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Some properties of an eight-mode Lorenz model for convection in binary fluids
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We examine a number of static and dynamic properties of an eight-mode model for convection
in binary mixtures proposed recently by Cross [Phys. Lett. (to be published)). We find that the
model allows richer dynamics than is observed in experiments. We also find differences between
the bifurcations and fixed points of the eight-mode model and the five-mode model proposed ear-
lier by Veronis [J. Mar. Res. 23, 1 (1965)]. The effect of nonlinearities on the transient dynamics
is similar to recent experimental observations. The bifurcations, fixed points, and dynamics are
influenced significantly by the addition of an inhomogeneous "field' term to the model.

Convection in a thin horizontal layer of a binary mix-
ture heated from below has aroused renewed interest re-
cently both among theorists' and experimentalists. The
origin of this activity may be found in perceived opportuni-
ties to observe interesting dynamics near a Hopf bifurca-
tion, particularly near a codimension-two point where this
bifurcation collides with a stationary bifurcation. '
Veronis'o introduced a Lorenz-like five-mode model for
the amplitudes of the lowest Fourier component~ of the
solutions to the equations of motion of a thermohaline sys-
tem. For certain parameter ranges this model yields a
Hopf bifurcation to standing waves (SW) in the convective
flow. It has been used by several authors "to study the
properties of this system. However, it is known from vari-
ous theoretical analyses' that standing waves in this case
are unstable with respect to traveling-wave (TW) tran-
sients. The instability or nonexistence of the limit cycle
corresponding to SW states was indeed revealed recently
by experiments, ' which were unable to detect stable oscil-
lations near the codimension-two point in spite of a careful
search. ' Other experimental work ' has demonstrated
the existence of interesting long-lived transients, consisting
of the superposition of two TW's moving in opposite direc-
tions, which experience no nonlinear saturation, even very
near the Hopf bifurcation, until rather large amplitudes
are reached. These various experimental and theoretical
results provoked Cross to propose a simple extension of the
model of Veronis to eight modes. ' This extended model
permits TW transients, and its dynamics has a number of
common features with experimental results.

We reexamined the eight-mode model, and found the
following.

(1) The Hopf bifurcation, although it occurs at the
same parameter values as that of the five-mode model,
differs in that four complex eigenvalues (two identical
complex-conjugate pairs) cross the imaginary axis rather
than two. An inhomogeneous constant "field" term g,
representing experimental imperfections, will, in general,
remove this degeneracy.

(2) Beyond the Hopf bifurcation, the eight-mode model
permits' TW transients, but also the evolution of SW
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states, or of modulated-traveling-wave (MTW) transients
which may be regarded as superpositions, in proportions
determined by the initial conditions, of pure TW and SW
transients. The nature of the transients is also influenced

by(
(3) Random initial conditions will, in general, yield

MTW transients. If the eight-mode model is relevant to
the unique transients seen in experiments, then these tran-
sients must be selected from among all the allowed ones by
conditions which are beyond the scope of the model, e.g. ,
the lateral boundaries. '

(4) When the nonlinearities become important during
the approach toward the nonlinear fixed point, the model
does select pure TW transients. During that phase of the
dynamics the frequency drops quite rapidly, typically by a
factor of 2 or 3. This sudden decrease in frequency, ac-
companied by the formation of pure right- or left-traveling
waves, recently has been observed in experiments. '

(S) The nonlinear fixed point differs from that of the
five-mode model in that it involves a common arbitrary
phase p of three variable pairs. A finite g uniquely selects
a particular phase.

(6) For g =0, the nonlinear fixed point becomes unsta-
ble upon decreasing the Rayleigh number R, as a real
eigenvalue describing the growth rate of the phase velocity

p becomes positive. A finite ( stabilizes the fixed point.
The models of Veronis' and Cross' are based on

permeable, free-slip horizontal boundary conditions.
Analogous five- and eight-mode models derived's fo™
permeable boundaries yield partly similar results. We
therefore pursue. here the free-slip, permeable eight-mode
model, which we prefer to write in the form'9
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—(RP/zv 2) VJ2 sin2xz . (2c)

The Nusselt number is given by N =1+2Z/r. We have
scaled length by the cell height d, time by d /x where x is
the thermal diffusivity, temperature by vx/plgd, and con-
centration by vx/P2gd . Here v is the kinematic viscosity,
g the gravitational acceleration, pl the thermal expansion
coefficient at constant concentration, and P2 the solutal ex-
pansion coefficient at constant temperature.

The pure conduction state of a fluid layer with free-slip,
permeable boundary conditions loses stability via a Hopf
bifurcation at' '

r, p
= (1+L)(1+L+o+L/cr)/(1+ cr+ ay), (3)

provided

y & ylw;
= —(1+o') (1+cr+ L + o/L + o//L )

At r,0, the Hopf frequency is given by

zp, cpp[ —y(1+L)(cr+L)/(1+o+olif) L']'i'—
For g =0 these properties are reproduced by the eight-
mode and by the five-mode model. Since the fluid layer
considered here is invariant under arbitrary translation in
the x direction and reflection at the plane x =0, the center
manifold of the Hopf bifurcation is four-dimensional with
four complex-conjugate eigenvalues crossing the imagi-
nary axis in the form of two identical pairs. This is the
case in the eight-mode model. In the five-mode model
there is only one such pair since the dimension of the
center manifold was reduced by a factor of 2 by ignoring
the modes X2, Y2, and U2. For gaO the Hopf bifurcation
remains sharp but rc0 is reduced. The degeneracy of the
eigenvalues is removed such that near rc0 the eight-mode
model has t~o distinct frequencies with corresponding
growth rates close to zero.

where X=Xl+iXp, Y=Yl+iY2, U =Ul+iU2, and
=(l+i(2 I.n Eq. (la) we have added a constant forcing
field og. The parameters are the Prandtl number o, the
Lewis number L, the separation ratio lif,

' and the reduced
Rayleigh number r =R/Rp (R,p =27m /4 is the critical
Rayleigh number at y=O). With free-slip, permeable
horizontal boundaries the critical wave number for all y is
k, =x/J2. For k k, one has q, 3x/2, zp 1/q, , and
b =4m zp. Setting $=0=Xz= Y2=U2 yields the five-
mode model which after rescaling variables and parame-
ters can be brought into the form of Veronis. ' In terms of
our variables, however, the z component ~ of the velocity
field v is given by

w =q, (Xe '"'"+c.c.)J2sinxz . (2a)

The deviations 8 and c from the pure-conduction tempera-
ture and concentration profiles are

8= (R,P/q, )(Ye ' '"+c.c.)J2sinxz

—(R,P/m J2)Zv 2sin2xz,

and

c =(R, /q, )(Ue ' '"+c.c.)J2sinnz

The fixed points of (1) are given by

N, N, ((X('+a (X )'+P)X=g,
V =rW)X,

U =re (1+L)NlNzX,

Z=rN, /Xf',
V =ryNlNz(l+L+L + iX [ ) iX [

(6a)

(6b)

(6c)

(6e)

with Nl =(1+ )X ( ) ' N2=(L + (X ( ) ' a=1
+L —r, and P=L (1 r) —ry—L(l+L). According to
(6b) and (6c) the complex fixed-point solutions X,Y,U all
have the same phase p. This phase is arbitrary for (=0
[cf. (6a)1. Thus, Eq. (1) is invariant under simultaneous
phase changes of X,Y,U reflecting the invariance of the
convective pattern Eq. (2) as a whole against translations
along the x axis. Consequently, there is a continuous fam-
ily of fixed points labeled by p such that X,Y,U lie on con-
centric circles in the complex plane with

~
X

~
given by the

positive roots of the bracket in (6a). The special cases
&=0 and p=x yield the fixed points of the five-mode
model. Without symmetry-breaking imperfections (g
=0), initial conditions determine the final p, i.e., the rela-
tive position of the stationary convective structure after
T%' transients have decayed. Because of the above invari-
ances the approach to the final stationary state is very slow
as illustrated in Fig. 3 of Ref. 15. For g & 0, p is fixed by
the phase of g and the slow transients are truncated. Thus,
we do not expect them to be related to the experimentally
observed traveling waves in the nonlinear state.

For y& y~ and /=0, the pure conduction state loses
stability at

r„=[1+y(1+ I/L)] (7)

when a pair of degenerate real eigenvalues becomes posi-
tive. ' ' For

ly & le = —(1+L '+L +L )

this bifurcation is backwards, and for larger y it is forward
into the fixed points given by Eqs. (6) with (=0. For
y & y„ there is a saddle node at

r, = 1 L —2L (1+L—)y+ 2 (I +L )L (liI + y —y/L ) '

(9)
For the five-mode model, the upper stationary convecting
branch is stable for all r &r„and ceases to exist for
r & r, . As pointed out by Cross, '5 this situation is changed
in the eight-mode model where for y& y~ and g =0 the
convecting branch is stable only for r & r'= rc0 & r, .
Within our numerical accuracy of 10 one of two real
eigenvalues becomes positive at r' =r,0 while the other one
remains zero because of rotational invariance. For r & r'
the positive eigenvalue equals jap. Thus, there is an ac-
celeration of the phase, starting near the fixed point p =0,
and a TW, e.g. , ~

X
~
cos[kx —p(t )], begins to develop by

an increase of its frequency (or velocity) from a vanishing-
ly small initial value. For (& 0, the two real eigenvalues
form a complex-conjugate pair. Thus, a finite-frequency
instability occurs. The convecting branch is stabilized, i.e.,
~ &~co
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FIG. 1. The evolution of Z, on a logarithmic scale, as a func-
tion of time on a linear scale, for an MTW transient. The pa-
rameter values are r 1.35, y —0.25, cr=5, g =0, and
L =0.01. The overall exponential growth, and the oscillations
which do not reach Z =0, are characteristic of MTW transients
in the linear region. The smooth, nonoscillatory evolution at
large t illustrates the selection of TW transients by the nonlinear
terms.
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For r ) r,o, the small-amplitude dynamics of Eqs. (1)
are easily understood when the nonlinearities are unimpor-
tant. In that case Xt, Yt, and Ut are uncoupled from A'2,

Y2, and U2. Then the nature of the transients is deter-
mined by the initial phases and amplitudes and does not
evolve in time. For example, a MT%' transient maintains
its initial proportion of SW and TW until nonlinear terms
become important. We illustrate this in Fig. 1, where
Z (t ) is shown for arbitrarily chosen initial conditions. As
pointed out by Cross, 's Z would evolve smoothly without
oscillations for TW transients (A'-e("+' )'). For SW
transients [X-e"'cos(rot )];however, Z would oscillate as
cos (rot) with frequency 2' and vanish periodically. The
case in Fig. 1 is clearly an intermediate one. There is
overall exponential growth, oscillation with frequency 2',
but the oscillation amplitude is too small for Z to ever
vanish.

When the nonlinear terms become important, the dy-
namics changes dramatically. It is apparent from Fig. 1

that Z becomes nonoscillatory while A; Y, and U still oscil-
late in a way characteristic of TW (A —e' '). Further-
more, as Z changes from oscillatory to smooth behavior,
the oscillation frequency of A'drops, as can be seen in Figs.
2(a) and 2(b). The frequency evolution is illustrated in

Fig. 2(c). During the initial linear MTW transient, the
phase velocity p and ~A'l are modulated at a frequency
2'. In the nonlinear TW region, Z and )A'l evolve
smoothly, p is nonoscillatory, smaller than its average
value in the linear region by a factor of 2 or 3, and equal to
the frequency ro of A' observable in Fig. 2(a). The long-
time evolution of p, illustrated by Fig. 3 of Ref. 15, is an
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exponential decay on a time scale which is long compared
to that of Fig. 2. The selection of pure TW's and the rath-
er sudden decrease in co by a factor of 2 or so at the time
when the nonlinearities become important in the tran-
sients, 'has been observed in detail recently in experiments
on alcohol-water mixtures. '
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FIG. 2. (a) The time evolution of A'~, on linear scales, in the
region of transition from linear to nonlinear behavior. The pa-
rameters are as for Fig. 1. The oscillations of X~ are at a fre-
quency co, and co decreases by a factor of 2 or so as the nonlinear
region is entered near the right. (b) The time evolution as in (a),
but for Z' . For small t, Z oscillates with frequency 2'. As the
norilinear region is entered, Z ceases to oscillate, while X contin-
ues to oscillate. (c) The time evolution, as in (a) and (b), but for
the time derivative p of the phase p of X. In the linear region p is
modulated with frequency 2'. This modulation is characteristic
of MTW transients. In the nonlinear region a TW transient is
selected in which ~X(t )

~
and co(t ) =p(t) evolve smoothly

without oscillations.
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