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van der Waals limit of an interacting Bose gas in a weak external field
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We study how the introduction of a two-body interaction changes the thermodynamic properties
of the free Bose gas in a weak (scaled) external field. We show that, in the van der Waals limit, the

thermodynamic pressure always is a C" function of the density in one and two dimensions, while
this is not so in higher dimensions. The phase transition to the superfluid phase in the latter case is
discussed in more detail by looking at the local densities. We also show that the van der Waals limit
for this system does not correspond to the usual mean-field approximation.

I. INTRODUCTION

The properties of the ideal Bose gas can change drasti-
cally when an external field is switched on. This was, for
instance, discussed rigorously by van den Berg and
Lewis. ' They show that condensation in the one- and
two-dimensional free Bose gas can be induced by switch-
ing on a scaled external field. [They also show an exam-
ple where this condensation takes the form of a macro-
scopic occupation of infinitely many low-lying levels (the
so-called generalized Bose-Einstein condensation ).] The
condensate or superfluid phase, however, only occupies a
microscopic fraction of the volume (i.e., the ratio of the
volume of the condensate to the volume of the box tends
to zero when the box grows to infinity). Nevertheless, the
condensation manifests itself in the nonanalyticity of the
thermodynamic pressure and free energy as a function of
density and temperature.

A hard, and up to now essentially unsolved, problem is
what happens to the condensate when the particles start to
interact. It is well known that, in the absence of an exter-
nal field, condensation does not occur in one and two di-
mensions. ' It can also be shown that, in this case, the
condensation persists in the van der Waals limit in dimen-
sions higher than three (the van der Waals limit is a limit
of very long-range forces between the particles, but the
range remains small compared to the overall size of the
box).

In Ref. 6 the case was considered of an ordinary exter-
nal field which is strong enough to produce at least one
bound state. In this case Bose-Einstein condensation per-
sists when a mean-field type of interaction is switched on.
On the other hand, a simple superstability argument
shows that, when a scaled external field is present and any
superstable interaction is switched on, the condensate can
no longer sit on the microscopic scale (see, e.g., Ref. 7).
The superfluid phase might, however, spread out over a
macroscopic region. As a first step towards a better
understanding of what goes on with the condensate in this
case, we study in this paper the van der Waals limit of the
interacting Bose gas in a scaled external field. The situa-
tion turns out to be very interesting. In contrast to the

free case, we find that the limiting thermodynamic pres-
sure becomes a C" function of both the chemical poten-
tial p (or density p) and the temperature in dimensions
v=1 and 2, whatever the scaled external field is. More-
over, it allows an analytic extension to some complex re-
gion near the real axis. This clearly suggests that the lim-
iting system does not have a phase transition. In dimen-
sions v & 3, we find that there are many points where the
limiting thermodynamic pressure as a function of p is not
infinitely differentiable. In particular, there is a whole in-
terval of p (densities) where the set of local densities are
not C . The expressions for the pressure and local densi-
ties point out that, at some lower critical density, a super-
fluid phase forms which gradually occupies a greater and
greater macroscopic fraction of the box when the density
is increased until, at some density, it is sitting over all the
box. The introduction of the interaction, therefore, com-
pletely changes the thermodynamics of the system com-
pared to the free case. For example, the reader can think
of a box filled with bosons placed in the very weak gravi-
tation field of the earth. Were there no interactions be-
tween the particles, the superfluid phase would concen-
trate on the bottom of the vessel and form a microscopic
film. However, when some weak but long-range force is
switched on between the bosons (corresponding to the van
der Waals limit), the superfluid phase will spread out over
the whole box and its density will be roughly everywhere
the same (as the change in the gravitation potential will be
very small over the box).

The structure of the paper is as follows. In Sec. II we
discuss the model and introduce some formalism. In Sec.
III we derive an explicit expression for the thermodynam-
ic pressure in the van der Waals limit. Finally, in Sec. IV
we discuss its properties as well as the behavior of the lo-
cal densities. We also compare these results to the results
of the usual mean-field approximation. As will be shown,
the properties of this system are very different.

II. DESCRIPTION OF THE MODEL

We consider the set of v-dimensional cubes AL ——[O,L]"
with volume L and denote by 4 L the space of sym-
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metric, complex, square-integrable functions on the
bounded region AL ——Q; ~AL. We define as usual the
Fock space FL by

FL ——g3 Aq. (1)
n=0

We assume that the particles feel a weak (scaled) external
field V(x/L) and the interact via a two-body potential
I, U(kr), (A, &0). We make the following two assump-
tions concerning Vand U: First,

PL p (p)= ln[ Trexp[ p(—HL p p—NL)]I . (7)
/3L

The pressure of the mean-field system p L', (p, ) is defined
similarly. We also define in the usual way the finite-
volume Gibbs states coL'~'„( . ). In Sec. III we will
derive an explicit expression for the thermodynamic pres-
sure PL'z '(p, ) in the van der Waals limit lim~„o limL

VeC "(A)),
and second,

(2) III. DERIVATION OF THE
van der WAALS LIMIT

U(k)= f d'x U(x)e' )0, VkeR

U(0) & ce,

(3a)

(3b)

vL(p)= g f dX"V ~p(X") ~'.

~

U(x)
~

& v+e, '|txeR" (D,e&0) (3c)
D

ix i

U(x) &0, b'xeR (3d)
We believe, however, that the last condition [i.e., (3d)] is
not essential to derive the van der Waals limit, ' although
the derivation seems to become much more difficult if
(3d) is not assumed. We note that the class of potentials
satisfying conditions 3(a)—3(d) is not empty [for instance,
it contains the potentials U(r) =a exp( br ), a, b—&0].
For convenience, we put X"= (x ~, . . . , x„) and
dX =d x ' d xn.

Now we introduce the following quadratic forms on
FL, defined by their reductions to A L .

Kinetic energy.
n

tp(q)= ,
' g f dX"—~ V„q(X")~' (4)

k=1
with domain S(CO(AL)) (S being the usual symmetriza-
tion operator). tL (g) is defined similarly, but with
dom»n S(C'(AL ) )." (Basically, oo denotes Dirichlet
boundary conditions, while 0 denotes Neumann boundary
conditions. )

External potentiaL

Before stating the main theorem, we first recall some
properties of the mean-field system H L', '. " One has

p, (p)= lim p L, (p)= lim p L, (p) = +po(a),(p —a)'
L ~ oO L ~ oO 2a

where a satisfies

(8a)

a=p —apo(a) if p &ap, ,

+=0 if p) ap, ,

and where

1 d k kpo(a) = ——f ln 1 —exp —PP (2~)

d k
po(a) = f (2~)" k

exp P —a
2

a &0 (8b)

a(0

p, =po(0) (p, & oo if v) 3) . (8d)

We note that the mean-field system has a third-order
(second-order) phase transition in dimensions v=3, 4
(v) 5), when p=ap, . At this point the density of the
system is p, . The rest of this section will be devoted to
proving the following theorem.

Theorem 1

Interaction.

uL q(g)=
l,J

(1(i &j(n)
f dX "A,'U(k(x; —x, ) )

~

tt (X")
~

' .

With the preceding conventions and assumptions,

lim lim PL'P (p)= f d xp, (p —V(x))
A, JO L~ oo Ai

wherea= f d x U(x) .

(6)
We denote by hL~(g) [hP~(tb)] the closure of the quad-
ratic form tL (g)+ vL (g) +uL ~(p) [tp (p) + vL (g)
+uL q(g)] and denote by HL q (Hp q) the associated
self-adjoint operator, being the Hamiltonian for our sys-
tem. In the same way we construct the mean-field Hamil-
tonians H L', ' corresponding to the closure of the quadra-
tic forms tL' '(p)+(al2)(t/i, NLQ). Here NL is the usual
number operator, defined by

NLq(X")=nq(X") vqe~L .

The thermodynamic pressure PL'p'(p, ) is defined by

The ~roof consists in finding upper and lower bounds for
PL'p (p) which coincide in the van der Waals limit. One
has

PL,x(P) &PL, A(P)

(see, e.g. , Ref. 10). Therefore, it suffices to find an upper
bound for PL q(p) and a lower bound for PP&(p).

Upper bound for pL q(p)

To find an upper bound, we partition the cube AL into
the cubes
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Ak
' ——X (I, —1)—,I,—,1&1,&m (m~N).

i=1 m' 'm

Clearly,

U (Ak ') =Ay and Fg — Fk,
k k

(10)

Proposition 1.

tt (Q) = g tk(f),
k

Ut. (g) & g Uk(g),
k

VA, )0, VE )0, 3 Lp such that VL & Lp..

(12a)

(12b)

where Fk stands for the Fock space over the volume Ak '.
Let us now define the following quadratic forms, corre-

sponding to the partitioning described above (geA z ):
n

tk(((') = g f dX "Xk(x~ )
~

VJ't((X")
~

(1 la)

with domain $(C'(A")), where Xk(x) is the usual charac-
teristic function of the volume Ak

'.
,

uz ~(P)) a(1 —e) m

Lv g n k(f) —A, 'U(0) g nk(p),

(12c)

where a= f d "x U(x).R"
Proof. The proof of (12a) and (12b) is trivial. It

remains to prove (12c). We use the following result which
can be found in Ref. 12:

n

nk( (()= f dX" (1 lb)
VA) 0, Vs~0, 3 L1,

such that VL & L1, VN, Vx;eAL.

'2

n k(p) = f dX" g Xk(x~ )
~

g(X")
~

—kU(e) ink(0)

(1 lc)

(1 ld)

1)J
(1&i &j&N)

k'U(A(x; —x )) & N —A."U(0)N .

(13)

where Now take any geA z and put

X
Vk ——min V

xex(m) LXE'

We then have the following.

U, (X")=

Then

l,J
(1&i &j&n)

A, U(A, (x; —xj )) .

ut g(P) = f dX"Ug(X")
~

g(X")
~

f d"xi, . . . , f d x„U~(X")
~

g(X")
i

ll, . . . , 1 1 n

(14)

= g'P + f dX" U (X")~g(X")~
IN~ j k

(15)

where g'(~
)

stands for the sum over all possible choices

of INk. Nk )0} such that gkNk nand——
N~

d Xk
j—1 . k

u „(P)) g'P( „) + f„dX
IN„j k

Q Nk —VU(0) g Nk
k k

In going from (14) to (15), we have ordered the particles in
such a way that the first Nk particles sit in Ak ', the

second Nk particles in Ak
' and so on. The factor P(& )

is a permutation factor which counts the number of terms
in (14) which yield the same contribution in (15). Now,
using U(x ) & 0 [see (3d)], we find

ut. g(f)) Q'P(~„) + f dX "
IN„j

x gU (X ") ~p(X") ~'.
k

Finally, we use (13), taking L/m &L~. Then

x /g(X") /'. (16)

PL, X(P) + „gPL/, (I —)(P Vk+~
m

Taking the following series of limits,

lim lim lim lim
m —+ oo a&0 A, &0 L —+ oo

we then obtain

It is straightforward to check that (16) is equivalent to
(12c).

Using (10) and proposition 1, an analysis similar to the
one in Ref. 10 yields
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limsup lim pt ~(p) & f d x p, (p —V(x)) .
A)0 L~oo

[The existence of limt „pt q(IM), and its equality to
limt. pt k(p), can be shown using similar arguments to
the ones presented in Ref. 10.]

then find
V

A, D(ML")
gv+eL v+e(d(k) )v+E

keZ v

k~0
(22)

Lower bound for pi"z(p )

To obtain a lower bound for pt q(p), we divide At into
the cubes Ak~'"'.

(,) L L L L LA„"=)& k; —+—,k;
q r ' '

q r q

where d(k) denotes the minimal distance between the
cubes Apq'"' and Ak~'"' divided by L. [Here we have ex-
tended the definition (18) of the cubes Ak~'"' to any keZ . ]
Formula (22) gives an explicit formula for A(A, q, r, ,M)
which finishes the proof of the proposition.

We now define the approximate pressure ft k(p) by

0&k; & Int (Is)q+r
ft ~(p)= lnITr~ exp[ /3(Ht—k pN ]—],M oo

/3L

Int (x) denotes the integral part of x and q, r E N. The
volume of the cubes Ak~'"' is (L/q) and the minimal dis-
tance between two such cubes is bigger than L/r. Clear-
ly,

pt"z(p) & TrM exp[ /3(Ht z ——pNt )], (19)

where Tr stands for the trace over the space G of
states containing no particles outside the cubes Ak~'" and
at most ML particles in each of them. M is some fixed
but sufficiently large number, to be determined later on.

Let us define the quadratic forms:

1 M ~ — A (A, q, r, M, ).gfiP, ,~(/ Vk)— (23)

It is shown in the Appendix that b'p0, VA.O& 0, 3 M such
that Vp &p0, O'A, :0&k&X0.

»mfPA(/ )=p~(/ ),
L~oo

(24)

where H L ~ is the Hamiltonian of the interacting system
without the external field term and TrM stands for the
trace over the states with less than ML" particles in the
box At . Using (19) and Proposition 2, we obtain

U k ( 0 ) Vk n k ( t/')

where

(20) where

Pk(p)= lim
L~oo

1 , 1n[Trexp[ /3(H t" z p—N~)]] . —

tt" (g)= gtk" (P),
k

(21a)

X
Vk ——max V

&&g(q, r)X6

nk is defined as in (1 lb) (but with Ak™replaced by Ak~'"').

Similarly, we also define the quadratic forms t k and uk ~.
The following proposition then holds.

Proposition 2. 'r/gEGM ..

Therefore, taking the limit L ~ oo of (23), we get

1.QP. (p —V. )
q

But it is well known (see, e.g. , Ref. 5) that

liming(p) =p, (p) .
A, &0

APPlying limq lim„ limk„p to (25) then yields

(25)

VI (Q) & g Vk(Q)
k

(21b) liminf lim pt &(p) & f d xp, (p —V(x)) .
A&0 L

(26)

uL, k(0) & g uk, x(g)+A(~ q r M)L
k

where A(k, q, r, M) is some finite number depending on
the choice of A, ,q, r and M;

~ ~ P ~ ~

denotes the usual L
norm; and F. is as in (3c).

Proof: The proof of (21a) and (21b) is again trivial. It
remains to prove (21c). Clearly, ut q(1b) is equal to
gkuk k (g) plus the contribution u, „,(p) coming from the
interaction between particles sitting in different cubes
Ak~'"'. We now work out an upper bound for

~
u;„,(1b) ~.

The interaction between two cells Ak" and AI '"' is clear-
ly bounded by

(ML ) K(k, l),

Theorem 1 now follows by combining (9), (17), and (26).

IV. THERMODYNAMIC PROPERTIES
OF THE LIMITING van der WAALS SYSTEM

In Sec. III we proved that

p(lu, )
—= lim lim pt'k '(p)

k&0 L —+ oo

dxp, p —Vx
1

(p —V(x ) —a(x) )'
X +pp a(x)

Al 2a

where a(x ) satisfies
where K(k, l) is the maximum of A. U(k(x —y)) with x in
Ak "and y in AI ".

Using the bound (3c) and summing over all cells, we

a(x)=p —V(x) —app(a(x)) if p —V(x) &ap,

a(x)=0 if p —V(x))ap, .
(27)
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[see Eqs. (8)]. We now study the behavior of p(p) as a
function of p or, equivalently, as a function of the mean
density p(p ) = dp (p ) /d p.

In one or two dimensions p, = ao and it is then easy to
see that p(p) is a C" function of p (and therefore also of
p), which allows, moreover, an analytic extension to some
complex domain near the real axis.

The situation if quite different in higher dimensions
where p, & oo. To sketch what goes on, let us consider the
case v=3. (A similar analysis can be carried through in
higher dimensions. ) Moreover, let us assume that A&, in-
stead of being a cube, is a ball of radius R =1, centered
around the origin, and that V(x} is a rotation invariant
function, i.e., V(x)=V0( ~x

~
) where VoeC"([0,1]). (A

typical case is shown in Fig. 1.) As before, we can show
that

1

p(p)=4~ f dr r p, (p Vo(r)) . —

Using the fact that

po(a) =p, + I ( ——,
'

)( —pa)' +O(a),
with

~

a
~

small (Ref. 13) and formulas (8},one can verify
that all derivatives of p, (p) with respect to p, up to fourth
order exist and are bounded, except at p=ap, where

p,"'(p) and p, (p) are discontinuous. Now denote by r;
(i = 1,N) the set of points such that

Vo(r;) =p —ap,

(see Fig. 1). Using the above remarks, one checks that

1
N dg.

p (p)=4m f dr r p,' (p —Vo(r))+4rrC g '
r,

0 dp

where

C = lim p,'"(p ) —lim p,"'(p ) .
p«p p$ap

A straightforward analysis then yields that p' (p) is
discontinuous at any point p satisfying

p=ap, + Vp(RJ) (j=1,M)

or

p=ap, + Vo(1)

where RJ are the extremal points of Vo(r) (see Fig. 1).
The point p=ap, + Vo(0) needs a special analysis, but
also turns out to be a point of nonanalyticity of p(p).
How often p(p) is differentiable at this point depends,
however, on the behavior of Vo(r ) near r =0. The
behavior of the local densities p(p;x ) turns out to be more
instructive in this respect. They are defined as follows:

+x) A

p(p;x ) = lim lim lim col' z '„
Ago AJO L~~ 3 L

where NL' is the operator counting the number of parti-
cles in the box

A"'"= + [L(x; —A), L(x;+A)],

1.e.,

vo(r) J(

0 r

R( Rp

FIG. l. A typical potential Vo(r).

n

NI"'"p(X")= Q Xg(x;)g(X"), @pe@ L,
i=1

Xz(x) being the characteristic function of AL' . Now
consider the functions gl'P '(5):

gL', p'(5) = »[T«xp[ P(HL, p —p+L 5+1". )] I
PL

As in Sec. II, we can prove that

g(5) —:lim lim gg'x '(5)
A. )0 L~ oo

= f „d"xp. (p —V(x)+5)

+ dxp, p —Vx

Moreover, as gL'p '(5) is a convex function of 5, one has

0(oo) x, A
d y„)hm

' = lim lim gL g (5)
a&0 L ~d5 0

g(5)
d

0

d"x ( )
p —V(x )

Consequently,

p(p;x) = p, (p)
d

p —V(x )

We note that p(p;x ) is a C" function of p except at the
point p= V(x)+ap, . Clearly what goes on is the follow-
ing: When the mean density of the system is increased,
the local density p(p;x) increases also and all particles in
the neighborhood of x sit in the normal phase. However,
as soon as the local density exceeds p„any newly added
particle at that point will enter the superAuid phase. We
conclude that for any p with

ap, + minV(y) &p &ap, + maxV(y),
yeA& yeA&

there exists some point xeA1, where the local density
p(p;x) is nonanalytic. A similar statement can be made
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about the local densities as a function of the mean density

P.
To end this section, we stress the difference between the

system we obtain in the van der Waals limit and the sys-
tem one obtains performing the usual mean-field approxi-
mation. This latter system is described by the Hamiltoni-
an derived from the quadratic form

tL'"'(f)+vL (Q)+ —nL(1(') .
2

Denoting the limiting pressure of this system by p t(p),
one finds

p t(p)= f dx +po(a —V(x))(p —a)
1 2a

where e satisfies

(i) a=p —a f dx pp(a —V(x)) if p (ap, ,„,+ V,
1
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APPENDIX

Kt ( )
(n nlL "(x)

Then

(expnpn )[Tr~g exp( PH —t" g)]
n

exp[PL p L ~(p)]

In this Appendix we present the proof of statement
(24). The idea of this proof is basically already present in,
e.g., Refs. 13 and 14. Choose some po and ko and assume
that p&po, 0&k&ko. Denote by K (x) the distribution
function

(ii) a= V if p) ap, ,„,+ V,

where V=min„, z V(x) and where

p, „,=lim dxpo a —Vx
a)V 1

This expression has to be compared to expression (27).
Note that the mean-field pressure p t(p) shows a singu-
larity only at p =ap, „,and that p, ,„, can be finite even
in one or two dimensions (see, e.g., Ref. 1). It is also pos-
sible to consider the local densities p t(p;x) for this sys-
tem. These have the following property [Vx with
V(x) & V];

p t(p;x) =po[ V—V(x )] if p & ap, ,„,+ V .

exp[A-"f~, ~(p )]

= exp[PL p L", z(p)] 1 —f K (dx)

Now choose any c &0. Clearly,

f K (dx)

& exp( PcML") f —exp(PcL x)K (dx)

p L„x p+c PL,x 9-
=exp c L —M+

But

(A1)

Therefore, as soon as the mean density p exceeds the value

p, ,„„the local densities at points x with V(x) & V satu-
rate, and any newly added particles tend to sit in the
minimum of the potential. This is in shrill contrast to the
van der Waals limiting case where the local densities are
strictly monotonicaOy increasing functions of the mean
density p. The difference between the mean-field approxi-
mation and the van der Waals limi. t can, however, easily
be understood when one realizes that, in the first case, the
interaction energy in some small box inside AL is propor-
tional to the total density of the system squared while, in
the second case, it is proportional to the local density
squared.

0(p L,k(p+c) (p L, (I —)(po+c+ 0 ( )),
where we have used (13) (take L large enough) and the
fact that the pressure is an increasing function of p.

Now choose

Pa( 1 —e)(P0+c +ko U(0 ) )
M& min

C C

It is then easy to prove that for all 0 & A, & ko, p & po,

lim ln 1 —f K (dx) =0,
L, ~~ PL~ . (M, ao)

which together with (28) proves the statement (24).
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