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Generalized dimensions and entropies from a measured time series
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The correlation-integral method of Grassberger and Procaccia is generalized to yield the whole
spectrum of dimensions Dq and entropies ECq from a measured time series with a numerical effort
which is only insignificantly larger than that needed to determine the original. correlation integral.
It is shown that our method yields reliable numerical results for the tent map and for the
Mackey-Glass equation.

Recently much progress has been made in the charac-
terization of dissipative nonlinear dynamical systems
which display chaotic behavior. ' The trajectory of these
systems in phase space is often attracted to a bounded
fractal object called strange attractor for which a whole
set of dimensions Dq and entropies Kq has been intro-
duced which generalize the concept of the Hausdorff di-
mension and the Kolmogorov entropy. Furthermore, it has
been shown that the Legendre transformation of these
quantities yields information about the distribution f(tt)
of the singularities in the natural invariant measure on the
attractor and about the spectrum of dynamical fluctua-
tions g (A, ) around the Kolmogorov entropy. However, up
until now most experimental data of chaotic systems have
only been analyzed by computing the correlation integral
introduced by Grassberger and Procaccias'7 which yields
only D2 and E2, i.e., just two points in an infinite spectrum
of characteristic variables De and Ee. In this article we
generalize the method of the correlation integral in such a
way that all dimensions Dq and E and —via Legendre
transformation —also the spectra f(a) and g(A, ) can be
computed from a measured time series with an effort
which is only slightly larger than that needed to deter-

mine the original correlation integral.
To explain our method we divide the d-dimensional

phase space of our system into cubes of size l and recall
the definition of the generalized dimensions Dq:

mo)
Dq= lim ln g PP . (I)

tI
—1 t-o In/

Here P; (l) is the probability that the trajectory
Xt, . . . , X~ on the strange attractor visits box i, and
M(l) is the number of nonempty boxes. Since Q, PP can.
be written in terms of the natural probability measure
p(x) on the attractor asz

gP,'=„&p(x)lp(&t(x))le-', (2)

where Bt(x) denotes a ball of radius l around x, we obtain
by ergodicity

+pe= gp,e—'(I), (3)
N .

where P~(l) is the probability to find a point of the trajec-
tory within a ball of radius l around a point XJ of the tra-
jectory. The change from q to q

—1 in the exponents in

Kq
(b)
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FIG. 1. The generalized entropies It~ (a) and the corresponding spectrum g(X), (b) for the tent map at rt =0.3. The points A,O

were computed from a time series of 1000 and 2000 points, the line is the theoretical result obtained by Legendre transformation of Kq
in Ref. 15.
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FIG. 2. (a) The sPectrum of static scaling indices f(a) and (b) the spectrum of dynamic scaling indices g(3I), computed via Eqs.
(1 b) «om 2000 4000 points (d,0) which have been obtained from the Mackey-Glass equation (Ref. 14) with delay-

constant r =dr =23. The crosses (+) denote the results obtained from a series of 104 points using the return time method from Re
16. (c)-(e) ExamPles of —inc/(l) vs —lnl from a one-dimensional time series of the Mackey-Glass equation for q = —10,1,10,
respectiveiy. The embedding dimensions m are 2,4, . . . , 10.
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P, (I) =—ge(I —Ix, —x, I), (4)
t

where e(x) is the Heaviside step function. By combining
Eqs. (1)-(4)we obtain

Dq = lim Incq(l),1

l-o lnl
where

(5)

Eq. (3) is due to the fact that we switch from P;(I), i.e.,
the probability to find the trajectory in one of the horno-
geneously distributed boxes introduced above, to P/(I)
which denotes the probability to find the trajectory within
a ball around one of the inhomogeneously distributed
points of the trajectory. The latter can be written as —1 1Kq=lim lim ln g Pq,

l On tg I Pl Al'
(7)

where P;, ; is the joint probability that the trajectory
visits the boxes i t, . ; in the mesh of cubes introduced
above. By using joint probabilities instead of simple ones
we obtain in analogy to Eqs. (5) and (6) the result

is the generalized correlation integral. 'o It reduces for
q =2 to the well-known result of Grassberger and Procac-
cia. It is now straightforward to extend our method to the
computation of the generalized entropies Kq which are de-
fined as3

cq(I)= —g ge(I —Ix, —x [)1 1

N J
J

'
q —1 1/q —1 Kq =lim lim

i~On~ oo

where

lnCg(l)
nh, t

(sa)

1 1
(' n —1

' 1/2 ) q
—t' l/q —t

cg(I)= —g —geI I — g (x, —x, )'
1V . 1V ( -o ™I m

This yields, e.g. , for q =1 an expression from which the K entropy can be obtained experimentally:

K =K, = lim lim —g In —+e
I

I — g (X;+ —XJ+ )t-on--n/5, t W,. N . t o
' ' )

(sb)

which agrees with previous results. "
By using the embedding theorem' to replace the time series fx;f, by the time series of a single measured signal tx/J,

we can combine Eqs. (5), (6), and (8) to

with

lim lim lnCg(l) =Dqlnl nhtKq, —
l~On~ oe

'n —1

cgO)= —g —hei I — g (x, + —x, + )'
~-o

(10a)

(1ob)

Equations (10a) and (10b) are our main result. They
show that the generalized correlation integral Cg(l) which
can be obtained from an experimental time series yields in
a plot Incg(l) vs lnl straight lines with slopes Dq whose
distances in y direction converge for n ~ to htKq.

In order to test our method we used Eqs. (10a) and
(10b) to compute numerically the Kq and g(X) spectra for
the tent map' and the f(a) and g(A, ) spectra for the
Mackey-Glass equation. ' Figure 1 shows that for the tent
map our results converge rapidly to the rigorous theoreti-
cal curves. ' For the Mackey-Glass equation' we obtain
with moderate numerical effort reasonable f(a) and g(X)
curves which are, by using the same time series, signifi-
cantly better than those obtained by calculating the proba-

I

bilities appearing in the definitions of Dq and Kq via return
times'6 (see Fig. 2).

To conclude, we have generalized the correlation in-
tegral method to yield all generalized dimensions Dq and
entropies Kq from a measured time series. From the Dq's
and Kq's the spectra f(a) and g(X) of the singularities in
the invariant measure and of the dynamical fluctuations
around the Kolmogorov entropy, respectively, can be ob-
tained by straightforward Legendre transformation. The
computer time which is needed to calculate the generalized
correlation integral is only insignificantly larger than that
needed for the original Grassberger-Proccacia method. It
is hoped that our method stimulates precise classifications
of experimental chaotic systems.
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For a time series of length N the computer time needed to
evaluate the correlation integral is of order N . The computa-
tion of Dq's and ECq's adds to this a time of order q~,„N, i.e.,
the relative change in computer time is of order q,JN which
is for typical values N -10 —10, q~,„-10 of the order of a
few percent.

9Here the continuous trajectory X(t) has been chopped into
points X& =X(to+i ht ), where ht is an elementary time step in

analogy to an experimental time series.
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