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Scaling hypothesis on the "singular" part of the free-energy density of a finite system is examined
in the context of a Bose gas confined to an enclosure of size L" "

)& oo", with 2 & d &4 and d' & 2,
under periodic boundary conditions. Finite-size effects in the various thermodynamic properties of
the system, such as the specific heat, the isothermal compressibility, and the condensate density, are
predicted in the regions of both first-order (T & 7, ) and second-order (T=T, ) phase transition. To
test these predictions, a detailed analytical study is carried out in the case of an ideal relativistic
Bose gas, which includes the possibility of particle-antiparticle pair production in the system. The
various predictions of the scaling hypothesis are fully borne out and the scaling functions governing
the critical behavior of the system are found to be universal —irrespective of the severity of the rela-
tivistic effects. The influence of the latter enters only through nonuniversal parameters, C~t and

C2, which depend on the particle mass m and density p as well.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I) we carried
out an analytical study of the various thermodynamic
properties of an ideal relativistic Bose gas confined to a
cuboidal enclosure, of size L& &L2XL3, under periodic
boundary conditions. Taking into account the possibility
of particle-antiparticle pair production in the system, we
derived explicit expressions for the free energy, the specif-
ic heat, and the condensate density of the system at tem-
peratures close to the bulk critical temperature T„and
examined the special cases of a cube, a square channel,
and a film at some length. The most important aspect of
that investigation was the comparison of the "singular"
parts of the various quantities pertaining to the system as
obtained analytically with the predictions following from
the finite-size scaling hypothesis of Privman and Fisher
near T= T, . In each case the predictions of the hy-
pothesis were fully borne out and, irrespective of the
severity of the relativistic effects, the scaling functions
governing the critical behavior of the system turned out to
be universal.

In the present paper we wish to report the results of a
more detailed investigation which extends our previous
analysis in several directions. First of all, we employ a
generalized geometry, viz. , L )& oo (with 2&d &4
and d'&2), which covers all those cases in which (i)
hyperscaling (dv=2 —a) holds and (ii) the physical prop-
erties of the system do not possess a mathematical singu-
larity at any finite temperature T. We do, of course, en-
counter a singularity at T=0 K which is characteristic of
a d'-dimensional bulk system; at the same time, as
L ~ oo, a singularity does indeed appear at T= T, which,
quite expectedly, is characteristic of a d-dimensional bulk
system. Effecting a crossover between these two situa-
tions, we are able to investigate the region of first-order
phase transition (T & T, ) as well as the region of second-

order phase transition (T=T, ). Accordingly, the analyti-
cal results obtained here are compared with a generalized
version ' of the Privman-Fisher hypothesis which covers
a broad range of temperatures —from T) T, down to
T=O K. This generalized version applies equally well to
all O(n) models with n ) 2, with the result that our pre-
dictions are of relevance to an interacting Bose gas
(n =2), with obvious ramification toward superfluid He,
as well as to an ideal Bose gas (n = ao ) which bears a
close resemblance to the spherical model of ferromagne-
tism. Finally, we have included here a study of the iso-
thermal compressibility, as well as the free energy, the
specific heat, and the condensate density, of the system;
not surprisingly, the critical behavior of the isothermal
compressibility shows strong parallels with the corre-
sponding behavior of the zero-field susceptibility of a
magnetic system, though there are significant differences
in regard to their amplitudes.

In Sec. II we introduce the finite-size scaling hypothesis
for the system under study and determine the nonuniver-
sal parameters of the problem from a knowledge of the
bulk behavior of the system. The stage is then set for
making predictions about the asymptotic behavior, and
the associated amplitudes, of the scaling functions govern-
ing the various properties of the given finite-sized system;
this is done in Sec. III, covering the region of first-order,
as well as second-order, phase transition. In Sec. IV we
carry out an explicit, analytical evaluation of the free-
energy density of the ideal relativistic Bose gas, confined
to geometry L" & m

" and subjected to periodic
boundary conditions, and derive appropriate expressions
for other quantities as well. In Sec. V we compare the
behavior of the singular parts of the various quantities of
interest with the predictions made in Sec. III and find
complete vindication of the scaling hypothesis of Sec. II
on which those predictions were based. Section VI of the
paper is devoted to a detailed study of the condensate den-
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sity in the system which, too, is seen to conform to the
dictates of the scaling hypothesis. Our analysis thus con-
firms once again that, with pair production included, the
ideal relativistic Bose gas belongs to the same universality
class as the nonrelativistic one. This point has indeed been
appreciated previously, but only for bulk systems; the
present study shows that this is true for finite systems as
well. Finally, in Sec. VII, we make some concluding re-
marks on this work and indicate certain directions along
which further investigation of this problem may be car-
ried out.

II. FORMULATION OF THE PROBLEM

x ] C[i t~ x2 C2L vo/T (2)

here, vo stands for the "Bose field" conjugate to the "or-
der parameter" M~ (—:pp, pp being the condensate densi-

ty in the system), t is the generalized temperature variable,
while other quantities have their usual meanings. In par-
ticular, x& and x2 are the scaled variables of the finite sys-
tem, while C] and C2 are certain nonuniversal, system-
dependent scale factors whose precise form can be deter-
mined from a knowledge of the thermodynamic behavior
of the corresponding bulk system. The function Y(x),x2)
is then a universal function, common to all systems in the
same universality class as the given system.

According to (1), the singular part of the zero-field
specific heat per unit volume of the system will be given
by

In accordance with our previous work on the lattice
models of ferromagnetism with O(n) symmetry (n )2),
we propose that the singular part of the free-energy densi-
ty of a system of bosons confined to geometry
L d

&& I) (2&d &4,d'&2) and subjected to periodic
boundary conditions may be expressed in the form

f" (T,vp,'L ) = TL Y(x),x2),
where

6 ( R, T; ca ) =p()( T)+A ( T)/R ( T & T, ),
where A (T) is another system-dependent coefficient. We
thus obtain the following relationships:

/A ))/(d —2)

)/2(A / )t)/(d —2)v
(8)

where a) and a2 are universal. Now, in view of the fact
that the quantity A(T)Y(T)/Tpp(T), where Y(T) is the
"helicity modulus" of the system (and in the case of a
Bose system is directly proportional to the "superfluid
density" p, ), is also universal, say,

A (T)Y( T)/Tpp(T) =ap,
relations (8) may be written in an alternative form, viz. ,

(9)

C)
~

t
~

=a)(Y/a()T)'/'

C =a (a TIY)~ '
(10)

product

c"'K = —T[p '(dp/BT) —,]-
1

which, in view of its independence of L, may even be ob-
tained directly from the bulk. For simplicity, therefore,
we may in the sequel concentrate on only one of these
quantities, say c", and refer to the other only when need
arises. As regards the condensate density in the system,
one can argue that

~ 2

pp( T,O;L ) =C2L I'(x) ),
where I'(x) ) is the corresponding scaling function.

For making predictions on the basis of the scaling hy-
pothesis, we must know the form of the nonuniversal
scale factors C& and C2. For this we follow the pro-
cedure laid down in Ref. 4 which makes use of the bulk
correlation function of the corresponding d-dimensional
system, namely

c"(T,O;L) = —T(r) f"IdT )

[()(C,t )/() T]'(()'f"/()x, )„

=[Tr)(C)t)/r)T]g / Y())(x) ), (3)

It will be noted that, as T~T, , pp(T) —
~

t
~

~ while
Y(t) —

~

t
~

2t )-
~

t
~

'" 2', t being the conventional
temperature variable ( T T, ) /T, . In th—at case

C) ~t
~

C, ~t ~, C2 C2,

where Y(, )(x) ) = —(() Y/()x) ) p, the isothermal

compressibility, on the other hand, will be given by, see
Appendix A,

K( T,O;L ) = [p (() f"'I()p ) ]

= T '[pr)(C) t)Idp]T L Y(2)( ) ), (4)

where Y(2)(x) ) = —1/Y())(x) ). In view of the straight-
forward relationship between the scaling functions Y[&)
and Y[2), we conclude that, in all temperature regimes,
the I dependence of the isothermal compressibility of the
system will be simply the reciprocal of the L dependence
of the specific-heat density. In fact, quite generally, the

—1/(d —2) C TP/(d —2)
1 2 (12)

in perfect agreement with the recent proposal of Shapiro;
see also Ref. 5. Equations (12) are a clear signal of the
singularity lurking at T =0 K.

The results stated so far are quite general. In the spe-
cial case of an idea/ Bose gas, the relevant bulk results are
known tobe ' '"

where C~ and C2 are the temperature-independent
nonuniversal parameters pertaining to the original hy-
pothesis for T=T„our generalized hypothesis thus
reduces to the Privman-Fisher form as the region of
second-order phase transition is approached. On the other
hand, as T~O, the quantities pp(T) and Y(T) tend to be-
come constant, with the result that
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Wd(p, m)
po(T)=p, (T)=m Y(T)=p 1—

Wd(p„m)

so that

I[(d —2)/2] m

2m. P

a() ——I [(d —2)/2]/(2' );
here,

W, (P,m)=2 '(+' ")~- "(I
2

sinh( jPm )
X g (d ()/~ +(d+()/2j(pm ),

( (jpm)

K (z) being the modified Bessel functions, while

Wg(P„m ) =2 '~"/ I (d/2)(p/m"),

(13)

(14)

(15)

(16)

We are now in a position to make predictions about the
various physical quantities and the various mathematical
functions involved.

III. PREDICTION OF FINITE-SIZE EFFECTS

For making predictions we go back to the general sys-
tem of bosons and examine various regimes of T and L
one by one.

(a) For T ) T, and L~ oo, we expect our hypothesis to
reproduce the standard bulk result for c",viz. ,

c"'= E+t— (T) T„L~), (23)

Y() ) (x ( ) = —Y+x ) (x ) ~+ oo ), (24)

where E+ is nonuniversal. To recover (23) from (3), we
require that, as x(~+ oo, the scaling function Y(, )(x()
assumes the asymptotic form

which determines the bulk critical point P, (m, p). Here, p
denotes the particle (or "charge") density in the system
while other symbols have their usual meanings —in partic-
ular, the symbol p in Eqs. (13) and (15) stands for the
familiar 1/T (and should not be confused with the critical
exponent p); further note that the units employed here are
such that A=c =kz ——1. It follows that, for the ideal Bose
gas [for which the critical exponents P and v are —, and
1/(d —2), respectively], the desired scale factors may be
written as

with Y+ universal and such that

E+ ——Y+ Ci (25)

P(x, ) =P+x) ~ (x) ~+ oo ), (26)

As regards condensate density, we observe that in this re-
gime the total number of particles in the ground state will
be O(1), with the result that, for a hypercube of volume
L, the quantity po(T;L) will be O(L "). This requires
that

C, t=m" 'p[Wd(p, m) —Wd(/3„m)],

c,=(mlp)'";
(17)

with P+ universal; accordingly,

p()(T;L)=P+C( rc2t rL " (T) T„L~oo) . (2'7)

referring to Eqs. (8), we notice that the universal numbers
a& and a2 have been chosen to be

a, =2 'm I (d/2)ao, a2=ao ' (18)

With this choice of a& and a2, our parameters C&t and

Cz, in the limit p~p„reduce precisely to the parameters
C& t and C2 adopted in I, i.e.,

d8dC(t~m" 'P, (P—/3, )=C)t,
(19)

c, (mlp, )'"=c, ;

see Eqs. (2) and (28) of I. On the other hand, as P~ oo,
the function Wd(p, m) vanishes as p while Wd(p„m)
stays constant, see (16), with the result that

(b) For T & T, and L ~ oo, our scale factor x, ~—oo.
Since this is equivalent to keeping L finite and letting
T~O, see (12), we now require that

Y(()(x()=—Y ix( i

'" ' (x(~—oo ), (28)

(s)
Y

[(d —2) ]~ r oT T

2

a&
(d —2)v YLd —2

aoT

so that, for T~0, c"—T where ci is the exponent
governing the critical behavior of the specific heat of a
d'-dimensional bulk system as T~T, (d') =0. It follows
that

C(
~

t ( 2 'vr I (dl2)(pPlm ) —T (20) ( T & T„L~ oo ) . (29)

with the limiting results

—p (ph oo)

p, [dII d(p, m—) Idp], III'd(/3„m ) (p=p, ) .c"~= (22a)

(22b)

in perfect agreement with (12). In passing, we note that
Eq. (5) in the present case assumes the explicit form

c 'a = —P[ W'd (P,m ) —W'd (P„m )

+pdW'd(p, m )Idp) /W'd(p„m ), (21)

T'a Y
YaT T

T
Y

(s)

XL —2(d —d')/(2 —d')(T & T L ~~ ) (30)

It seems worthwhile to point out here that the approach
exponent, (d —2)ci —d, appearing here, though dependent
on d, i~ totally independent of the critical exponents per-
taining to the d-dimensional bulk system. Substituting
ct = —d'/(2 —d'), see Appendix B, we obtain (for d' & 2)

2 d'//(2 —d')
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At this point we note that for T & T„where the quanti-
ty ( f/T) behaves as [C) I

t
I

]'d — ', Eq. (30) takes the
form

(s)
I

r
I

2[((
I

r
I

)
d (d '—2) L —2(d —d')] I( —d')

which may be rewritten as

(31)

o[C ' '~(
I

r
I

L)—Z(d —d')])I(Z —d')

(32)

It is remarkable that, as the region of second-order phase
transition is approached, the critical exponents pertaining
to the d-dimensional bulk system do indeed show up.

In passing, we observe that, in the special case d'=2,
the approach of the system toward standard bulk behavior
is expected to be exponential rather than through a power
law; cf. Eq. (15) of Appendix B.

As regards condensate density, we first of all expect to
recover the bulk result, viz. ,

po=BzIr Iz~ (T&T„L ), (33)

with B nonuniversal. This requires that, for x& ~—oo,
the scaling function P(x) ) of Eq. (6) be of the form

P(x) ) =P
I
x)

I

~ (x)~—oo ),
with P universal. It follows that, for a/l T & T„

po(T;~)=P C) Cz
I

t I'~ (T&T, ) .

(34)

(35)

Making use of Eqs. (8), we find that Eq. (35) is identically
satisfied provided that

P = I /(a )~a z ) .

As T~ T, , Eq. (35) indeed goes over to (33), with

a2=P C2~C2-

accordingly, the quantity

A/2 l

( 2PC2 2P 2
1 2 a& a2

(36)

(37)

P(x, )=P Ix,
I

~+Q Ix)
I

~ (x)~—oo),

we readily obtain

po(»L)=po(T, .~)+Q [C) Ir
I
)'CzL

(39)

(40)

Substituting from Eqs. (10), we obtain for the fractional
finite-size effect in po

po(T;L) po(T; oo)—
pp(T; oo )

2 +Ld —2d — ' —(2P—g) /( d —2)v

=Q of'oz
aoT

(41)

is universal.
For studying finite-size effects in po, we must supple-

ment expression (34) with the next leading term in the
asymptotic expansion of the function P(x) ) as x) ~—oo.
Assuming that, to the next approximation,

As T~T, , this effect becomes —(
I
t

I
L '~

)

on the other hand, as T~0, it becomes
—(T/L )' ~ (")~(" ' . In the latter case, however, we
do not expect our approach exponents to be dependent on
the critical exponents pertaining to the d-dimensional
bulk system; ' we, therefore, conjecture that'

po( T;L)—po( T; oo ) z aoT

p()(T; m ) TLd

( T & T„L~ oo ) . (43)

The fact that the parameter d' does not appear in this re-
sult is not surprising because, so long as d' & 2, this calcu-
lation is relevant only for the case d'=0; see Sec. VI.

(c) Finally, in the "core" region, where Ix)
I

=O(1)
and hence

I

t
I
=O(L ' ), the functions f'", c ", and

po, for a fixed value of x& are proportional to L ", L
and L ~~, respectively; see Eqs. (1), (3), and (6). Ac-
cordingly, the quantities

f"(T,;L)L"T, ',
c( )(T .L)L ~ C

p()(T, ;L)L ~ 'C
(44)

evaluated at the erstwhile critical point T= T„must be
universal. This completes the set of predictions, following
from hypothesis (1), which will now be tested for the spe-
cial case of an ideal Bose gas.

IV. THERMODYNAMICS OF AN IDEAL
RELATIVISTIC BOSE GAS WITH PAIR

PRODUCTION

We consider an ideal Bose gas composed of N& parti-
cles and N2 antiparticles, each of mass m, confined to a
d-dimensional enclosure of sides L; (i =1, . . . , d ). Since
particles and antiparticles are supposed to be created in
pairs, the system is governed by the conservation of the
number Q (=N, Nz), rather tha—n of the numbers N)
and Nz separately; the conserved quantity Q may be
looked upon as a kind of generalized "charge. " In equili-
brium the chemical potentials of the two species will be
equal and opposite: p] ———p2 ——p, say, with the result
that"

= g (eP(E P) 1)—) N g (el'(E+y) 1)—1 (45)

where s = (k +m )
' . Both E and p here include the rest

energy m of the particle (or the antiparticle) and, for the
mean occupation numbers in the various states to be posi-
tive definite, we must have I(((,

I
&m. Assuming that, to

begin with, p&0, it readily follows that N»N2 and
hence Q ~0. In view of the conservation of Q, ((z then
stays positive under all circumstances. Without loss of

(42)

so that (2P f)/—(d —2)v= 1 for (zll n E.quation (41) then
takes the form
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generality, we shall assume this to be the case.
Under periodic boundary conditions, the eigenvalues k;

of the wave vector k are given by

k;=(27r/L;)n; (n;=0, +I, +2, . . . ); (46)

the pressure H in the grand canonical ensemble may then
be written as

1 /2
2 + cosh(jPp) + .

p l
4~

PQ L;, j („) m'
(47)

Employing techniques developed in earlier papers, "'
we obtain (correct to (2ll powers of the parameters X/L;
where A, denotes the mean thermal wavelength v'2~p/m,
or the Compton wavelength I/m, of the particles)

H(p, p;L ) = %21(p,p)+ — A —d*;y
~d/2p

(48)

where Hs(P, /2) is the standard bulk exPression for H,

m y
d/2p

d —2
2 'y

+O(m —
((L )

p=p2)(p, m) —„,„ I (m —p )'"

(54)

2{3-d)/2 d+1

(d+) )/2

the bulk critical point p, being given by the conditions
L~op and p~m, i.e., by

cosh( j/3)M )

(d+1)/2 K(d+1)/2(jp
, (jpm) + (49)

p=p21(/3„m) .

At the same time, Eq. (48) takes the form

(55)

y is the thermogeometric parameter of the system, H(p, p;L ) = Hs(/3, m )+p2)(/3, m )(p —m )

while

K (2yq)
M(v

~

d*;y) = g'
(yq)"

l. q=(q)+ . +q, *)'"&0l;

(50) 1+
2d —1~d/2d p

d

+ 2
~d/2p

+O(m —p )

(
2 2)d/22 —d

2

(56)

Q /

V P21 P'P' + d/2
2

d y

(52)

it will be noted that, for simplicity, we have adopted the
geometry Ld )& ao", with d*+d'=d. Using the thermo-
dynamic relation p=(BH/Bp)T, see Eq. (6) of Appendix
A, we obtain for the charge density in the system

d —2

F mQ (pQ —H—V) —mQ
V V

=(/2, —m)P —H (57)

from which the singular part f"can be readily extracted.
Using Eqs. (54), (56), and (57), we find that

The thermal free energy density of the system is then
given by

where Ps(P, /2) is the corresPonding bulk exPression, viz. ,

X g (d, )
K(d+1)/2(jpm) . (53)

sinh( jPp )

(~pm )(d —1)/2

f ( )(/3 p.L )

2
d /2p

d
1 4 —dd' 2

d', y2

2
2

(58)

For a given value of p, Eq. (52) determines )((, as a function
of p and L; Eq. (48) then gives H(/3, L ).

In the region of phase transition ((M=m), Eq. (52), for
2 & d & 4, takes the form

The corresponding expressions for the specific heat densi-
ty and the isothermal compressibility of the system turn
out to be
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c"(P,p;L ) = —P'[& (Pf")/(3P']
4r) P [p~(P, m) p—+P(3pg(P, m )/BP] (y/L)

4—d
2A

d —4
d

2
+ 3'

(59)

and

+2% d —4
2

r

4~d/2pp2(y /L )4 —d

Ir(P, p;L ) =p (Bp/Bp)p

4—d
m I

2

this problem may be written as, see Eqs. (17) and (62),

X1 =CJL

=m 'P[Wd(P, m ) —Wd(P„m )]L

=2 '~"/ I (d/2)(P/m )[ps(P, m ) p]L—
(60)

Equation (54) then takes the form

(63)

We note that, as observed in Sec. II, the product

c K= p[p~—(p, m ) p+ pdp—~(p, m )/(3p] /p (61)
x 2d —21 (d/2)yd —2

is quite independent of I . Furthermore, it agrees with ex-
pression (21), for

x 2 —d
2

—2A 6
2

(64)

p (2p), m )

Wd(p, m )

P
Wd(p„m )

m~

2d —(~d/21 (d/2)
(62)

see Eqs. (15), (16), (53), and (55).
We are now in a position to compare our analytical re-

sults for the various quantities of interest with the predic-
tions made in Sec. III. Y(x),0)= y —I2 g 1 4 —d

2
2

2

which determines y as a function of x1. It is now
straightforward to see that Eqs. (58)—(60) indeed conform
to the scaled forms (1), (3), and (4), respectively, with
a =(d —4)/(d —2),

V. VERIFICATION OF THE SCALING
PREDICTIONS

To bring the results of Sec. IV into a scaled form, we
start with the observation that the scaled variable x, of and

2
(65)

Y(()(x) ) =— 4—d

4 " [I (d/2)] I +2A d*;y4 —d
(66)

We may now examine the behavior of the scaling functions Y and Y(() in the various regimes of interest; however, since
these two function are very closely related to one another, recall that Y'())(x) )= —8 Y(x))/Bx(, it seems sufficient to
discuss here only one of them, say Y(]), in full detail.

(a) T ) T, and L ~ oo. In this regime x, ~+ oo, with the result that y diverges while the functions M(v
~
d;y) van-

ish exponentially. The constraint equation (64) then gives

I- 2 —d
2 2

1/(1 —2 )
1/2

1+
I 4—d

2

(d —1)/2
2g( oo )

I. (67)

where g( oo ) denotes the correlation length of the bulk system. ' At the same time, Eq. (66) takes the form

Y(()(x) ) = —Y+x ) 1—(4—d) /(1 —2) 28 77

r 4 —d
2

2g( oo )
(J —3)/2

e
—I /g(oo) (68)

with
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d/(d —2) 2/(d —2) ' —1

(69)Y —. 2d —)(d 2)~d/2 I r+ 2
L

Indeed, as L ~ oo, Eq. (68) reduces to the expected result (24). The specific-heat function c"' may now be determined
explicitly from Eqs. (3), (19), and (68),

c"= —Y+ C1 t 1—
1/2

I 4 —d
2

(d —3)/2

e
—L/g(oo ) (70)

(71)

Not only does this result agree with the bulk expression (23) and the scaling relation (25) but it also gives us the leading
finite-size correction to the bulk expression. As expected under periodic boundary conditions, this correction is indeed
exponentially small; see also Refs. 3 and 4.

(b) T & T, and L ~ ao. In this regime x) ~—&n, with the result that y tends to zero while the functions A (v
~
d;y)

diverge. ' Equation (64) now gives
1/(2 —d')

(d'(2)
2 2

constX exp[ —
~
x)

~

/2 'rr'" ' I (d/2)] (d'=2),

whereupon (66) takes the form

Y())(x) ) =

h18, 1

~

—(4—d')/(2 —d')—Y x1
—const X exp[ —

~

x)
~

/2 m' ' I (d/2)] (d'=2), (72)

d'/(2 —d')
2 2d —2 (d —2) /2Z

(2—d') 2

2/(2 —d')

(73)

Equation (72) for d'(2 indeed agrees with our scaling prediction (28), with a= —d'/(2 —d'). By implication, Eqs.
(29)—(32) are also verified, with the helicity modulus Y given by Eqs. (13), (15), and (16),

Qo
[Wd(p„m) —Wd{p, m )]= C,

~

t
~2" 'n I (d/2) a,

while C, is given by Eq. (19),

C) ——m 'p,
~

d Wd /d p („. (75)

The specific-heat function c"may now be written explicitly as

2

Y p [C
~

t
~ ]

—(4— ')/(2 —d')L —2( —d')/(2 —d')()(C, it )

(s)
2

()(C,
(
t) )—const X p (4 d) exp

Bp

C, /)t (Ld
(d'=2) .

2d 2 (d 2)/21 (d /2)

(76)

~
1;y = — —ln( 1 —e «)

V'Yr
(77)

Equations (76) provide complete dependence of c" on
both I and T for all T & T, . For T & T„ they fully agree
with our previous results" for the special case d =3.

While for d' & 2 our result is complete in every respect,
for d'=2 an unknown universal factor still remains to be
determined. In the case of a three-dimensional film, this
factor can be obtained exactly. This is made possible by
the fact that, for d =3 and d'=2, the functions ~(y) ap-
pearing in Eqs. (64) and (66) can be expressed in a closed
form, viz. ,

and

——,
'

~
1;y =V'~/(e « —1);

the scaling function Y(1) is then given by

1
Y() )(x) ) = — y tanhy,

773

where

y(x) )= sinh '[ —, exp(x(/2~)] .

For x1~—oo,

(78)

(79)

(80)
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y= —,
'

exp[ —~x)
~
/2ir], (81) Q0 = (N) )p —(N2 )0

so that

1
Y())(x) )= — exp[ —~x)

~
/vr] .

4m
(82)

(s)

2

P L 'exp ——C) )t (L4'' 7T

(83)

Comparing this result with Eq. (72), we find that the un-
known factor in this case is I/(4n ). Accordingly, for
d =3 and d'=2,

(eP(m —P) 1)—)
( t)(m+P) 1)—)

In the region of phase transition (p=m ), we may write

I 2m

p(m —p) p(m ~ —p~)
(87)

For the total charge Q, we multiply Eq. (52) with volume
V (=L" )&L)) where L)) will ultimately go to infinity)
and, for simplicity of argument, integrate over q(d*).
Remembering that p=m, we obtain

r

Q=g (P,&)+ „,„r
As T~O, our parameter C&t assumes the limiting form

(20); Eqs. (76) then become m Ld
(2 —d )~2 ~~

+
p(m —p )

(88a)

c (s) —d

2 2 —d'
(2 —d') 2

I
2/( 2—d')

61'/(2 d')

X (d'&2)
2~pL d

(84)

with corrections arising from the difference between the
summation over q(d*), as required in Eq. (52), and the in-
tegration over q(d*), as carried out here. It is important
to note that, for d'=0, the second term in (88a) is precise-
ly QD, so that

Q=gi)(p)tt)+go+- ' ' ' (d'=0) .
2

pL d —2

const X
mT

2mpL"
exp

mT

(d'=2) .

It is gratifying to note that, in keeping with the argument
of Sec. II, the foregoing expressions display the same kind
of singularity at T=O as encountered in the case of a d'-
dimensional bulk system; cf. Eqs. (9) and (15) of Appen-
dix B. It may be added here that, in the special case d =3
and d'=2, the unknown factor in (84) is simply ~

(c) Finally, in the core region, where
~
x)

~

=O(1) and
hence

~

t
~

=O(L '" '), the thermogeometric parameter
y will be O(l). Accordingly, the functions f" and c"
will be O(L ) and O(L ' "'), respectively; this agrees
with the results predicted by Eqs. (1) and (3). Moreover,
at the erstwhile critical point T =T„ the precise value of
the parameter y will be a universal number, yo, as deter-
mined by the constraint equation (64), with x) ——0, i.e., by

2 dg ] ~ 2
2 yo —

~ 2
(85)

VI. SCALING BEHAVIOR OF THE CONDENSATE
DENSITY

for d =3, ya turns out to be 0.970, 0.756, or 0.481, as
d'=0, 1, or 2, respectively. Consequently, the quantities
f"(T„L)L"T, ' and c"(T„L)L "C, will be given
by the respective scaling functions Y and Y(&) evaluated
at y =y0—clearly, universal numbers. '

This completes the verification of the various predic-
tions made for the functions f"and c" in Sec. III.

This means that, in the special case of the "block"
geometry, the condensation phenomenon is similar to the
one in the bulk system —except for finite-size effects
which will be examined in the sequel. For d'&0, howev-
er, we note two things: (i) the second term in (88a) is now
precisely gi) '(p, )M) for a d'-dimensional bulk system, see
Eq. (6) of Appendix B, and (ii) the term QD is now miss-
ing [for it normally arises from an integration over full
q(d), but that provision has already been curtailed by the
fact that at an earlier stage of the calculation we found it
expedient to set q(d')=0]. We may, therefore, include
this component at the present stage of the calculation on
purely physical grounds and write

Q =gg (p p)+QiI (p ))L+tQ +0' (0 &d' & 2)

(88c)

Q. =[Q—Qa"(P, m)]+ (d'=o, P&P, ) . (90)

For d' & 0, on the other hand, the term Qi)" '(P, )Lt), in the
same limit, is unbounded and does not let QQ become
O(g) unless Qi)" '(p, m ) itself is also O(g). The first con-
dition requires that

Now, in the case of a block geometry (d'=0), as )Lt~m,
Qi) (p,p) tends to a finite limit, see Eqs. (15) and (53),

m "Ld
Q~ '(p, m ) = d, d~z Wd(p, m) (d & 2), (89)2'-)~'"r(d /2)

which, at P=P„equals Q. For P&P„Qii"'(P,m) &Q,
with the result that a macroscopic fraction of the particles
falls into the ground state, leading to the condensate

The condensate ga in the system is given by the expres-
sion, see Eqs. (45),

( m —p ) =0 ( m /Pg ) « 1,
see Eq. (87); the second condition then requires that

(91)
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P( /PQ )(2—d')/2 =O( ), (92) W'3(p, m )

W3(f3„m )
(102)

see Eq. (88), which means that

( mlPQ) =O(L (93)

In terms of the charge density p ( =Q/L" L
~~

), condi-
tion (93) takes the form

To go beyond this result, we need a better approxima-
tion for y (x ~ ) than the one provided by Eq. (71). For this
we go back to the constraint equation (64) which in the
present case reads

2

P=O m

p L d —d
(0&d'&2) . (94)

—2yq
, ex)=try 2 —g

q(3)
(103)

For d'=2, we obtain instead Now, as y ~0, the sum appearing here assumes the
asymptotic form"

m
ln

pid —2 L
(d'=2) . (95)

—2yq C3
, + +2+O(y),

y ~y
(104)

It follows that, in a system with 0&d'&2, condensation
on a macroscopic scale does not develop unless the tem-
perature of the system is low enough to satisfy condition
(94) or (95), as the case may be. And, as L~~~co, this
essentially requires that T~0. Looking back at Eq.
(88c), with Q

' dominating over Q' I, we infer that, in-
sofar as condensation is concerned, our system behaves
very much like a d'-dimensional bulk system (for which

T, is indeed at absolute zero). Accordingly, we may
henceforth consider only the block geometry for which
d*=d. Furthermore, since d*, being the number of di-
mensions in which the system is finite, ought to be in-
tegral and 2 & d &4, the only case meriting discussion here
is the one with d =d*=3.

The charge density, po, in the case of interest is given by

Qo 2m m

P(m p)L —2f3y L
(96)

which indeed conforms to the scaling relation (6), with
scaling function

P(xi)=1/(2y ) . (97)

(a) For T) T, and L~ oo, y(x&) is given by Eq. (67),
i.e.,

with the result that

P(x, ) = = — (x) ~—ca );
2y 277 277

(105)

po( T;L)—po( T; oo )

po(T; a) )

ix) C, it}L
/C, /m

2~ Ppo(T; ao )L 2~2
T

YL
(106)

in perfect agreement with prediction (43), with rl =0 and
az ——ao '; see (18).

(c) Finally, in the core region, we encounter the quanti-
ty po( T„L)LCq, 'see (44), which turns out to be
1/(2yo) —clearly, a universal number.

here, C3 is a universal number with value
—8.913633. . . . Equation (105) verifies prediction (39),
with P = I/(2~ ), Q =

~
C3 /(2~ ); it also conforms

to our conjecture (42), with /=0. The finite-size effect in

po is then given by

y =x, /2~ (x)~+ ~ ), (98) VII. CONCLUDING REMARKS
whence

2 2

p, C, t L m f3,
~

d W3/d p ~,
(99)

y =7r
~
x~

~

' (x~~ —oo),

whence

(100)

mC, /tJ

27r p
m

[ W3(p„m ) —W3(/3, m )] .
2~2

(101)

Using (16), this takes the standard bulk form

This verifies prediction (27), with P+ ——2' and )
[=2/(d —2)]=2; it also agrees with our recent result for
condensate density in an Einstein universe of radius a
(and hence of volume 2' a ).

(b) For T & T, and L~ oo, y(x, ) is given by Eq. (71),
i.e.,

We have shown analytically that the various predictions
of the finite-size scaling hypothesis on the hyperuniversal-
ity of finite systems are fully borne out in the case of an
ideal relativistic Bose gas confined to geometry
L )& cx&" (2&d &4, d'&2) and subjected to periodic
boundary conditions. With pair production included, the
scaling functions governing the behavior of the system,
for T & T, as well as T=T„are found to be universal—irrespective of the severity of the relativistic effects.
The influence of the latter enters only through the
nonuniversal parameters C&t and C2 which depend on the
particle mass m and the charge density p as well and for
all T (from T=T, down to T =0) are determined by the
quantities po(T) and A(T) appearing in the bulk correla-
tion function of the system. Once these parameters are
known, no more nonuniversal amplitudes are needed to
describe the behavior of the system, regardless of whether
it is finite or infinite in extent. It is remarkable that the
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approach exponents governing the region of first-order
phase transition (T&T, ), while dependent on the total
dimensionality d of the system, bear no relation to the
critical exponents pertaining to the d-dimensional bulk
system near T= T„ they are, on the other hand, intimate-
ly related to the critical exponents pertaining to a d'-
dimensional bulk system near T =0.

The present investigation suggests several directions in
which further work on this problem may be carried out.
While one readily thinks of extensions to higher dimen-
sions (d )4) and to other boundary conditions (an-
tiperiodic, Dirichlet, Neumann), a study of Bose conden-
sation in curved spaces is also a matter of some in-
terest. ' ' On the more practical side, our results for the
case n =2, which pertain to the XY-model and therefore
have a direct bearing on the problem of superfluidity in
liquid He confined to restricted geometries, indicate an
obvious line to pursue. Such a pursuit will indeed require
information on the bulk properties of the system, such as
the condensate density pp(T) and the superfluid density

p, (T), so that one may be able to construct the relevant
parameters C &t and C2 and make predictions about the
singular parts of the various quantities, such as the specif-
ic heat, of the finite-sized system. Combining this with
information on the regular parts of these quantities,
which again belongs to the domain of the bulk system,
one may then predict, for instance, the behavior of the to-
tal specific heat of the system and hopefully compare it
with experiment. Work along these lines is currently in
progress.
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APPENDIX A

whence

p=g/V=(aa/'a/ ), .

The isothermal compressibility is then given by

(A6)

1KT=—
V

av
aw

av
Bp

—Q

p

Q, T
r

(3p

Bp

Bp Tp

Bp

gT ~~ gT

1

P

Bp

0p
(A7)

which is exactly of the form we have in the case of a one-
component system. ' Finally, since p=(df lop)T where f
is the Helmholtz free energy density of the system, Eq.
(A7) may also be written as

~T=LS'("o'f ~"op')T) ' (AS)

APPENDIX B

In this appendix we shall examine the nature of the
singularity encountered by a bulk system of dimensionali-
ty d'(2 as T~O. Right away we note that the conden-
sate density po in this case does not assume a macroscopic
value unless the temperature of the system is reduced to a
value infinitesimally close to absolute zero. Following the
line of argument developed in Sec. VI, one can show that,
for a d'-dimensional system of side I.

~~, a macroscopic
measure of condensate appears only if

O(mL
ll

I)o(d')) (d' & 2)

O(m ln[)o(d')Lll]/)o(d')) (d'=2) . (B1)

Clearly, as Lll~oo, the required value of /3~co. Thus,
for a bulk system of dimensionality d' (2,

pp(T )0)=0 . (82)

dG =)Lidg+gdp . (A2)

At the same time the change in the internal energy of the
system is given by

dU=TdS —H dV+p)dN)+ppdN2

In this appendix we shall derive a suitable expression
for the isothermal compressibility of the two-component
system of N& particles and Nz antiparticles. We start
with the Gibbs free energy of the system, viz. ,

G =N)/2) +N2P2 =@(N) —N2 ) =Pg,
where Q is total charge in the system. It follows that

However, at T=O, po must be equal to p. The situation is
clearly singular at T =0 which may, therefore, be regard-
ed as the critical temperature of the system.

As in the case of a d-dimensional bulk system, the pres-
sure H and the charge density p in the present case are
given by, see Eqs. (49) and (53),

2(3—d') /2 d'+ 1

(d'+ 1)/2
7T

X X . (d 1)/2 +(d'+) )/2(j/3m ) (B3)
cosh( jp)M )

(jism

)(d'+ 1)/2

and
=T dS Hd V+)Li dg, —

so that U= TS—H V+pg and hence

pg=G= U —TS+H V,

(A3)

(A4)

2(3 —d')/2m d' oo sinh( jpp )
(d'+1)/2 + ~ (d 1)/2 (d'+))/2(JP

vr
~ ) (jpm)

Q dp= —SdT+ Vd&, (A5)

as usual. Now, combining Eqs. (A2) —(A4), we obtain the
important relationship

For d' & 2, the behavior of the foregoing expressions, as
p~m, is markedly different from that of the correspond-
ing expressions for a system of dimensionality greater
than 2. For instance, if d' &2, Eqs. (B3) and (B4) assume
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the form

21 —d'
2 d (m 2 2)d'/2

H(p, p)=H(p, m) —, I
77

~( ) a a (s)

. P

Td'/(2 —d')

and the corresponding critical exponent is

(89)

and

+O(m —p )'

2 —d'
p 2

m

p( 2 2)(2 —d'I/2

(85)
a = —d'/(2 —d') (d' (2) . (810)

Exponents for other quantities can be found in a similar
manner. For possible reference in the future, we note
that the exponent A. for the isothermal compressibility of
the system turns out to be 2/(2 —d')—the same as for the
zero-field susceptibility of a corresponding magnetic sys-
tem."

For d' =2, on the other hand, we find that

+O(m —p ) (86) 2— 2

H(P, p)=H(P, m ) — ln
4mp

2m
2 +C

p(m —p )
which may be compared with the bulk terms of Eqs. (54)
and (56), respectively. It follows that the chemical poten-
tial of the system at low temperatures is given by the ex-
pression

where C is a constant of order unity, and

(811)

(m —p )=2 2
d'/2 r

pp

2/(2 —d')
p= ln

2~P

It follows that

2m +C—1
p(m —p )

(812)

T2/(2 —d') (87) (m —p ) —(m/P) exp( 2mpP/—m ),
with the result that

(813)

The singular part of the free energy density of the system
is given by (m —p ) m2 2f S exp( 2rrpP/m )—

4~p p' (814)

f ( I
( p )

2 ' "
~ 4 —d '

( m —p )=
~d/2d 2

T2/(2 —d') (88)

and

2
a'c"= —P' (Pf")

ap' .P

2p
exp( —2mpP/m ) .

m

(815)

The singularity in the specific-heat density is, therefore, of
the form

Thus, for d'= 2, the power-law behavior is replaced by an
exponential one.
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