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A new theory of dynamic correlations in a strongly coupled, classical one-component plasma
(OCP) is developed within the generalized viscoelastic formalism. Fully convergent kinetic equa-
tions for the strongly coupled OCP are thereby derived with the aid of a fluctuation-theoretic for-
mulation of the collision integrals. The dynamic structure factor S(k, co) and the coefficient q of
shear viscosity are calculated both in the ordinary fluid state and in the metastable supercooled state
through a self-consistent solution to the kinetic equation. It is shown that the numerical results in

the ordinary fluid state agree well with other theoretical and molecular-dynamics simulation results.
A possibility of the dynamic glass transition is predicted in the supercooled OCP through the analy-

ses of the variation in g, the quasielastic peak in S(k, co) and the behavior of the self-diffusion coef-
ficient; the prediction is compared with those in the glass-transition theories for other systems.
Relevance to laboratory experiment is examined in terms of the metastable-state lifetimes against
homogeneous nucleation of the crystalline state.

I. INTRODUCTION

The classical one-component plasma (OCP) consisting
of a single species of point charges (electric charge Ze,
mass rn, number density n, and temperature T) embedded
in a uniform background of neutralizing charges
represents one of the well-studied, nontrivial statistical
systems. ' The state of an OCP system is characterized
by a single dimensionless Coulomb-coupling constant,

l =(Ze) laktt T,
where a =(4srn/3) '~ is the Wigner-Seitz (ion-sphere)
radius.

The static and dynamic properties of a strongly coupled
OCP such that I »1 differs markedly from those of a
weakly coupled OCP, I « 1. The correlation properties
of such a strongly coupled OCP have been extensively
studied by the Monte Carlo (MC) and molecular-
dynamics (MD) simulation techniques as well as by
numerical solutions to integral equations. Practically,
it provides a workable model for dense stellar matter such
as those found in the interior of a degenerate star and in
the outer crust of a neutron star; recent experimental
developments' '" lead us to expect that a strongly coupled
OCP may soon be realized in a laboratory setting.

It has been shown through the MC experiments that
the OCP may undergo a phase transition into a crystalline
state (Wigner crystallization) at the critical I value,
I =178+1. Since the transition is of the first order, the
plasma may remain in a metastable fluidlike state when it
is supercooled below the corresponding transition tem-
perature; astrophysical implications of taking account of
such a supercooled fluid plasma have been discussed else-
where. ' If such a plasma is quenched sufficiently rapidly
to overcome a homogeneous nucleation of crystalline lat-
tices, the plasma may possibly turn into a glassy state. ' '

Recently, the MC and MD experiments for the super-
cooled simple liquids have been extensively carried
out ' the possibilities of the glass transition in systems
such as the hard-sphere (HS), the soft-sphere, and the
Lennard-Jones (LJ) have been thereby elucidated.
Theoretical accounts of the computer-simulation results
were also made by a number of investigators on the basis
of a self-consistent mode-coupling theory' '' or a non-
linear fluctuating hydrodynamic theory. '

We remark in this connection that the OCP system may
offer a unique object of study, in that it is probably a most
difficult system to make a glass; the point charges, in-
teracting via one of the softest and symmetric binary po-
tentials, may be viewed as too "elusive" to lock themselves
into a glassy state. On the other hand, we recall the simi-
larity between the strongly coupled OCP and the HS sys-
tem demonstrated in various physical cases; ' ' ' ' this
similarity may act to enhance the possibility of a glass
transition. In light of both the theoretical significance
and the practical feasibility of the experimental study, we
thus find it important to clarify the nature of the OCP in
the supercooled state and to explore the possibility of a
glass transition.

In this paper we present a new theory of dynamic corre-
lations for the strongly coupled OCP within the general-
ized viscoelastic formalism coupled with a kinetic
theory; the theory reproduces the existing MD simulation
data for I & I both on the dynamic structure factor
S(k,co) and on the coefficient of shear viscosity q satis-
factorily. We then extend the theory to those plasmas in
the supercooled state, I & I, investigate the dynamic
behaviors of the system, and analyze the possibility of a
glass transition.

In Sec. II the static properties of the supercooled OCP
are investigated through analyses of the radial distribution
function g(r) and the static structure factor S(k) calcu-
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lated on the basis of the improved hypernetted chain
(IHNC) scheme; delicate changes observed in the correla-
tion functions are interpreted as precursors of a dynamic
glass transition which will take place at a still larger value
of I . In Sec. III we formulate a dynamic theory in which
the viscoelastic theory on the OCP is generalized into fi-
nite frequency and wave-number regimes, and construct
the dynamic local-field correction G(k, co) describing the
strong Coulomb-coupling effects. The coefficient of shear
viscosity rl appearing in the expression for G(k, u) is then
calculated in Sec. IV through a solution to the kinetic
equation, whose collision term in turn is expressed by
G (k, co); we thus determine g and G (k, co) self-
consistently. The numerical results for rI and S(k,co) are
presented in Sec. V; the self-diffusion coefficient D is es-
timated by assuming the correspondence between the OCP
and HS systems. The possibility of a glass transition at
I =1000 will be revealed in the dynamic properties
through the variation of g. In Sec. VI the lifetime of a
metastable fluid state against a homogeneous nucleation
of crystals is evaluated according to a standard statistical
model; the rate of rapid quench necessary for the forma-
tion of a glass is estimated and the experimental possibili-
ties are assessed. Summary and concluding remarks are
given in Sec. VII.

A preliminary account of the present work has been re-
ported elsewhere.

II. STATIC PROPERTIES

In this section we investigate the static properties of the
correlations in the supercooled OCP. The static correla-
tion functions such as g(r) and S(k) not only are neces-
sary as inputs to calculate the dynamic correlation func-
tions but also give some information on the structural
changes associated with the glass transition.

We calculate the static correlation functions with the
improved hypernetted-chain (IHNC) scheme of Iyetoni
and Ichimaru, in which the contribution of the bridge di-
agrams neglected in the hypernetted-chain (HNC) approx-
imation are taken into account appropriately. It has been
confirmed that the IHNC scheme almost identically
reproduces the existing MC data of g (r) for I ( 160; the
excess internal energies agree with the MC values with di-
gressions less than 0.14%.

In Fig. 1 we exhibit the results for g(r) calculated by
extending the IHNC scheme to those plasmas in the su-
percooled state. The most striking features' in the IHNC
solution are the broadening (at I =200) and the subse-
quent splitting into two parts (for I & 300) of the second
peak in g(r). We clearly observe such a splitting of the
second peak and structural developments around the third
peak in Fig. 1 as I increases to and beyond 500. We add
a parenthetical remark that those features in g(r) have
not arisen as an artifact of the IHNC scheme; even an in-
clusion of only the lowest-order bridge-diagram contribu-
tion leads to the split-second-peak structures for I )400.

We have also computed the Wendt-Abraham ratio 24

H—=g;„/g „between the first minimum and maximum
in g (r) for various I values; the results are plotted in Fig.
2. We find that A~ has a power-law dependence on I and
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FIG. 1. Radial distribution function of the supercooled OCP

computed in the IHNC scheme at various values of I".
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FIG. 2. Wendt-Abraham ratio A—:g;„/g „vs the coupling
constant I . Two asymptotic straight lines represent power-law
fit ting s of A' on I". The horizontal dashed line refers to
M~ =0.14.

that the index changes approximately from —0.7 to —0.9
somewhere between I =300 and 400. The point at which
the two asymptotic lines intersect is I =330 and %=0.14;
the former appears to correlate with the splitting of the
second peak in g(r) and the latter coincides exactly with
the empirical value originally found by Wendt and Abra-
ham through the analyses of the MC data for the 12-6
LJ system.

A number of differences between the OCP and LJ sys-
tems are to be noted in this regard, however. First, A ex-
hibits a linear dependence on T, whose slope changes at
the transition point, in the LJ case. Second, the observed
kink is concave in the LJ system, contrary to the OCP
cases as depicted in Fig. 2. Finally, we remark that the
characteristic volume also displays an analogous kink as a
function of T in the LJ system, while the characteristic
volume in the OCP is consistent by definition.

The IHNC results for the static structure factor S(k)
are also shown in Fig. 3; we observe structural develop-
ments quite analogous to Fig. 1.

For the supercooled OCP to be in a metastable state, it
must be stable against the onset of a soft-mode instability
of the charge-density-wave (CDW) type. The onset condi-
tion for the CDW instability has been investigated in
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The dynamic structure factor can be calculated with the
knowledge of e(k, cu) via the fluctuation-dissipation
theorem as

kgT
S(k, cu) =- Im

gatv (k)cu e(k, cp)

terms of the IHNC results for S(k). It has thereby been
found that the metastability of the fluid phase may persist
beyond I = 1000, up to a substantially large I value.

Although the structural developments observed above
in g(r) and S(k) may be interpreted as indications of a
glass transition in the OCP system, their appearance is
quite a delicate affair and is not universal in dense sys-
tems. ' We rather take a point of view that the glass tran-
sition is basically a dynamic phenomenon and that the
features in the static structures are to be regarded as pre-
cursors suggesting a possibility of the dynamic glass tran-
sition. We therefore proceed to investigate the dynamic
properties of the strongly coupled OCP in the following
sections.

III. DYNAMIC LOCAL-FIELD CORRECTION
BASED ON GENERALIZED VISCOELASTIC

FORMALISM

The strong Coulomb-coupling effects are described in
the present theory through the dynamic local-field correc-
tion (DLFC) G(k, cp), which is introduced via the wave
vector k and frequency co dependent linear-response rela-
tion between the external potential y,„,(k, cu) and the in-
duced density fluctuations 5n (k, cp), '

5n (k, cp) =Xp(k, cp) [y,„,(k, cu)

+u(k)[1 —G(k, cp)]5n (k, cu)) .

Here u(k)=4~(Ze) /k and Xp(k, cu) is the retarded free-
particle polarizability,

Xp(k, cp) = —fdp
aI'k.

m —k v+i0 ap
(3)

where 0 in the denominator denotes a positive infini-
tesimal. In the equilibrium system, the single-particle dis-
tribution function F =F(X;t) is Maxwellian,

f =5o
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FIG. 3. Static structure factor of the supercooled OCP com-
puted in the IHNC scheme at various values of I .

The static structure factor is then given by

1 oo

S(k) =—f dcp S(k, cu)
g —0O

k +kD[1 —G(k)]

where kD ——[4vrn (Ze) Ik&T]' and G(k)—:G(k, cu=0) is
the static local-field correction (SLFC).

In order to obtain the DLFC, we evoke the linearized
viscoelastic equations of motion for the OCP,

a a
5n (r, t)+n 5u(r, t) =0,

at ' ar (8)

mn —5u(r, t) = — 11(r,t),a a
at ' ar

1
a+r
at

a aII(r, t) — P (r, t) +Zen E(r, t)ar ' ar

a a5u(r, t) — g+ ~ .5u(r, t),ar ar '
3 ar ar

(10)

nT 5s (r, t) =Ic —. 5T(r, t) .
a a a
at ' ar ar

E(k, co) = —i k y,„,(k, cu)+ 5n (k, cp)
v(k)
Ze

Here the fluctuating quantities, 5u, H, P, E, 6s, and 6T,
represent the flow velocity, the isotropic part of the
momentum flow tensor, the pressure, the electric field, the
entropy and the temperature, respectively; r, g, and Ic are
the viscoelastic relaxation time, the bulk viscosity and the
thermal conductivity. If ~ is set equal to zero in Eq.
(10), one recovers the Navier-Stokes equation in the case
of OCP

We shall consider the isothermal response so that
6T=O. According to the density-response formalism,
we apply to the system a weak external potential field
p,„,(k, cp). Fourier transforming Eqs. (8)—(10) and noting
the Poisson equation,

1
Fp(p) =n

2~mk~ T

3/2

exp
2mk~ T we obtain

where X=—(r, p) and p=mv.
The dielectric response function of the OCP is ex-

pressed by G(k, cp) as

5n (k, cu) =ZeX„(k,cp)cp, „,(k, co) .

Here

(13)
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2

. n~(~) k'
1+i

mn

1 dP k
m dn & co

2

U (k)X,p(k, co)
e, (k, co) = 1—

1+U (k)G, (k, co)Y„p(k,co)

where

(15)

(14)

is the density response function in the viscoelastic
formalism, rt~(co)=rt~/(I —icur ), g~ ———, g+g, and

cpz ——[4rrn (Ze) lm] ' . We thus find an isothermal
dielectric response function '2

n kS(k,co)=-
kD

(k)
[G(k) I(k)]—.

1+[ror (k)]

(23)

and e, (k,co)~ e(k, ~), Eq. (5). The DLFC as expressed in
Eq. (22) has a form in which the low-frequency limit
G(k) and the high-frequency limit I(k) are interpolated
through an exponential damping function; ' r (k)
plays the role of the characteristic time distinguishing be-
tween the low- and high-frequency regimes.

For a hydrodynamic mode, where we are concerned
only with low-frequency and long-wavelength excitations,
the first term, unity, on the right-hand side of Eq. (5) is
negligible, since

~

v(k)Xp(k, co)
~

&&1. We thus find the
quasielastic peak in the dynamic structure factor from
Eqs. (5), (6), and (22),

n k
X„p(k,co)=-

m cu

2

(16)
In the limit of r (k)~ oo,

S(k,co)~n (klkD) [G(k) —I(k)]6(co) . (24)

and

k 1 (3P i co
G„(k,co) = ~

1 — + gati(co)
k~T dn ~ nk~T

(17)

This limit thus corresponds to a frozen state' '' in which
the local structure does not vanish even after an infinite
time or the expectation value (5n(k, t)5n*(k, O)) stays fi-
nite for t = ao, these features point to a dynamic transi-
tion to a glassy state.

In the long-wavelength limit we have

1G„(k)~G(k)=1+ 2
1—

k~ S(k)
(18)

In light of the third frequency-moment sum rule' we
may then set

G, (k, ce )~I(k)
with

(19)

1 dq kq k. (k —q) k q2+
n (2~)' q'

~

k q ~

k'

/[1 —S( ~k —q~ )] . (20)

From Eqs. (17)—(19) we obtain

gati(k)/r (k) =nk T(k lk) [G (k) —I (k)] .

Substitution of Eqs. (18) and (21) in Eq. (17) yields

(21)

6 (k) ivor (k)I—(k)
G, (k, cu)~G(k, cp) =

1 —i ewm (k)
(22)

is the DLFC in the viscoelastic formalism. In the ensuing
calculations, we shall ignore g and approximate the longi-
tudinal viscosity rt~= —', g; it has been found ' that g is

negligible compared to g in the OCP.
We now generalize the viscoelastic dielectric function

e, (k, cp) into a finite k and cp regime, so that g~(k) and
(k) are functions of k. First, a straightforward

generalization of the free-particle polarizability,
X„p(k,co)~gp(k, co), Eq. (3), is performed. Noting that
the viscoelastic SLFC G, (k)=G, (k, O) satisfies the
compressibility sum rule, ' we generalize

91
(0) =

nk~ T
1 BP 41— + uex

kg T Bn ~ 15
(25)

from Eq. (21) where u,„refers to the excess internal ener-

gy density divided by nk~T. When the relaxation time is
written as

(k) =r (0)Y(k) (26)

Y'G(k) =exp[ —(ak/gG )'],
and a Lorentzian approximation,

Y, (k) =[I+(ak/g, )']-',

(27)

(28)

where $6 and gt take on values of order unity. The free

with Y(0) =1, Y(k) remains the only function to be deter-
mined.

The viscoelastic relaxation time r (k) has been intro-
duced to remove a certain rigidity inherent in the Navier-
Stokes equation with regard to temporal response of the
internal energy against the viscous motion of the fluid.
Without the relaxation effect, the viscous motion cannot
be made compatible with the third frequency-moment
sum rule or with the quasielastic peak. Let us also recall
the cage effect in dense liquid, ' where a single particle
has a tendency to be trapped by the surrounding particles;
to simulate this effect, we expect the inverse Fourier
transform of r (k) to be a real function in the r space. In
addition, the relaxation time r (k) must be a positive-
definite quantity for reasons of causality and should van-
ish as the size ( —k ') of the fluctuation tends to zero.

Taking the aforementioned conditions into considera-
tion, we adopt two forms for Y(k); a Gaussian approxi-
mation,
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parameters gG and gi are assumed to be independent of I
and are adjusted so that the resulting values of q ap-
propriately reproduce the existing MD results' for
I (100. The computational details for determination of
g shall be described in Sec. V.

In this expression the strong (nonlinear) Coulomb-
coupling effects between density fluctuations which go
beyond the Born approximation have been taken into ac-
count through the DLFC given by Eq. (22). In reference
to Eq. (2) and the Poisson equation

IV. CONVERGENT COLLISION TERM
AND SHEAR VISCOSITY

y(k, co) = 5n (k, co)
u(k)
Ze

(33)

In Sec. III we have derived an expression for G (k, co) in
the framework of the generalized viscoelastic formalism;
the coefficient g of shear viscosity remains to be deter-
mined in the expression. In this section we develop a ki-
netic equation and solve it to obtain an explicit expression
for q in terms of G(k, co). We thus establish a self-
consistent scheme to calculate g and G(k, co) simultane-
ously.

For a description of a nonequilibrium system, we begin
with an exact kinetic equation,

with

5n(k, co) =fdp 5N(k, co;p), (34)

5no(k, co)
5n (k, co) =

e(k, co)

where

(35)

we may regard the spontaneous part 5NO(k, co;p) as a sort
of external field in Eqs. (31) and (32).

From Eqs. (31)—(33) we express 5n (k, co) as

BF 8F v BF BF+v. +Ze F+ —QB
Bt Br c Bp Bt

(29)
e(k, co) = 1 —v(k)[1 —G (k, co)]go(k, co) (36)

~here the collision term for the system of charged parti-
cles is expressed as

5no(k, co)= fdp5NO(k, co;p) . (37)

Substituting Eqs. (31)—(33}in Eq. (30) and noting that ' o

BF . dk
iZe f — f dcok (5N@*(k,co;p)) .

(2~)' c}p
(5NO(k, co;p)6no (k, co) ) =F(p)5(co —k v), (38)

(30) we finally obtain

Here 5N (k, co;p) and p(k, co) refer to the microscopic den-

sity fluctuations and the potential fluctuations, respective-

ly; the angular brackets denote the spectral function.
We may separate 5N(k, co;p) into two parts: the spon-

taneous fluctuations and the induced fluctuations, as

5N(k, co;p) =5No(k, co;p)+5N, (k, co;p) . (31)

Extending the idea of the static polarization-potential
model of density fluctuations ' to the dynamic case,
we may express the induced part as

5N, (k, co;p) = —Zek ' [1—G(k, co)] .c}F &p(k, co)

Bp co —k v+i 0

with

aF
at

=C~+C~

c) fd, v(k) [1—ReG(k, k.v)]
(2~) c)p

~
e(k, k v}

~

x 5(k v —k v'}k. a
Bp

x F(p)F(p')

(39)

(40)

(32) and

C —f d
k fd '[u(k)]P Im 'kv k. ~ +™~'k

k F( )F( ') (41)

where P stands for the principal part.
The collision term consists of two separate contribu-

tions Cz and CI, arising from the imaginary parts of
(co —k.v+i0) ' and G(k, co), respectively. If we set
G (k, co) =0, Eq. (39) reduces to the Balescu-Guernsey-
Lenard collision term. Since the DLFC, Eq. (22), ap-
proaches unity in the limit of large k and at any finite co,
the k integrations in Eqs. (40) and (41) are convergent in
the large-k domain; in the small-k domain they are like-

wise convergent owing to the dielectric screening. The
collision term Eq. (39) thus unifies the treatments of the
long- and short-range Coulomb collisions automatically. '

It can be proved that the particle number and the mean
momentum are conserved in this kinetic equation; by its
construction the internal energy is also conserved. Be-
cause the present collision term takes account of the fre-
quency dependence in the loca1-field correction, which
was neglected in the static approximation of the earlier
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theory, ' it is applicable not only to the weakly coupled
plasmas but also to those strongly coupled plasmas where
the interparticle correlations play an essential part.

For the calculation of the coefficient of shear viscosity

g, we follow the procedure described in Ref. 31. We con-
sider a stationary plasma with a flow velocity u(z), a
function of z alone, in the direction of the x axis; the col-
lision term (39) thus becomes a function of the peculiar
velocity w=v —u(z). The solution to the kinetic equation
is now expressed in a form that the inverse 1/q of the
shear viscosity is written as a sum of the contributions
arising from CR and

with coo=(k&T/m)' /a. Here we have introduced a di-
mensionless shear viscosity' via

g*=g/rnn~ a (44)

k w, +k,w„=0,
(k„w, +k, w„) =k w (3+cos a)/15,

(45)

(46)

(k„w, +k,w„)(k„w,'+k, w„') =—„k ww'cosa cosa',

To obtain an expression for 1/gl, we make use of the
formulas

1 1 1+
I IR II

(42)
and

(47)

1

gR

12~3
5a

The term 1/gz is calculated in the same way as that
described in Ref. 31. The result is

(k w, +k, w„)(w„w, +w„'w,')

=—
30 kw cos(a) [w (4 cos a+ 3 sin~a)

+2w' (2 cos a' —sin a')], (48)

1 —ReG (x /a, cooxz)
dz exp( —z )

~

elx/a, cooxz)
~

(43)

where the upper bar and a (or a') denote the angular
averaging with respect to the rotation of the xyz coordi-
nate system and the angle between k and w (or w'),
respectively. We thus find

, r'" f"" f" dy f" dz
5~ 0 X —oo —oo y —Z

ImG (x/a, cooxy) ImG (x /a, cooxz)
(2z —2yz +3) —(2y —2yz +3)

E(x/a, ~~y)
I

'
~

e(x/a, cooxz)
~

y +z
Q exp

2
(49)

The expression for G(k, ru) as expressed in Eqs. (22)
and (25) contains r). Hence Eq. (42) together with Eqs.
(43) and (49) constitutes a self-consistent equation for rI.
Once the static correlation functions and the equation of
state for the OCP are given, g and G(k, co) can be deter-
mined simultaneously through a solution to Eq. (42).

V. DYNAMIC PROPERTIES

In this section we carry out numerical calculations of
the shear viscosity, the self-diffusion coefficient, and the
dynamic structure factor for the strongly coupled OCP,
both in the ordinary fluid phase (I &1 ) and in the su-
percooled fluid phase ( I & I ), on the basis of the
dynamic theory developed in the preceding sections. We
thereby explore the possibility of a dynamic glass transi-
tion in the OCP through the variation of g*. In the cal-
culations we use the functional values of the static struc-
ture factors obtained in the IHNC scheme, and the equa-
tion of state derived through extrapolation of the fluid-
state formula due to Slattery, Doolen, and DeWitt.

time r (k), Eq. (26). The free parameter has been chosen
at (G=2.7, so that the computed results of g* closely
reproduce the MD values' for I &100. In Table I we
list the values of g* computed with gG

——2.6, 2.7, and 2.8
at I =1, 10, and 100, together with the MD results. We
remark that the calculated values of g* appear to be sensi-
tive quantitatively to the choice of gG for I ) 100. The
calculation scheme in the Gaussian approximation with
g'G ——2.7 is hereafter referred to as scheme I.

In the static approximation to the local-field correction,
G (k, co)=G(k), no free parameters are involved in the cal-
culations of g*. We found in Ref. 31 that the results of
the static approximation showed a fair agreement with the
theoretical values of Vieillefosse and Hansen and of
Wallenborn and Baus as well as the MD values for

TABLE I. Values of g* calculated in the Gaussian approxi-
mation, Eq. (27), with gG

——2.6, 2.7, and 2.8. The MD values are
taken from Ref. 5.

A. Shear viscosity

In solving Eqs. (42), (43), and (49) for g* iteratively, we
first adopt the Gaussian form, Eq. (27), for the relaxation

1

10
100

MD

1.040+0.21
0.085+0.017
0.18 +0.03

gG
——2.6

1 ~ 14
0.0639
0.265

gG =2.7
1.12
0.0614
0.210

g'G —2.8

1.10
0.0590
0.170
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TABLE II. The reduced shear viscosity g* calculated in
scheme I. IHNC refers to the calculations in which the static
structure factors are computed in the IHNC scheme; HNC, in
the HNC scheme; WB, the values based on the formula pro-
posed by Wallenborn and Baus (Ref. 33j.

160
200
300
400
500
600
700
800
900

1000
1200
1300
1320
1350
1400
1500
1600
1700
1800

IHNC

0.303
0.352
0.456
0.553
0.691
0.873
1.17
1.81
5.89

15.8

HNC

0.279

0.385

0.798
1.24
1.88
5.00

15.6
19.7
26.2
31.9
37.2
42. 1

WB

0.287
0.338
0.489
0.673
0.937
1.26
1.69
2.27
3.10
4.32

I (20. We also observed a small but systematic overes-
timation of g* as compared with those theoretical or MD
values and a divergence of g value to infinity at I =30 in
the static approximation; these difficulties have been
erased in the present calculation due to the inclusion of
the frequency dependence and in particular the imaginary
part of the local-field correction G(k, cu). In the weak-
coupling limit (I «1), however, both the values in the
DLFC and SLFC schemes asymptotically approach those
values obtained on the basis of the Landau and the
Balescu-Guernsey-Lenard collision terms.

To investigate the variation of g* in the supercooled
phase, we have calculated the values of g* in scheme I for
I & 160; the results are shown in Table II and Fig. 4. For
comparison we also exhibit in the table the values of g*
obtained by using the static structure factor calculated in

B. Self-diffusion coefficient

Although the information on the single-particle
motions is in general necessary ' ' for a calculation of
the self-diffusion coefficient D, we here undertake its
evaluation without that information by evoking the
correspondence between a strongly coupled OCP and a
HS system. On the basis of the Gibbs-Bogoliubov ine-
qualities for the free energy, DeWitt and Rosenfeld per-
formed a variational calculation of the equation of state
for the OCP in which the HS system with radius p was
chosen as a reference system; they thereby found a
correspondence applicable for I ~~ 1,

p [1+2(p/a)']
[1—(p/a) ]

(50)

The OCP system with a given value of I" may thus be
looked upon as an effective HS system with a packing
fraction (p/a) determined via Eq. (50). The reduced
self-diffusion coefficient is then calculated from p* by
evoking the Stokes-Einstein relation ' as

2
co&a

2

27(p/a) I g*
(51)

the HNC approximation' and those computed on the
basis of the formula proposed by Wallenborn and Baus
(WB). Apparently we observe in Fig. 4 a steep rise in the
values of g* at I =800—1000 by a factor of approximate-
ly 10 in the present calculation.

Although the solution g' itself is quite sensitive quanti-
tatively to the forms of Y(k) and S(k), the qualitative
features that the value of g* increases steeply at around
I =1000 appears to be invariable regardless of the compu-
tational details. We thus interpret that steep rise of g* at
I =800—1000 observed in Fig. 4 as indication of a
dynamic glass transition in the OCP system; this point
will be elucidated in the analyses of the dynamic proper-
ties in the following. We also remark that the features of
the glass transition in the present theory may not be ex-
actly the same as those in the simplified model proposed
by Leutheusser et al. ,

' ' where it was shown that the
state with diverging viscosity and vanishing diffusivity
could be obtained mathematically.

10-

0.1—

0.1

~ PRESENT
+ WB

MD

10 '100 1000

Equations (50) and (51) connect g* computed in the
preceding section with D* in the strong-coupling regime.
We plot in Fig. 5 the values of D' calculated on the basis
of scheme I. For comparison we also show in the figure
the extrapolation of the fitting formula, D*=2.95I
which was obtained on the basis of the MD simulation
data at I (152.4. The present evaluations show a fairly
good agreement with the MD results for I (100. In the
supercooled domain, however, the calculated values gra-
dually deviate from the extrapolated line of the MD data.
As one would expect, the values of D steeply decrease at
I =800—1000 in the present calculation.

FIG. 4. Reduced shear viscosity g calculated in various
schemes. Solid circles refer to the results in scheme I; crosses,
the calculation by Wallenborn and Baus (Ref. 33); open circles,
the MD result (Ref. 5).

C. Dynamic structure factor

Once the shear viscosity g and the relaxation time
(k) are obtained, we can calculate the dynamic correla-
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0.06—
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1 =160
ak= 1.8562—

10 ~ PRESENT—-- MD (extrapolated) ~

0.04—

0.03—
0.02—

0.01—

100
I I I s i s I

1000 0.5 1.0 ~/Lo 1.5
P

FIG. 5. Reduced self-diffusion coefficient D =D/co~a cal-
culated in scheme I (solid circles). The dashed line refers to the
extrapolation of the fitting formula obtained by the MD simula-
tion (Ref. 4).

tion functions G (k,co), e(k, co), and S(k,co) through Eqs.
(22), (5), and (6). In order to examine the accuracy of the
present dynamic theory, we first compare in Figs. 6—9 the
calculated values of S(k,co) at I =160 with the MD
simulation data at I =152.4. As a whole, the present re-
sults reproduce the MD data as well as other theoretical
calculations ' despite the relatively simple structure
adopted for G(k, co). We remark that in the static ap-
proximation, G(k, co)=G (k), one cannot draw the figures
for S (k, co ) in the long-wavelength regime (e.g. , at
ak=0.875 and 1.8562) because of the 5-function-like peak
of the plasmon; the present dynamic calculations can well
describe the collisional broadening of the plasmon line
quantitatively.

We next exhibit in Fig. 10 the results for S(k,co) in the
scheme I at I =500 and 1000. As the value of g* in-
creases, the central peak (at co=0) of S(k,co) is enhanced
remarkably. To see the steep growth in the quasielastic
peak of S(k,co) as the glassy state is approached, we de-

pict in Fig. 11 the variations of S(k,O) at various values

FIG. 7. Same as Fig. 6, but for ak= 1.8562.

G, (k) icos (k)I (k)—
G„(k,co) =

1 —icos k
(52)

with

G„(k)= 1+ ~
— 1+ ~

—G (k) /&A (k)
kD kD

(53)

of I . The maximum value (at ak=4. 3) of (co~in)S(k, O)

at I = 1000 is about one thousand times as large as that at
r =160.

In Table III we list the plasmon dispersion relation ob-
tained in the calculations of S(k,co) at I =160, 500, and
1000. We observe in the table the negative dispersion
analogous to that found in the MD simulation in the
strong-coupling regime.

The kinetic theory developed in Sec. IV has adopted an
approximate truncation scheme, Eq. (32), in the derivation
of the collision term, Eqs. (39)—(41). As will be investi-
gated in the Appendix, however, such a truncation pro-
cedure has room for a further improvement. We may
thus adopt an alternative truncation scheme in which
G (k, co) in Eq. (32) is replaced by a renormalized function,
G„(k,co), as

0.04—

0.03—

I'=16o
8&=0.875 0.25—

~8[&,~)
0.20

I =160
R.= 3.0937

0.02— 0.15

0.01— 0.10 -SLFC

0
0.7 0.8 0.9 1.0 1.1 ~y( 1.2 0.05

FIG. 6. Normalized dynamic structure factors (su~ in)S(k, co)

at I = 160 for ak=0.875. I refers to the calculation in scheme I
[Gaussian approximation for I'(k) with gG =2.7 and
q*=0.303]; II, in scheme II [Lorentzian approximation for
Y'(k) with gG =1.25 and g =0.281]. Solid circles represent the
results of the MD simulation at I = 152.4 (Ref. 4).

0 0.5 1.0 4/Lo 1.5
P

FIG. 8. Same as Fig. 6, but for ak=3.0937. SLFC refers to
the result in the static approximation for the local-field correc-
tion, G(k, co)=G(k).
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I'=iso
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1.0 ~/~ 1.5
P

se'-
1e—
1

10—
10—

01 234 567

FIG. 9. Same as Fig. 8, but for ak=6. 187.
FIG. 11. Values of (~~/n)S(k, 0) as functions of the wave

number at various values of I obtained in scheme I.

and
1/2

A (k) =1+ — cour (k)[G(k) —I(k)] . (54)
kD

Noting also that the Gaussian approximation, Eq. (27),
for Y(k) has a tendency of overemphasizing the k depen-
dence (compare between Figs. 8 and 9), we have recalcu-
lated q and S(k,co) on the basis of Eq. (52) coupled with
the Lorentzian approximation, Eq. (28), for Y(k) with

gL ——1.25; this calculation scheme is referred to as scheme
II. At I =160, we find g*=0.281; the results for S(k, co)
are exhibited in Figs. 6—9 as curves II. We observe in the
figures that curves II reproduce the MD results more
closely than curves I in the large-k regime.

R;„(r)=2k' T (rla) —(p~ —pc)(rla) (55)

where T and p~ —p~ denote the melting temperature
and the free-energy difference per particle between the
fluid and crystalline phases. Maximizing R;„(r) with
respect to r, we have the critical radius of nucleation'

nucleation and thereby investigate a relevance of the
present theory to laboratory experiments. ' "

The probability of homogeneous nucleation of crystals
with radius r is proportional to exp[ —R;„(r)lk~T],
where R;„(r) is the minimum work needed to form the
nucleus. Following Turnbull, ' we may assume that
R;„(r) can be expressed as a sum of the surface and bulk
terms,

VI. POSSIBILITY OF REALIZING
AN AMORPHOUS GLASSY STATE

4 k&T

3 pI; —pc
(56)

For a realization of the glassy OCP investigated in the
preceding sections, a sufficiently rapid quench must be
applied to such a plasma, overcoming the nucleation of
crystals in the supercooled liquids. In this section we esti-
mate the lifetime of the metastable supercooled state
based on a standard statistical model ' ' of homogeneous

and the minimum work at r„,
k&TR min(rcr ) 32

kz T 27 pF —pc

2 3

(57)

The diffusion time tD for a particle to travel over a dis-
tance r,„and the mean nucleation time trav to form crys-
tals are then estimated as

0.03—
"'S(1, )

I =soo-
ak= ~.ss62 and

2
~cr

cu& tD ——cu& D

2

(58)

0.02—

-I'=oooo

R min( rcr )

m& t~ ——m& tDexp
k~T

(59)

0.0$—
TABLE III. The plasmon-dispersion relation, co/co~ as a

function of ak at I = 160, 500, and 1000 obtained in scheme I.

0
I

0.5 g.o uy 1.5

FIG. 10. Normalized dynamic structure factors at I =500
and 1000 for ak = 1.8562 calculated in scheme I.

ak

0.875
1.8562
3.0937

I =160

0.97
0.87
0.59

r =500

0.97
0.87
0.61

I =1000

0.97
0.86
0.62
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We have calculated the free energy p~ in the crystalline
phase from the formula obtained by Slattery, Doolen, and
DeWitt. The free energy pF in the supercooled fluid
state, 200 & I & 1000, has been calculated in two ways, by
extrapolating the formula of Slattery et al. and by actu-
ally performing for I )200 the coupling-constant integra-
tion of the IHNC interaction energies; the results are list-
ed in Table IV.

In Fig. 12 we plot the computed values of the diffusion
time and the nucleation time as functions of I . We ob-
serve large discrepancies between the solid curves (the
IHNC results) and the dashed curves (extrapolation of the
MC fluid formula), despite the fact that the free-energy
differences have been confined to within 0.15%. To close
those gaps, extremely accurate equations of state for both
the supercooled fluid and crystalline OCP's would have to
be derived, which would call for further developments in
the computer-simulation work and the analytic theory.
We may nevertheless conclude from Fig. 12 that ~~tz
takes on a minimum value somewhere between 10 and
10' at I =400. If the system is quenched faster than the
minimum value of coztz down to I =1000, we may be
able to realize a glassy OCP.

Recently, Bollinger and Wineland" have produced
Penning-trapped, strongly coupled (I =5—10) ion plasma
by using the laser-cooling technique; they were able to
maintain them stably for many hours. The theoretical
limit of the I value has been estimated to be about 10 for
a Be+ plasma. Their plasma appears to be a candidate of
the OCP glass because of the relative smallness of the
plasma frequency, which is co& —4.4 &( 10 ( n /10'o

In this paper we have developed a new kinetic theory of
dynamic correlations for a strongly coupled, classical
OCP within the generalized viscoelastic formalism; the
coefficient of shear viscosity g and the dynamic structure
factor S(k,co) have been calculated self-consistently, with
the results reproducing the existing MD data for I & I
satisfactorily. An application of the theory to the plasmas
in the supercooled fluid state (I ~ 1 ) has led us to
predict steep variations of g, S(k,co), and D at I =1000,
which we interpret as indications of a dynamic glass tran-
sition in the OCP. The transition point appears to be de-
finitely greater than that ( I =300—400) predicted through
analyses of the structural changes in the static correlation
functions. We have finally investigated the possibility of
realizing a glassy state in the OCP by evaluating the life-
time of a metastable fluid state against a homogeneous
nucleation of crystals.

To determine a glass-transition point in the HS system
with radius p numerically, Bengtzelius, Gotze, and
Sjolander' (BGS) derived a closed nonlinear equation for

f (k) = lim [(5n (k, t)6n*(k, 0) ) /nS(k)] (60)

on the basis of a mode-coupling theory; it reads

cm )'~ s ' for Be+ plasmas. The minimum value of
tv in Fig. 12 then takes on 2X(10—10 ) s at n =10'
cm . If the cooling can be administered sufficiently fast
to overcome the minimum value of tz, then a highly
viscous glassy OCP may be realized in the laboratory.

VIII. CONCLUDING REMARKS AND DISCUSSION

2 )2

1 —f (k) ger'k 3 f dq q f dl I q [c(q)—c(l)]+—[c(q)+c(l)] S(k)S(1)f(q)f (I),
l~ —kl 2k 2

where c(k)=[S(k)—I]/nS(k) is the Fourier transform
of the direct correlation function. If the system is in the
glassy state, Eq. (61) should have a nonvanishing solution
of f(k) besides a trivial solution f(k)=0. Using the
Wertheim-Thiele solution for S(k), they found a transi-
tion point (p/a) =0.516, which appears to be consistent

I
I

1
g

l r

10

10

TABLE IV. Values of the free-energy density in units of
nk&T obtained by the IHNC calculation or from the fitting for-
mula of Slattery et al. based on the MC simulation (Ref. 3).

1015
10

Liquid
(IHNC)

Liquid
(MC)

Solid
(MC)

1010
—,10

200
300
400
500
600
700
800
900

1000

—157.173
—244.387
—332.198
—420.354
—508.744
—597.302
—685.974
—774.709
—863.432

—157.173
—244.517
—332.471
—420.773
—509.303
—597.996
—686.810
—775.718
—864.703

—157.269
—245.015
—333.306
—421.891
—510.661
—599.559
—688.551
—777.631
—866.731

I I I L I I I

200 500 P 1000

FIG. 12. Reduced diffusion time ~ptD and the reduced nu-
cleation time co~t~. The solid curve refers to the results based
on the IHNC free energies; the dashed curves, extrapolation of
the fluid formula due to Slattery et a1. (Ref. 3).
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with the computer-simulation values, ' 0.52 or 0.56.
Since the solutions to Eq. (61) are determined only with

the knowledge of S(k), we may test their theory in the
case of OCP as well. We started the iterative calculations
at I =1000 with the initial values of f(k)=1; the ob-
tained solutions f (k) were then used as initial values for
the iterations at lower values of I . We have thus found
nonvanishing solutions of f (k) for 400& I (1000, two of
which are exhibited in Fig. 13. At I =300, however, we
have found that the solution crushes to f (k) =0; the BGS
theory thus predicts that the glass transition takes place
somewhere between I =300 and 400 in the OCP system;
the critical value of I is thus smaller substantially than
that in the present theory.

In order to obtain more definite predictions on the
dynamic properties of the supercooled OCP, further
developments in the computer-simulation work and the
analytic theory are necessary. The present theoretical esti-
mates may provide a useful guide to design a MD simula-
tion experiment for a glass transition in an OCP system,
in a way analogous to one performed recently in a metal-
lic system.
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FIG. 13. Values of f(k) obtained as solutions to Eq. (61) at

I =400 and 500.

is the dynamic structure factor in the ideal-gas limit. In
light of Eqs. (5), (6), and (A3), we find an equation for
G, (k, co ),

1

/
e, (k, tv)

/

'

1 —v (k)ImG (k, cv)
~

Xo(k, co)
~

/Imago(k, cv)
(A5)

[E(k,cv)
i

'
The complex function G„(k,co) is to be so determined that
both Eq. (A5) and the Kramers-Kronig relations be sa-
tisfied.

If the second term in the numerator on the right-hand
side of Eq. (A5) is negligible, we have

G„(k,co) =G(k, tv), (A6)

APPENDIX: RENORMALIZATION OF STATIC
LOCAL-FIELD CORRECTION

5no(k, co)
on (k, cu) =

e„(k,~)

where

(Al)

We first replace G(k, tv) in Eq. (32) by a "renormal-
ized" quantity, G„(k,co). Instead of Eq. (35) we then have

the approximation adopted in Sec. IV. When both I and
g* become large, however, we cannot ignore that term,
especially in the low-frequency regime. Taking the limit
of co~0, we find from Eq. (A5) such an expression for
G„(k)=—G„(k,O) as Eq. (53). We may thus regard Eq. (53)
as a renormalized expression for the SLFC.

Since A (k), Eq. (54), has properties, A (k) ) 1 and
A (0)=A(oo )=1, we find

e„(k,co) = 1 —v (k)[1—G„(k,tv)]go(k, co) . (A2)
G„(k))G(k),

G„(0)= G (0)=0 .

(A7)

(A8)
Multiplying both sides of Eq. (A1) by their complex con-
jugates and ensemble averaging the resulting equation in
the equilibrium state, we obtain

and

G„( ce ) = G ( m& ) = 1 . (A9)

So(k, co)
S(k, cu) =

/

e„(k,cv)
i

where

n m
Sp(k, co) =—

(A3)

(A4)

The function 3 (k) thus enhances the values of the SLFC
in the intermediate-wave-number regime. In the static ap-
proximation, ' G(k, co)=G(k), one need not renormalize
the SLFC because r (k) =0. In the dynamic case, we ob-
tain the renormalized DLFC G„(k,co) simply by replacing
G(k) with G, (k) in Eq. (22); the Kramers-Kronig rela-
tions for G„(k,tv) are then satisfied automatically.
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