis and Eq. (9) can be further written as

(ae ) J i(~/2iJ ~; 2n,e
J =0, (/2, (, 3/2, . . . 2

the state e

I
out, t) =e

There are specific values of t for which Eq. (13) is particularly easy to evaluate. When t =8~k/0 where k is an integer,
—im 2Qtthen e ™~t= 1 and

—'(8n.co /ni)
I

() )
8~k
0 (12)

that is, periodically with a period of 8~/A the photons will reassemble themselves into a coherent state in the pump
mode.

Of interest is the case when t =2m/A. Then e ™~t=1 if j is an integer and e ' '= —i if j is a half integer
Equation (11) then reduces to

lout 2'/0)= [(e "~ 'Iae ' ~ '") +e' 'I —ae ' " ' ) )] IO)
1

v'2 a a b (13)

The pump is thus in a coherent superposition of two coherent states 180 out of phase with each other while the signal is
in the vacuum state. As a is made large,

I
out, 2~/0) consists of two macroscopically distinguishable pieces. Similar

behavior has been noted in a simpler model consisting of an anharmonic oscillator in Ref. 10.
Even more bizarre behavior occurs when t=m/O. When j is an integer, e ' '=( —1) . If j is half integer,

—im 2Qte ™~'=e ' / '. The state
I
out, n/0) can thus be written as

I
out, vr/n& =e —'

j=0, 1,2, .

2J
e «g( —1) d —

I j,m)+e
j= 1/2, 3/2, 5/2,

p2J
.

,
IJJ&

where P=ae ' / . By noting that

(j,m l&ljj)=(—1) dJJ

where the rotation operator & is given by'

where

—
I
0&.(

I &&&b+
I

t&&b)—
1

—i(~/4)
(

I I3).—
I

—P &. )
I
0 &, .

(18)

= exp( i', ) exp —i J«——
3' (16)

and that
—i(~/2) J

e ~e 'e '=e

I
out, m/II ) = —(

I
S ) +

I

P ) ),1

v'2 (17)

and using e "Ij,j)=( —1)
I j, —j), Eq. (18) can be sim-

plified to

Equation (17) can be recognized as consisting of
coherent superposition of two macroscopically distin-
guishable parts: one,

I
S), in which all the photons exit

the four-wave mixer through the signal port, and the oth-
er,

I

P ), in which all the photons exit the pump port. Ex-
panded in the number basis,

I
S ) is a superposition of

only even number states while
I
P) is a superposition of

only odd number states. Hence, the device acts as an
even-odd filter. In order to distinguish such a state from
a statistical mixture in which incoming pump light is ran-
domly switched between the signal and pump exit ports, it
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is necessary to construct an experiment which exhibits the
interference between the two components of the coherent
superposition. This can be accomplished by combining
the light coming out of the signal port and the pump port
via a beam splitter and then viewing the light exiting the
beam splitter with a homodyne detector.

More rigorously, consider a beam splitter having the
mode transformation

y = (e'~e'"'d+e '~e '"'d
)

1

v'2 (22)

For simplicity we will set P equal to 0. By standard tech-
niques, ' the x,y representation P(x,y)=(x,y ~

out, n/fl &

for t =~/0, can be constructed

where the local oscillator phase 0 is at the experimenter's
control. Similarly, a homodyne detector in the port d will
measure the variable

c 1 1

d Q2 —i 1 b (19)

(20)

Such an overall mode transformation can be realized with
any 50-SO beam splitter provided suitable phase shifters
are placed in its input and output ports. The state

~

out, rr/0& upon passing through the beam splitter be-
comes'

~

o tu~/0& = —,
'

(
~ y&, —e "

~

—y&, ) ~iy&d

+ —,'( —y&, +e ' "' y&, ) —iy&d,

Q(x,y) = —,[stir(x) —e ' 'P y(x))P;r(y)

+ —,
'

[tti r(x)+e ' "ttir(x)]q;r(y),
where

2

t(ir(x) =, exp — +v 2xye'

(23)

(24)

(
i8 icut + —i6 —icot

)v'2 (21)

where y=2 '~
/3. A homodyne detector' ' placed in

the output port c will measure the variable and 0'=0+~co/0, . The probability distribution P (x) for
the current delivered by the homodyne detector in port c
is given by

P(x)=, , ( expI —[x —
~

a
~

cos(0+$)]'I+ expI —[x +
~

a
~

cos(0+$)]'I

+2' exp[ —x —a
~

cos (0+/)] sin[2x
~

a
~

sin(0+/)]+terms of order e ), (25)

1P(x)=, e [2+2'~ sin(2x
~

n
~

)] . (26)

These fringes arise from the interference of S& with

~

P & in the coherent superposition Eq. (17). For a statisti-
cal mixture of

~

S& and
~

P& passing through a beam
splitter, the third term of Eq. (25) will not be present and
the interference fringes of Eq. (26) will not arise. The
combination of beam splitter and homodyne detector thus
provides a means by which the macroscopic superposition
Eq. (17) can be distinguished from a statistical mixture.

where iI) is defined by a=-
~

ct e'~. When the pump light
2

is macroscopic (
~

a
~

large), the terms of order e can
be neglected. The third term on the right-hand side of
Eq. (25) gives rise to interference fringes in the probability
distribution which can be maximized by choosing the lo-
cal oscillator phase 0 such that sin(0+$) = 1; then

It has been pointed out' " ' ' that such states are ex-
tremely fragile. The interference fringes can be washed
out with the absorption, on average, of a single photon.
This places severe demands on the amount of loss that can
be tolerated. However, in view of the fact that four-wave
mixers and homodyne detectors are likely to undergo con-
siderable development in an effort to generate and detect
light with large amounts of squeezing, the experiments
proposed here may become feasible. It has come to our
attention that Mecozzi and Tombesi have investigated
the generation of macroscopic superpositions of coherent
states via nonlinear birefringence modeled by a Hamil-
tonian similar to Eq. (5).

We would like to acknowledge stimulating discussions
on this topic with M. Lax and R. E. Slusher.
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