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Dynamical processes in hard-sphere fluids

B. Kamgar-Parsi, * E. G. D. Cohen, and I. M. de Schepper
The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399

(Received 13 January 1987)

For a classical fluid of hard spheres the nine hydrodynamic time-correlation functions between
the microscopic density, longitudinal velocity, and temperature are calculated theoretically on the
basis of the revised Enskog theory for all densities and wave numbers. It appears that a simplified
description of these correlation functions is possible for small wave numbers in terms of extended
hydrodynamic modes and for large wave numbers in terms of free streaming and a single binary col-
lision.

I. INTRODUCTION

In the past years many studies have been made of the
dynamical properties of classical fluids. In particular, one
has studied the decay in time of density fluctuations,
through the density-density correlation function, or its
Fourier transform, the dynamic structure factor, which
can be measured by light' or neutron scattering. Spe-
cial attention has been paid to hard-sphere fluids as a sim-
ple model for more realistic liquids. ' The hope was
that, just as for the static properties of fluids, hard-
sphere-fluid studies might form a useful starting point
and guideline for the understanding of real fluids, al-
though important differences could be expected to occur.
In this paper we report results of a rather complete
theoretical investigation of a whole class of correlation
functions, viz. , those related to the hydrodynamic quanti-
ties: the density, longitudinal velocity, and temperature,
for all hard-sphere fluid densities and all values of the
wave number k=2~/A, , with A, the wavelength of the
fluctuation. This way an overall picture of the dynamical
behavior of fluctuations on a microscopic level in a fluid
will be obtained and the transition from collective (i.e.,
hydrodynamic) behavior, for small k, to individual parti-
cle (i.e., ideal-gas) behavior for large k can be studied in
detail.

This investigation was partly inspired by a determina-
tion of the nine hydrodynamic correlation functions of a
hard-sphere fluid using computer simulations for three
densities and an analysis in terms of a generalized hydro-
dynamic matrix given before by Alley, Alder, and
Yip. ' ' A detailed comparison with their results will be
made below.

Our calculations are all based on a dynamical operator,
the inhomogeneous Enskog operator LE(k), which de-
scribes approximately the time evolution of fluctuations
with wave vector k in a hard-sphere fluid. ' In fact, we
will call a hard-sphere fluid described by this operator an
Enskog fluid. We will see, however, that as far as
presently available computer data on hard-sphere fluids
are concerned, the Enskog fluid closely resembles a real
hard-sphere fluid '8 zo

Calculations of the density-density correlation function
based on the inhomogeneous Enskog operator have been
carried out before by others' ' ' as well as by our-

selves. ' ' The main difference between our work and
that of others is that we have studied the time behavior of
density fluctuations through the eigenmodes of the En-
skog operator, i.e., through the eigenvalues and eigenfunc-
tions which, in our approach, represent the basic dynami-
cal processes in the fluid. We found, at high densities,
that the dynamic behavior of density fluctuations could be
understood on the basis of a particular class of eigen-
modes of LE(k), viz. , those that are obtained by extending
the usual hydrodynamic modes —the eigenmodes of the
linearized Navier-Stokes equations, in particular, the heat
and sound modes —to larger values of k. The main differ-
ence between the present and our previous papers' ' is
that apart from an extension to all nine hydrodynamic
correlation functions, much better approximations have
been used to obtain the eigenmodes of the operator L~(k).
Although the basic conclusions of our previous papers do
not change, a considerably more complicated picture in
detail has emerged.

The main conclusion of this paper is that, globally,
three density and four k regimes can be distinguished in
the dynamical processes that dominate the hydrodynamic
correlation functions. Introducing the volume V at close
packing Vo, one distinguishes the following regimes:

(1) the dilute-gas regime Vo / V & 0. 1;
(2) the intermediate-density regime 0. 1 & Vo/V&0. 35;
(3) the dense-fluid regime 0.35 & Vo/V & 0.70.

In each of these density regimes the dominant dynamical
processes are associated with the following eigenmodes of
LE(k):

(1) the kinetic analog of the three hydrodynamical (heat
and sound) modes for 0 & klE &0.1;

(2) their extensions, via LE(k), to larger values of k,
i.e., for 0.1 & klan & 1, as well as two more modes of Lz(k)
that are needed in the intermediate-density regime;

(3) a regime where all eigenmodes of LE(k) are needed
and no simplified description exists: 1 & klE & 3;

(4) a regime where the eigenmodes associated with
individual-particle (free) streaming dominate and a single
correction, due to one binary collision, suffices:
3&klE & op.
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Here l& is the Enskog mean free path for a fluid of hard
spheres: lz ——lo/X, where lo = 1/n~cr 3/2 is the
(Boltzmann) mean free path for a dilute gas of hard
spheres of diameter o. and number density n, X=g(cr),
with g(o) the radial distribution function for two hard
spheres at contact, and Vo/V=ncr /3/2

In Sec. II we review the basic formulas of the theory.
In Sec. III the dilute-gas regime, in Sec. IV the dense-fluid
regime, and in Sec. V the intermediate-density regime are
discussed. In Sec. VI a discussion of the main results is
presented. In particular, the density-density correlation
function is considered and a comparison with previous
work is made.

II. THE REVISED ENSKOG THEORY
AND THE DETERMINATION OF EIGENMODES

A. N-particle time-correlation functions

For a fluid of hard spheres we consider the nine hydro-
dynamic time-correlation functions (with ct or P=1,2,3
and t &0),

F t3(k, t) = (a*(k)e' a~(k) }z, (2. 1)

where k is a wave vector with length k =
~

k
~

&0, the
brackets (.. . }~ indicate an equilibrium average over a
canonical ensemble of N particles in a volume V at tem-
perature T and density n =N/V, the star denotes complex
conjugation, and L is the Liouville operator for hard
sph

(2.2)

where v; and r; denote the velocity and position of parti-
cle i at t=0, respectively. The first term in Eq. (2.2) de-
scribes the free streaming, while Tj describes a binary
collision between the particles i and j, i.e.,

T;j= —o. do. v;j cr 0 v;J'o. 6 r;~+o.

x [1—b-(ij) J, (2.3)

with v,j ——v; —vj, r;j =r; —rj; o. a unit vector defining the
geometry of the binary collision, o =cr&; 0(x) the Heavi-
side (steP) function; and b-(ij )v; =v,'=v; —(v;j.&)& and
b-(ij )vj ——vj ——vj+(vj &)&, with v,' and vj the velocities
after a collision of the particles i and j with initial veloci-
ties v; and vj, respectively. For k&0, the a (k) are the
fluctuations of the conserved quantities, viz. ,

is the microscopic longitudinal velocity fluctuation with
Pq(v)=(m/keT)' k vlk, m the mass of the particles,
and kz Boltzmann's constant; and

X
a3(k) = g ctr3(vj)e

N j I

(2.6)

where the one-particle velocity average (. . . }&
is defined,

here and in the following, by

(h(v&)},= f dv, g(U&)h(v&), (2.8)

for any function h(vt) and P(U&) is the normalized
Maxwell velocity distribution function

3/2
mU2/2k~ T

(2.9)P(U) =
2~k~ T

We also note that the set of correlation functions is sym-
metric in a and P, i.e., F tt(k, t) =Fjs (k, t) and depend on
k only.

B. One-particle expressions

The class of N-particle time-correlation functions
F t3(k, t) defined in Eq. (2.1) can be approximately com-
puted on the one-particle level using the revised Enskog
theory. " The results F &(k, t) of that theory for
F j3(k, t) can be obtained from Eq. (2.1) by making three
replacements: (1) The N-particle average (. . . }z is re-
placed by the one-particle average (. . . }&. (2) The N
particle Liouville operator I is replaced by a single-
particle Enskog operator, for which various representa-
tions exist. While we have used before an asymmetric En-
skog operator, ' ' here a symmetric operator Lz(k) (Ref.
23) will be used. (3) The N-particle functions a (k) are
replaced by the one-particle functions P (v&). Then,

F tj(k, t)=i, (b (v, )e Pp(v, )}), (2.10)

where the (symmetric) inhomogeneous Enskog operator
LE(k) acts on functions of the velocity v& of a single par-
ticle and is given by

is the microscopic temperature fluctuation with
$3(v) = (3—mv Ikz T)Iv 6.

We note that both the N-particle functions a (k), as
well as the one-particle functions P (v) are orthonormal:

(a*(k)an't(k) }~——(P (v~)gt3(v&) }~——5 ~

(a, f3= 1,2, 3), (2.7)

(2.4) Lz(k) = —ik v, +nXAq+nA. q . (2.11)

is the microscopic density fluctuation with S(k) the static
structure factor and P, (v) =1;

Here —ik v1 represents the free streaming of the particle
and the operator Az acts on an arbitrary function h(v&) as

N

a3(k)= g P,(vj)e (2.5)
Akh(v)) =Ash(v)) —(Akh(v)) }),

with the binary collision operator Ak given by

(2. 12)

A~h(U&)= f dr2 f dv3$(u3)T&3[h(v&)+e "h(v3)]

= —cr f d& f dv2$(u3)
~
v)2 o

~

0(v)3.o)[h(v)) —h(v'))+e ' '
[h(v2) —h(v3)]] (2.13)
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and the mean-field operator Al, given by

1
nA1, h(v, ) = 1—

&S(k)
dvqp(vp)lk. (v1+vq)h(v2) .

(2.14)

We note that the k dependence of Ak and Ak is through
ko..' We note that on the one-particle level also the
F tl(k, t) are symmetric in a and /3 and depend on k
only.

The first five pJ are

41(v ) =1t'0, 0( v ) = 1

$2(v) =$0, 1(v) =W2c, ,

(53(v) =1}}10(v) = /2/3( —, —c )

$4(v):Pp 2(v)=v'I/3(3c, —c )

P&(v) =$1 1(v) =&4/5( —, —c )c, .

(2.17)

C. The BGK method

(a) The time dependence of the F JJ(k, t), governed by
the one-particle evolution operator exp[tLE(k)] [cf. Eq.
(2.10)], will be evaluated here using the Bhatnagar-Gross-
Krook (BGK) method. In the BGK method, ' ' the
operator Lz(k) is first converted into an oo matrix, using
a complete set of functions, after which the Laplace
transform of exp[tLE(k)], i.e., the resolvent operator
[z —LE(k)] ', is inverted explicitly. Since the F Jt(k, t)
only involve U1 ——

~
v1

~

and k.v1, a complete set of func-
tions in U

&
and k.v

& only is needed. This is obtained by
extending the set IP (v, )I with a=1,2,3 to an infinite
orthonormal set in U1 and k v1, [QJ(v1)], defined below.
Then the operator LE(k) is represented by the infinite ma-
trix W (k) with elements

X,&(k) = (QJ(v, )L~(k)pl(v, ) &, (J,1=1,2, . . . , ~ ) .

Choosing the z axis parallel to k and introducing a re-
duced velocity c=(m/2kllT)' v, we use the complete
orthonormal set of functions,

PJ(v)=g„t(v)=N„tc'Yl' '(c, /c)S1'+1&2(c ) (j =r, l) .

IIJ (k)=(yJ( )& y ( )& (2.18)

where in the BGK approximation of order M, the first
MXM block of the matrix QJ1(k) (j,1=1,2, . . .,M) is
taken into account exactly, while the remaining matrix
elements QJ1(k) are set equal to zero, except for the diago-
nal elements j= l =M + 1,M +2,M+ 3, . . . , which are
all set equal to AM+1M+1(k) =(nX) 'd(k)

Then, in the Mth BGK approximation for Al„ the En-
skog operator Lz(k) is given by

Here $1 represents the density, p2 the longitudinal veloci-
ty, P3 the temperature, while P4 and $5 are the kinetic
parts of the z-z component of the stress tensor and the z
component of the heat current, respectively. The
remaining polynomia can be ordered in different ways.
We chose to order them according to the eigenvalues A,, I
of the Boltzmann collision operator Az ——limk oAk for
hard spheres [cf. Eq. (3.2)] as computed by Alterman
eS al. 25

(b) In the BGK approximation to L~(k) the free-
streaming term —ik-v& and the mean-field term Ak are
taken into account exactly. The collision operator A~ is
approximated by an infinite matrix with elements

(2.15) L~(k) =f(k)+F(k), (2.19)

Here c =
~

c ~; j stands for a pair of integers r=0, 1,2, . . . ;
1=0,1,2, . . . ; Yl' '(x) is the spherical harmonic Yl™(x)
with m =0; Sl'+1~2(c ) is the Sonine polynomial of degree
r with index I+ 1/2; and

N„l =m. ~ [2I (r+1)/I (r+I+3/2)]'~
is the normalization constant with I (x) the gamma func-
tion. Thus

where

f(k) = —ik v, -+d(k) (2.20)

is a function of v„while F(k) is an operator acting on a
function h(v1) as

M M
F(k)h(v1) = g g QJ(v1)WJt(k)(pt(v1)h(v, ) &, . (2.21)

j=11=1

& 0",, l, (vl )ltd, , l, (vl ) &1=5.. ,.,51, , 1, . (2.16)
The aJt(k) are elements of a symmetric MXM matrix
M (k) given by

1/2
k~T

w, , (k) = d(k)5, , + XAnJt(—k)+ik
m

1
1 — (5J1512+5J2511) .

S(k)
(2.22)

Here the term —d(k)5Jt was obtained by first adding
d(k) to the diagonal matrix elements QJJ(k) for j&M,
where they were absent, and then extracting all the d(k)
diagonal elements of LE(k) and combining them with

ik v1 Th—e las.t te. rm in Eq. (2.22) takes the mean-field
term A1, in L~(k) into account exactly. As a result,
LE(k) is a sum of a multiplication operator f(k) (which,

equivalently, is an co X oo matrix operator) and a finite
MXM matrix operator F(k). Such sums of multiplica-
tion and finite M&M matrix operators can be inverted
explicitly for any M.

To compute now with the BGK method the nine corre-
lation functions F J3(k, t), we consider first the Laplace
transforms:
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G p(k, z)= f dte "F p(k, t)

1
P (v)) Pp(v))

1

zI —W (k)
(2.23)

which are calculated by inverting the resolvent operator
1/[z —Lz(k)], with the BGK method, leading to the re-
sult

G p(k z)= 1
M(k, z)I —M(k, z)w (k)

(2.24)

Here M(k, z) is the MXM matrix with elements Mjt(k, z)
given by (j, i = 1, . . . , M):

1
Mp(k, z)=(P (v, J) P, (v, )

z — k) 1

1= Pi(v)) . Pt(v))z+ik v, —d(k) 1

(2.25)

which can all be expressed in terms of the plasma disper-
sion function. '

The results that are quoted below are not for the corre-
lation functions F p(k, t), but rather for their Fourier
transforms:

oo

S p(k, co)= f dt e '"'F p(k, t) . (2.26)

We note that only three of these are independent. We
chose to calculate (a/3)=(11), (13), and (33). Since these
F p(k, t) are even functions of t, one can express these
S p(k, co) in terms of the G p(k, z) by

S p(k, co) = —ReG p(k, z) ~,
1

I 1=—Re P (v)) . ))p(v, )) . (2.27)
i co LE(k)—

We remark that the three S p(k, co) are even in co, that the
area f dcoS p(k, co) is equal to 1 for (aP)=(ll) and
(33) anB 0 for (a13)=(13) and that S))(k,co)
=S(k,co)/S(k) with S(k, co) the dynamic structure factor
of the fluid.

(c) Thus the correlation functions S p(k, co) can be ob-
tained directly from the M XM matrices M(k, z) and
~ (k) by matrix multiplication and inversion [cf. Eqs.
(2.24) and (2.27)]. This has been done before for S&~ (k, co)
by a number of authors. ' ' ' To gain insight into the
microscopic dynamical processes that dominate the corre-
lation functions, we also evaluated the S p(k, ~) by using
the eigenmodes of L~(k). This is in the spirit of
Landau-Placzek's theory of light scattering of fluids,
where S(k,co) is computed in terms of the eigenmodes of
the hydrodynamic Navier-Stokes equations. In this sense,
our procedure is an extension of the Landau-Placzek
theory of light scattering to neutron scattering and enables
us to make a connection between the macroscopic proper-
ties of the fluid as expressed in the F p(k, t) and the mi-
croscopic properties of the fluid via its eigenmodes ob-

tained from a one-particle (kinetic) representation of the
F p(k, t).

D. Discrete BCxK eigenmodes

The discrete eigenmodes of LE(k) are associated with
the poles of the resolvent operator 1/[z —Lz(k)] or with
those M values z=zi(k) (j =1,2, . . . , M) for which

D( k,z) =det[I —M(k, z)~ (k)] =0 . (2.28)

The correlation functions S p(k, co ) are then given by a
sum of M Lorentzians:

M M Jp(k)
S p(k, co)= —Re g

, ice —zj(k)
(2.29)

zt, (k) = DTEk—
and two sound modes, with eigenvalues

z+(k) =+ice, (k)+z, (k),
with dispersion

co, (k) =ck

and damping

z, (k)= —1 ~k

(2.31)

(2.32)

(2.33)

(2.34)

Here c is the adiabatic velocity of sound in the hard-
sphere fluid and DT~ and I E are the thermal diffusivity
and the sound damping coefficients, respectively, as given
by the Enskog transport theory.

For k~0, the S p(k, co) are given by the Landau-
Placzek expressions

where the zi(k) are the eigenvalues of LE(k), and the
M'~p(k), the corresponding amplitudes, are given by

M~~p(k) =, [w (k, z& )M(k, z~
.)] p . (2.30)D'(k, z~ )

Here u is the transpose of the matrix of cofactors of
1—M~ and D'(k, z~)= IdD(k, z)/dzj,

J
In earlier approximations' ' we used M=10, but all

results reported here are based on M=35 at least. For
M=35, the convergence of the eigenmodes relevant for
the computation of the S p could be ascertained, which
was not possible before for M=10.

The discrete eigenvalues of LE(k) are of two types: real
or each other's complex conjugate, but all with negative
rea1 parts. ' * The first type corresponds to eigenmodes
describing diffusive, purely damped processes, while the
second type describes propagating (and damped) process-
es.

Because of the nature of the functions P~, only longitu-
dinal eigenmodes of Ls(k) (with vj ~k) are obtained here.
Of all the eigenvalues of LE(k), three eigenvalues go to
zero when k goes to zero: They reduce to the three hy-
drodynamic eigenvalues, whose eigenfunctions are linear
combinations of P„Pz, and P3, i.e., of the density, longitu-
dinal velocity, and temperature, respectively. The eigen-
values are the same as derived from the Navier-Stokes
equations, viz. , a heat mode, with eigenvalue
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1 M p
(j)

S p(k, co)= —Re (2.35)
q + ice —z, (k)

with M'&", ' ——(y —1)/y, M', 3' ——(y —1)' /y, and M33'
= 1/y for the heat-mode contributions and
MI~ ——1/(2y), MI3 ' ———(y —1)'~ /(2y), and M33 '

=(y —1)/(2y) for the sound-mode contributions where

y =c~/c, is the ratio of specific heats at constant pressure
(cz ) and constant volume (c„)for the hard-sphere fluid.

All other eigenvalues of LE(k) approach finite, negative
real values when k goes to zero. They correspond to ki-
netic eigenmodes of LE(k) which are for small k ir-
relevant for the S ~(k, co), since all M'~~(k) tend to zero
for k ~0 when j&h, +.

The S p(k, co) are well approximated by the hydro-
dynamic Landau-Placzek expressions [i.e., Eqs.
(2.29)—(2.35)] for 0 & kl~ & 0.1 at low densities, the range
diminishing somewhat with increasing density. For
kl~ &0. 1 we have calculated the S ~(k, co) in two ways,
either by using 35 discrete eigenmodes [cf. Eq. (2.29)] or
using the matrix inversion [cf. Eqs. (2.24) and (2.27)]. We

will show in the next sections that the contributions of the
three hydrodynamic modes j=h, +, extended to klE & 0. 1,
dominate the S p(k, co) up to klE-1 for most densities.
This enables us to analyze the behavior of the correlation
function in terms of dynamic processes that are generali-
zations of those from Navier-Stokes hydrodynamics.

III. DILUTE CREASES

LE(k) ~ L~(k) = it v—+ nAs,
ncr3 &0. 1,

ko «].
with

(3.1)

A. Boltzmann theory

For low densities, i.e., Vo/V=ncr /v'2 &0.1 and suffi-
ciently small k, such that ko &&1, but klo-O(1) and not
necessarily small, the eigenmodes of LE(k) approach
those of the inhomogeneous linear Boltzmann operator'

A~h(v)) = cr f d& fdv—2$(U2)9(v)2 &)
~
v)p &

~
[h(v))+h(v2) —h(v')) —h(v2)], (3.2)

since then X~1, A&~0, Az~Az, and (Azh(v&)) &

——0.
Although one could consider the case ko =O(1), corre-
sponding to neutron scattering, the practically relevant
case is that of klo 0(1) and ko=0, corresponding to
light scattering of dilute gases.

I.O

0.8
O

0.6
E

0 4

B. Boltzmann eigenmodes 0,2

The first 12 eigenvalues of Ls(k) in the BGK approxi-
mation M=35 are plotted in Fig. 1 as a function of klo
for klo &1. For 0&klo &0.1, the hydrodynamic eigen-
values of Ls(k) are given by the Eqs. (2.31)—(2.34), where

c, Dz-z, and I z reduce to their values for a dilute gas of
hard spheres.

The striking feature is that the extensions of the real
parts of the heat- and the sound-mode eigenvalues remain
well separated from the real parts of all the kinetic eigen-
values as long as klo &1. Thus, even up until klo in the
neighborhood of 1, the correlation functions will still be
dominated by the three (extended) hydrodynamic modes,
since these modes damp out much more slowly than the
kinetic modes. Indeed, the contributions of the three ex-
tended hydrodynamic modes to S» and S]3 are indistin-
guishable from the "exact" values of these functions, ob-
tained with M=35 by matrix inversion, up to klo-0.4
and approximate them very well up to klo-0. 8, as shown
in Fig. 2. Even at klo-1, the three modes still account
for about 75%%uo of the contributions (cf. Fig. 2).

The representation of S33 in terms of three extended
hydrodynamic modes is less satisfactory and differences
appear already at klo ——0.3 (cf. Fig. 2). The reason for

-0.2

-0.4

2 k4

-1.0
0 0.2 0.4 0.6 0.8 1.0

kLo

FICs. 1. Reduced real and absolute value of imaginary part of
the 12 highest eigenvalues of the hard-sphere Boltzmann opera-
tor from BGK with M=35, as a function of the reduced wave
number: three hydrodynamic (h, s) and nine kinetic (k) modes
and their extensions. The heat mode h and the kinetic mode k3
are real (damped) for all k; the sound modes s are complex
(propagating and damped) for all k. The remaining eight kinet-
ic modes start as two (almost degenerate) real modes, which be-
come complex for larger klo. Note that eigenvalues of a pair of
propagating modes have the same real parts and the same abso-
lute values (but opposite signs) of their imaginary parts. Io and
to are the Boltzmann mean free path and time, respectively.
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this is that temperature fluctuations couple much more
strongly than density fluctuations to kinetic eigenmodes.
A better representation of S33 will be discussed later (see
Sec. VI, subparagraph 2). The dominance of the extended
hydrodynamic modes implies that the collisional invari-
ants remain important far beyond the hydrodynamic re-
gime. The value klo-0. 8 corresponds to X=8)0, i.e.,
eight collisions within a wavelength. This number is con-
sistent with Erpenbeck's observation that in molecular-
dynamics simulations of hard-sphere fluids approximately
eight collisions are needed to obtain local equilibrium, i.e.,
to obtain a hydrodynamiclike description

C. Matrix inversion

For klo) 1 all the eigenvalues mix in a complicated
manner and a description of the correlation functions in
terms of collective modes, i.e., three hydrodynamiclike

I

modes only, becomes impossible. In fact, matrix inversion
has to be used to describe the S )s(k, cp). Therefore, a sim-
plified description of the S lI(k, co) in terms of only a few
eigenmodes of Lz(k), which are the extensions of those at
small k, does not exist anymore.

D. Ideal gas and single binary collisions

However, for klo ) 50, an individual-particle descrip-
tion is possible, in that the operator Lz(k) effectively
reduces to its free-streaming part —ik.v and the correla-
tion functions are given by their ideal gas values. '

Corrections to this behavior can be obtained by an ex-
pansion of the resolvent operator 1/[z —L~(k)]
=1/[z —Ls(k)] around free streaming, which leads to an
expansion in sequences of binary collisions, characterized
by A~, i.e.,""

1

z —Ls(k) z+i k.v —n Az

1 1 1
nA~z+i k v z+i k.v z+ik-v (3.3)

where the first term in the expansion on the right-hand side of E (3 3)
'

th 'd l-q. . is e i ea -gas contnbution and the second term
~ ~
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the contribution of a single binary collision. From this, one finds for the S tt(k, cu) an expansion in powers of 1/klo with
coefficients that dePend on the reduced frequency e3*=e3to/klo ——(~m/8kET)' co/k, i.e.,

2S„(k,tu) =—

1
S(3(k,cu) =-

7T

—(4/1r)(co*)2+ I I +O( 1/(kl ) )
klo

to

kio
1/2 B

to «2 8 s l3(to
e (4/—n)(cu )

1 ( «)2 + +g(1/(kl )2)
3 klo klo

(3.4)

5 to (4/ )( «)2 16 «2 64 «4 s33(tu )
$33(k,eI) = e ' " ' 1 — (co*)'+, (e3*)' + +O(1/(kl())')

Here the leading terms are the ideal-gas contributions and
the terms containing the s t3(co*) are the corrections to
the ideal-gas contributions due to a single binary collision.
We have calculated the s tI(co*) numerically using the
BGK method with M up to 50. The s t3(co*) are shown
in Fig. 3 as functions of a)*. We note that s II(cu') agrees
very well with the analytical evaluation of the single-
collision term (Ref. 29).

Remarkably, the single-collision terms in Eq. (3.4) give
corrections to ideal-gas behavior, sufficient to describe the
S tI for all 3 &kl() & oc (cf. Fig. 4). Therefore, with the
exception of the region 1 & klo & 3, a simplified descrip-
tion of the correlation functions in terms of either collec-
tive or individual-particle modes of the fluid is possible
and an identification of the relevant dynamical processes
can be made.

The results for S», i.e., S(k,eI), agree well with those
obtained experimentally by Clark' for a dilute Xe gas for
0 & kin & 6, i.e., for 0 & kin & 1 the three (extended) hydro-
dynamic modes describe the experimental S(k,co), while
for 3 & klo & 6, the ideal gas plus one binary collision suf-
fices.

IV. DENSE FLUIDS

A. True eigenmodes

For fluids at high densities, i.e. 0.35 & Vo/V &0.70, the
eigenmodes of LE(k) behave quite differently from those
of dilute gases. Indeed, of the three extended hydro-
dynamic eigenvalues only the heat-mode eigenvalue stays
separate from those of the other (hydrodynamic and ki-

netic) eigenmodes, when klE increases from the hydro-
dynamic regime, 0&klE &0.05, to klE —1. This separa-
tion increases with increasing density and, in addition, an
increasingly pronounced maximum around ko. =2m in the
heat-mode eigenvalue develops. The extended sound
modes, however, mix already with kinetic modes at
ko. =2.5, i.e., long before klE-1. To illustrate this, we
show in Fig. 5(a) the'highest-lying BGK eigenvalues of
LE(k) for M=35, as functions of ko. for 0 & ko & 10 at
Vo/V=0. 625, where o/lE ——19.5, so that k(T =2.5 corre-
sponds to klE ——0.13. We see that the heat-mode eigen-
value zl, (k) is well separated from all other eigenvalues
but that the sound damping z, (k) mixes with the kinetic
modes for ko &2.5. In addition, all kinetic modes mix
with each other in a very complicated fashion, which
changes with M in a seemingly arbitrary and certainly
nonconvergent way. This can be seen in Fig. 5(b) where
the highest BGK eigenvalues are also plotted for M=55.
Therefore, no significance can be given to each single
eigenmode of LE(k) as obtained by the M=35 BGK ap-
proximation for ko. & 2.5, except to the heat mode which
is the same for M=35 and 55 (cf. Fig. 5).

Thus a simple Landau-Placzek-like picture where the
S t3(k, co) can be described by three extended hydro-
dynamic modes up to kIE & 1 does not obtain. This obser-
vation is contrary to that of previous calculations, ' using
a BGK approximation of M= 10, and is a consequence of
a more complete analysis of the eigenmodes of LE(k) us-
ing M=35 or even M=55. We should note, however,
that at each value of klE & 1 and for M & 10, the
S t3(k, co) computed by using the heat mode and only a
few of the highest-lying kinetic modes are very insensitive

Q. 4

0.23
Q. 1

-Q. 1

-0.2—
I

0.8

Q. e

0.4

0.2

—0.2

—04

2.4 0
l I I I I

0.8 1.6 2.4

wt, /k),

0.2 -.

0. 1 -',

—0 1

—0.2

-0.3
-0.4
-0.5

1 2 3

FICx. 3. First binary collision correction of the s II (ap=11, 13,331 to the ideal-gas limit as a function of e) =tot()/klo eItE/kle- —
from the hard-sphere Boltzmann s p(co ) ( ~ ~ ~ ~ ) and the Lorentz-Boltzmann s p(co ) ( ) equations.



4788 KAMGAR-PARSI, COHEN, AND de SCHEPPER 35

0.2

0. i 6
3

0. &2

0.08

0.04

XiO

() )) &00

80

40

—20

0.2

O. i 75

O. i 5

O. i 25

0. 1

O. D /5

0 05

0.025

0.5 1.5 0.8 24 0 08 2 4

FIG. 4. Dilute hard-sphere gas correlation functions S &(k, rp)/tp ( ) for aP=11,13,33 as a function of corp/klp for klan ——3.
Also plotted are the ideal gas limit ( ———) and this limit plus the first binary collision correction (from the Boltzmann equation)
(. . -), which is for almost all co indistinguishable from S p(k, co).

-0.2

-0.4

to M, i.e., to the detailed behavior of the individual eigen-
modes, and describe the exact S ~(k, cu) very well, in spite
of the slow convergence of the individual modes.

B. Effective eigenmodes
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e

(c) zS/((k, z)= g WJ, (k)$;t(k, z)+adjt
i =1

(4.1)

Yet, a simple Landau-Placzek-like description of the
S ~(k, cu) still obtains for all klE & 1, if the joint contribu-
tions of the highest-lying "true" eigenmodes of L~(k) are
approximated by the eigenmodes of an effective 3)& 3 ma-
trix H'(k) —the effective modes —which replaces effec-
tively the pp X po matrix W (k) as a description of the
dominant dynamical processes of the fluid. We start with
deriving H'(k) from W (k) in order to clarify the physi-
cal nature of the approximation.

(a) The 3X3 matrix H'(k) is obtained from a contrac-
tion of the oo set of generalized hydrodynamic equations
for the 9'

(ikt, z) = (P/(v, )[z —Lz(k)] 'Pl(v, ) ), :

03
E

0.2

0. 1

0
0 2 4 6 8 lO

to a set of three equations in the following way. For each
fixed l =P= 1,2,3 the S;~(k,z) with i & 3 can be eliminat-
ed from the first three equations with j=u = 1,2,3, by
solving successively the equations for Sz~(k, z) with j& 3
for 9&~(k,z) (j & 3) in terms of the Sjp(k, z) with j & 3.
Then one obtains a 3X3 matrix equation for the G &(kz)
(a,P=1,2,3) alone, i.e., the generalized hydrodynamiclike
equation

FIG. 5. Reduced eigenvalues of the Enskog operator for a
dense hard-sphere gas at Vo/V=0. 625 as a function of the re-
duced wave number ko. . (a) Real part of highest eigenvalues
from BGK with M = 35 (thin solid curves) and three effective
heat and sound modes (thick solid curves), where the effective
heat mode (at the top) is indistinguishable from that of BGK
with M=35; (b) same as in (a) with M=55; (c) absolute value of
imaginary parts of the two effective sound modes. Note in (c) a
propagation gap around ko. =6 and in (a) and (b) an excellent
convergence of effective modes but lack of convergence of other
modes, except the heat mode ( ———).

3

zG ~(k,z)= g H r(k, z)G»(k, z)+5 &,
y=1

with

(4.2)

H p(k, z) =W p(k)+b, W p(k, z) . (4.3)

Here b, W )s(k, z) results from the elimination procedure
and depends therefore on the W~~(k) with j, l & 3 and on
z, through the z on the left-hand sides of the equations
(4. 1) with j&3. Finally, the G ~(k,z) are approximated
by the G'~(k, z) which follow from the simpler general-
ized hydrodynamiclike equation,



35 DYNAMICAL PROCESSES IN HARD-SPHERE FLUIDS 4789

3

zG'p(k, z)= g H ~~(k)Gyp(k, z)+5 p
y=l

with

H' p(k)=H p(k, O)=W p(k)+AM p(k, O) .

(4.4)

(4.5)

here for M=35 or 55 is very similar to that determined
before for the "true" sound modes' for M=10. In par-
ticular, a gap in cg, (k) is present near kyar =2m at high
densities (cf. Fig. 5). A detailed discussion of the extend-
ed hydrodynamic eigenmodes and the physical origin of
their behavior has been given before. ' '

Thus the G~p(k, z) will be good approximations to the
G p(k, z) when the z dependence of the b, W p(k, z) can be
neglected, so that H p(k, z)=H p(k, O)=H'p(k).
Equivalently, Eq. (4.4) follows from Eq. (4.1) when, in the
elimination procedure, one sets z =0 on the left-hand side
of all equations with j & 3. Physically, this means that it
is assumed that the time decay of any

F~~(k, t) = ({()J(v,)exp[tLz(k)]P~(v&)) &

with j,l & 3 is much faster than that of any F p(k, t) with
a,P= 1,2,3.

(b) In practice it is extremely simple to determine H'(k)
from W (k). In fact, it is even easier than the matrix in-
version mentioned above, since one only has to use Eq.
(4.2) with z =0 and Eq. (4.5), so that

C. Effective mode description

S'p(k, co=0)=S p(k, co=0),

I dtoS'p(k, to) = f dtoS p(k, co),

(4.10)

(4.1 1)

The three effective modes can be used to evaluate all
the correlation functions S'p(k, to), using the Landau-
Placzek-like formula, Eq. (4.9). In Fig. 6, the S'p(k, co)
are compared with their "exact" Enskog values S p(k, co)
computed with M=35 and using matrix inversion [cf.
Eqs. (2.24) and (2.27)] for selected values of k at
Vo/V=0. 625.

We note that the S'p(k, co) computed with the effective
modes obey the following sum rules:

(4 6) andH'( k) = —[G(k, O) ]

where the 3 X 3 matrix G(k, O) is obtained from the BGK
method with M=3S or S5 [cf. Eq. {2.24)].

(c) Since [cf. Eq. (4.4)],

G'p(k, z) = (4.7)zI H'(k)—

the S'p(k, co) computed with the 3 && 3 effective matrix are
given by

S'p(k, to) = —Re
1 1

i toI —H'(k)
(4.8)

or equivalently by

M"J'(k)
S'p(k, co) = —Re (4.9)

p, + ito —zj'(k)

where the M' j'(k) and z~'(k) are found for all k from the
eigenmodes of H'(k), which we call "effective" eigen-
modes. In Fig. 5, the three effective eigenvalues of H'(k)
are compared with the true eigenvalues, i.e., the eigen-
values determined by Eq. (2.28), for Vo/V=0. 625. We
note the following properties of the effective modes.

(1) The effective eigenvalues of H'(k) reduce for small
k to those of the Navier-Stokes equations. The effective
eigenfunctions are linear combinations of P&, P2, and P3.
In particular, the zj'(k) and M'I['(k) reduce to the expres-
sions given by the Eqs. (2.31)—(2.35). Thus the effective
hydrodynamic modes are also extensions of the usual hy-
drodynamic modes to larger values of k.

{2)Unlike the true extended hydrodynamic eigenmodes,
the effective modes are very stable as M increases and do
not change significantly for M 5, and in particular do
not change from M=35 to 5S (cf. Fig. 5).

(3) With increasing density, the effective heat mode in-
creasingly coincides with the true heat mode. (Cf. Fig. 5,
where the two are indistinguishable for Vo/V=0. 62S.)

(4) The behavior of the effective sound modes obtained

OO 00 k~TI d~~'S»(k, ~)=I d~~'S„(k,~)=
2mS(k)

k

(4.12)
As a result of these sum rules, the S'p(k, to) [and in par-
ticular S»(k, co)] never differ too much from the
S~p(k, to), contrary to the S p(k, co) computed with the
true eigenmodes, as is illustrated for the case of $33(k, to)
for a dilute gas in Fig. 2, (c33).

That the three effective modes of H'(k) describe the
correlation functions of a dense hard-sphere fluid so well
for 0 & klan & 1 (cf. Fig. 6) is due to

(1) the dominance of the matrix elements W p(k) with
a,P=1,2,3 over b, W p(k, O) in H'(k),

(2) the dominance of the extended heat mode, which
remains virtually unchanged when we go from Lz(k) to
H'(k), and

(3) the dominance of only a few of the highest-lying (in-
tersecting) true kinetic modes of LE(k) which are ap-
parently well represented by the two effective sound
modes of H'(k).

We note the close resemblance of the eigenvalues of the
three effective modes to those obtained with M=10 (or
even M =3).' ' In particular both exhibit a pronounced
maximum of the heat-mode eigenvalue as well as a propa-
gation gap in the sound dispersion curve. ' '

Therefore, the dynamical processes that take place in
the fluid on the molecular scale and that are relevant for
the hydrodynamic correlation functions can be represent-
ed for high densities by three effective hydrodynamiclike
modes: a heat mode and two soundlike modes.

D. Ideal gas and single binary collisions

For khan
& 1, the three effective hydrodynamic modes

lose their significance and the correlation functions S p
can most easily be obtained by matrix inversion. Howev-
er, as in the case of a dilute gas, for klE & 50, an
individual-particle description is applicable, leading to
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ideal-gas-like behavior of the correlation functions.
In addition, as in the case of a dilute gas, for klE ~&1,

the resolvent operator 1/[z —Lz(k)] can be expanded
around the ideal-gas behavior, which is now characterized

by the Lorentz-Boltzmann operator' A'= limk Ak in-
stead of by AB. Including only the first two terms in this
expansion, i.e., the ideal-gas contribution and a single
binary collision, leads to

2 tES„(k,tI2) =-
m kIE

LB

e ' ' '+ +O(1/(kl ) )
2 SII (tI2 )

kIE

1 2
S(3(k, tI2) =—

3
e

—(4/n)(co*) [1 ( e)2]+
klE kl

+O(1/(kl~) )

5 tE
S33(k,co)= 3' E

16 64 S33 (cI2*)LB

e ' ~ " ' 1 — (co) + (co) + +O(1/(kl~) )
5n 5m klE

(4.13)

with

co* =cotF /klF ——(2rm /8kt3 T) ' co/k,

as in Eq. (3.4). We note that tF /lF ——to/lo for all densities
so that the ideal-gas terms in Eqs. (3.4) and (4.13) are the
same. The functions s t3

(co* ), which determine the

I

single-binary-collision terms in Eq. (4.13), are calculated
numerically in a fashion similar to that discussed for low
densities' ' and the results are shown in Fig. 3. The
function s)I (co*) is in very good agreement with the
analytical evaluation of s» (co*) given in Ref. 32.

We find that the S tI(k, co) at high densities are well
described by Eq. (4.13) for 3 &klE & oo (cf. Fig. 7). Thus,
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as for low densities, for klE ~ 3 the behavior of the corre-
lation functions can be understood on the basis of free
streaming of the particles and a single-binary-collision
process. However, since the s p(co*) are markedly dif-
ferent from the s p(co*) (cf. Fig. 3), the approach to
ideal-gas behavior for low densities, described by Az, is
markedly different from that at high densities, described
by A'. This is related to the fact that Az has five co1-
lisional invariants, while A' has only one.

V. INTERMEDIATE DENSITIES

A. Three modes

For fluids at intermediate densities 0.1 & V0/V&0. 35, a
simple Landau-Placzek-like description of the hydro-
dynamic correlation functions, with either three true or
three effective extended hydrodynamic modes does not
seem possible beyond the Navier-Stokes regime. For, in
this intermediate-density regime (unlike in a dilute gas)
the extended heat- and sound-mode eigenvalues are not
well separated from the kinetic eigenvalues and (unlike in
dense fluids) the extended heat-mode eigenvalue is not
well separated from those of the other modes.

B. Five modes

5
zG' p(k, z)= g H' (kr)G' p(rk, z)+6 p, (5.1)

One can, however, describe the correlation functions, in
this transition regime with five effective modes rather
than with the three effective hydrodynamic modes defined
in Sec. IV. These five effective modes are obtained in a
way similar to that of Sec. IV.

Thereto we consider the 5 X 5 matrix G(k, z) of correla-
tion functions G p(k, z) given by Eq. (2.23) with a' or
p'= 1,2, . . . , 5 which include the correlation functions
G p(k, z) with a,P=1,2,3 and in addition a' or P'=4 [in-
volving $4(v)] and a' or P'=5 [involving Pq(v), cf. Eq.
(2.17)]. The bar indicates a 5 X 5 instead of a 3 X 3 matrix.

Ail 25 G p(k, z) can be calculated by matrix inversion
using Eq. (2.24) in the BGK approximation with M=35,
or by approximating them by 25 G '

p ( k,z), which satisfy
the 5 X 5 matrix equation [cf. Eq. (4.4)]:

where the effective 5X5 matrix H'(k) with elements
H ' p(k) is given by the inverse of the 5 X 5 matrix
G(k, O):

H '(k) = —[G(k,O)] (5.2)

(5.3)

where the M 'I['(k) and z
&
(k) with j= 1,2, . . . , 5 are for

all k obtained from the five effective eigenmodes of
H '(k).

Thus, the S'p(k, co) are again represented in a Landau-
Placzek-like fashion in terms of the three extended hydro-
dynamic modes of H'(k) and two extended kinetic
modes. Or, equivalently, if a contraction to a 3 &(3 matrix
is made, by three extended hydrodynamic modes with
viscoelasticity, i.e., co-dependent transport coefficients.

C. Five-mode description

In Fig. 8 we show the five eigenvalues of H'(k) for
V0/V=0. 25 and 0&klan &1. In Fig. 9 we compare for
the intermediate density Vo/V=0. 25 and 0&kl~ & 1 the
S 'p(k, cu) with the S p(k, co) obtained by matrix inversion.
We see that the S'p(k, co) with five effective modes
represent the S p(k, co) very well. We also plot in Fig. 9
the S'p(k, co) with three effective modes [cf. Eqs.
(4.4)—(4.9)] to illustrate that at this density three effective
modes give an insufficient description of the S p(k, co).

One can show that of the five eigenmodes of H '(k), three
are extensions of the heat and sound modes in hydro-
dynamics and two are extensions of kinetic modes that
have finite negative eigenvalues when k~0. The eigen-
functions are linear combinations of P&, . . . , P5, i.e., of
the density, longitudinal velocity, temperature, stress ten-
sor and heat flux, respectively [cf. Eq. (2.17)]. The
S p(k, co) in the 5 X 5 effective mode approximation
S'p(k, co) are given by

M'p~ (k)= —Re gi~I —H'(k)
p

~ 1 ~ ice —z~(k)
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D. Large k

As for the dilute gas and the dense fluid, no simplified
description of the correlation functions is possible for
1&klan &3. However, for 3&klE & ao, the ideal gas plus a
single binary collision correction due to A [cf. Eq. (4.13)]
again provides a good approximation to the S ~(k, co), as
is shown in Fig. 10.

p 4

0.2 0.4 0.6 0.8 1

k!

FIG. 8. Reduced real and absolute value of imaginary part of
the five effective eigenvalues of the Enskog operator at an inter-

mediate hard-sphere density Vo/V=0. 25, as a function of kl&

from BGK with M =35. Heat mode (~ ~ ~ ), two sound modes

( ), and two kinetic modes ( ———), which are propagating
for klan &0,2.

VI. DISCUSSION

We end with a number of remarks.
(1) A phase diagram can be made in the density —wave-

vector plane illustrating the different regions, where dif-
ferent dynamical processes dominate the behavior of the
hydrodynamic correlation functions. This is done in Fig.
11. In this figure it is indicated that, beyond the hydro-
dynamic region, the correlation functions S p(k, co) of the
fluid can be described up to klE = 1 by three or five (either
true or effective) extended modes; that for 1 & klE & 3 the
S p(k, co) are most conveniently obtained using matrix in-

version [cf. Eqs. (2.24) and (2.27)]; and that for klE & 3,
the S p(k, co) are described by their ideal-gas values and a
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from BGK matrix inversion with M=35 Letters and numbers as in Fig 2 with lo to replaced by Iz tz with three effective

modes; ———,with five effective modes. In (a11) and (b11), the contributions of the three extended hydrodynamic heat and sound

modes from BGK with M=35 are indistinguishable from the S~&(k,co)/tF ( ).
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correction due to a single binary collision [cf. Eqs. (3.4)
and (4.13)]. At low densities this correction is given by
the Boltzmann collision operator for kl~ & 3, while after a
transition region, for klE&&3 it is determined by the
Lorentz-Boltzmann operator (cf. Fig. 11). Thus, for ex-

ample, at the low density of Vo/V=0. 015, this transition
region comprises 10 & klE ~ 50, which corresponds to
1 & ko. & 5, since lF /o. = 10. It might be interesting to see
if such a transition region at large k can be observed in
neutron scattering experiments.

(2) The description of the correlation functions

S&( ken) for 0 + klE & 1 by the S'p(k, co) with five effec-
tive modes [cf. Eq. (5.3)], derived here for intermediate
densities, can also be used at high and at low densities. At
high densities the two extra (kinetic) modes do not affect
the three effective mode result, but at low densities around
Vp / V-0. 1, where the transition from dilute gas
(Boltzmann) behavior to intermediate-density behavior
takes place, they give better results than obtained with
three true modes. For the dilute gas five effective modes
give a representation comparable to that of three true
modes, except for S33 at klo ——0.8, where five modes are
considerably better.

(3) The co dependence of the S ~(k, co) is studied in this
paper only for the reduced frequency range
0&cot+/klz-O(1). This implies that the representations

I

for the S ~(k, co) considered here are not necessarily valid
for co~co. For example, while the exact S(k, cu) decays
proportional to co for large co, the representation of
S(k,co) with three true modes decays proportional to co

when co~ oo.
Such differences are irrelevant, however, when one re-

stricts oneself to a description of the S tt(k, co), in the lim-
ited frequency range used here.

(4) Not only hydrodynamic correlation functions but all
correlation functions between single particle functions of
the general form g,. &f(v;)5(r —r;) can be computed
with the BGK method discussed here, since any f(v; ) can
be expanded in terms of the complete orthonormal set

I P; I, so that all Fj~t(k, t) can be computed, using the BGK
method.

(5) We have made a comparison of the 3 && 3 generalized
effective hydrodynamic matrix H'(k) [cf. Eq. (4.6)] calcu-
lated here from the revised Enskog theory with that,
H' (k), obtained by Alley and Alder from their computer
simulations. '

To do so, we express, following Alley and Alder, the ef-
fective hydrodynamic matrix of a hard-sphere fluid in
terms of the hard-sphere static structure factor S(k), the
generalized ratio of specific heats y(k), the generalized
longitudinal viscosity a(k), and the generalized thermal
conductivity A, (k), so that

H' (k) = i~o(k)

icoo(k)

a(k)k

0 iciro(k)[y(k) —1]'

ice (k0) [y(k) —1]'~

A, (k)k
nc,

(6.1)

where coo(k) =k[k~ T/mS(k)]'~ and c, =3k&/2. For
k~0, y(0) =@=cd/c„, a(0) =a =( —,g+g) the longitudi-
nal viscosity, with g and g the shear and bulk viscosities
of the fluid, respectively, and A,(0)=k the thermal con-
ductivity. Then, using Alley and Alder's tabulated values
for S(k), y(k), a(k), an k(k) at Vo/V=0. 1, 0.333, and
0.625, we determined the eigenvalues z~ (k),z+ (k) of
H'(k) for these three densities. The results so obtained
for the heat mode z~(k), the sound dispersion
co, (k) =

~
Imz+(k) ~, and the sound damping z, (k)

=Rez+(k) are compared in Fig. 12, with those calculated
with the revised Enskog theory.

We see in Figs. 12(a) and (12b) that the revised Enskog
theory describes the zI„co„and z, of a real hard-sphere
fluid well, both for the low density Vo/V=0. 1 and the
intermediate density Vo/V= 0.333.

We conclude therefore that an Enskog fluid closely
resembles a real hard-sphere fluid for Vo/V=0. 1 and
0.333. A comparison of the z~(k), co, (k), and z, (k) of the
Enskog fluid and the real hard-sphere fluid at the high
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density Vp/V=0. 625 has been made before. ' The agree-
ment is less satisfactory than that at Vp/V=0. 1 and
0.333, especially for the sound damping [cf. Fig. 12(c)].
This difference between the Enskog and a real hard-
sphere fluid with increasing densities might be due mainly
to a difference in their shear viscosities.

To see this, we remark that in the revised Enskog
theory H'(k) is given by an equation similar to Eq. (6.1),
with y(k), a(k), and X(k) replaced by their corresponding
Enskog values y~(k), a~(k), and A, z(k), respectively.
Here y~ (0)=y(0) = y, az (0)=az ——( ", riF. +g~ ) /m n—with

az, rI~, and g~ the Enskog values of the longitudinal,
shear, and bulk viscosities, respectively, and A.z(0)=kz,
the Enskog heat conductivity. While for Vp/V=0. 1 and
0.333, n and k are within a few percent of o:z and Xz,
respectively, for Vp / V= 0.625, u/o. z ——1.55, and
A, /A, z ——1.05 so that in particular o.' and o.z differ consider-
ably. ' We believe that this is the origin of the disagree-
ment between Enskog and real hard-sphere fluids at high
densities also for k &0. For, multiplying in the H (k) of
the revised Enskog theory, the Enskog values a~(k) and
AE(k) with the constant factors 1.55 and 1.05 relevant for
k =0, respectively, a considerably better agreement is ob-
tained at Vp/V=0. 625 up to ko. =20 between the thus
"upgraded" zf, (k), co,'(k), and z,'(k) and those derived
from Alley and Alder's computer simulations [cf. Fig.
12(d)].

This agreement means that our computed theoretical
correlation functions for the Enskog fluid using three ef-
fective modes are identical to the experimental correlation
functions determined by Alley and Alder for real hard-
sphere fluids for those densities and k values, where three
effective modes suffice. Then the dynamical processes

FIG. 12. Comparison of the Enskog theory with the hard-
sphere molecular dynamics data of Alley and Alder. Plotted are
the reduced eigenvalues of the generalized hydrodynamic matrix
of Alley and Alder (~, heat mode; 0, sound modes) and the
theoretical three effective hydrodynamic heat (~ - . ) and sound
( ) modes. (a) V0/ V= 0.1; (b) V0/ V= 0.333; (c)
Vp / V= 0.625; (d) Vo / V= 0.625, with upgraded longitudinal
viscosity and thermal conductivity. The arrows indicate that
value of ko. for which klF ——1.

that determine the nine hydrodynamic correlation func-
tions are characterized by three effective hydrodynamic
modes.

It seems possible that the large ratio a(k)/az(k) =1.55
for k =0 as well as for larger values of k can be under-
stood on the basis of the same extended mode coupling
theory that has successfully explained the large ratio
g/gz ——1.44 of the shear viscosities of the real hard-
sphere and Enskog fluids at Vp/V=0. 625.

(6) In view of its special importance, we conclude with
a few remarks on S(k,co) alone.

First, we note that for hard spheres for all densities and
klE & 1, S(k, co) alone can always be described by three
modes, which are either true or effective modes, depend-
ing on density and k value (cf. Figs. 2, 6, and 9). The
physical interpretation of these modes, as to what physical
processes they represent, has been the main point of this
paper.

Second, we note that also for real fluids, like argon or
neon, as well as for Lennard-Jones fluids, S(k,co) can
always be represented by three Lorentzians, i.e., by three
modes. Since there is no kinetic theory of real fluids, like
the revised Enskog theory for hard-sphere fluids, an inter-
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pretation of these three modes in terms of physical pro-
cesses as a function of density, and wave number k, in a
similar fashion as was done here for hard-sphere fluids, is
much more complicated.
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