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Pulses from Nd:YAG lasers (where YAG represents yttrium aluminum garnet) were amplified up
to 20 times by noncollinear mixing with a coherent pump wave in silicon. Amplification of long
pulses (about 16 ns) was obtained with intersection angles up to 2° whereas angles larger than 10° are
possible with short pulses (50 ps). The effect is theoretically described by self-diffraction at a laser-

induced dynamic free-carrier grating.

INTRODUCTION AND SURVEY
OF PREVIOUS WORK

Light amplification by coherent two-wave mixing has
been investigated in a number of different materials as re-
viewed, e.g., in Refs. 1 and 2. The amplification is due to
energy transfer from a strong pump beam to a weak non-
collinear signal beam. This two-wave-mixing process can
be explained by formation of a light-induced refractive-
index grating which diffracts the pump into the direction
of the signal beam. The effect is useful for construction
of self-pumped phase-conjugating reflectors and potential-
ly also for low noise image amplification.??

High two-wave-mixing gains up to 10* are possible in
photorefractive materials, e.g., BaTiO; and KNbDO;.
However, the laser-induced refractive-index gratings in
these materials have rather long buildup and decay times
of about 1 ms (Ref. 4), so that only amplification of sig-
nals with a slow time variation seems possible. Faster
response is expected for semiconductors, e.g., Si (Refs. 5
and 6), CdS, CdSe, ZnSe (Ref. 7), and SiC (Ref. 8) with
grating decay times about 1 ns.

Pulse amplification in silicon was first demonstrated by
Vinetskii et al.>® using a Q-switched Nd:glass laser with
a 30-ns pulse width. Similar experiments were done also
by us, showing that the gain decreased with increasing
beam intersection angle 6 [Fig. 1(a)]. Amplification of
16-ns pulses was possible only for 6 <2°. Such small in-
tersection angles are inconvenient for practical applica-
tions. The gain decrease is partially due to shortening of
the grating lifetime which is given by free-carrier dif-
fusion and becomes small at large interaction angles, i.e.,
small grating periods.® Theory shows that two-wave-
mixing gain is obtainable in silicon, a material with local
response, only if the pulse width is sufficiently short com-
pared to the grating decay time.! We expected therefore
that picosecond pulses would be favorable for two-wave-
mixing experiments allowing larger beam intersection an-
gles.

In this work the term “two-wave mixing” is used to
describe the experiment where two incident beams interact
and exchange energy. The process is called “three-wave
mixing” if a third beam is produced due to the interac-
tion. The term two-wave mixing is common to describe
beam coupling in photorefractive materials.!~* In the
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nonlinear susceptibility formalism the interaction between
two beams with equal frequencies results from a third-
order susceptibility. In general, such a susceptibility may
couple four independent waves resulting in “four-wave
mixing.” Since only two or three waves are observable in
our experiment, we do not use the term four-wave mixing
in this connection.
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FIG. 1. (a) Experimental maximum gain as a function of
beam intersection angle 6 for ns pulses (low-transmission sample
as in Fig. 3) and ps pulses (same sample as in Fig. 2). (b) Calcu-
lated gain as a function of angle 6 for different pump energy
densities.
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EXPERIMENTS

The experimental setup is sketched in Fig. 1(a). A
pulsed Nd:YAG laser (where YAG represents yttrium
aluminum garnet) with active and passive mode locking
was used to produce a train of pulses. A single pulse
[¢, =50 ps full width at half maximum (FWHM)] was
selected with an electro-optic shutter and amplified by
two Nd:YAG amplifiers, resulting in a maximum output
energy of 10 mJ. The beam was split with a semitrans-
parent mirror into the signal and pump which intersected
in the silicon samples. The optical delay of the two pulses
was adjusted to be much smaller than the coherence
length. The signal beam energy incident on the sample
was about 1 mJ/cm?, whereas pump energy densities up
to 300 mJ/cm? were used, which is near the damage
threshold of silicon. Experiments have been performed
also with a Q-switched Nd:YAG laser (16-ns FWHM
pulse width). The silicon samples had (100) or (111)
orientation and were polished on both sides. Samples
with thickness d =0.4, 0.5, and 1.0 mm were used with
absorption coefficients a=10 cm~™! (weakly p doped,
p>10 Qcm) and @’'=26 cm ™! (heavily n doped, p~0.01
Qcm).

The gain G is defined as the ratio of the signal beam
energies measured behind the silicon crystal with incident
and blocked pump. The net gain 7T;G, defined as the ratio
of the signal energies behind and in front of the pumped
crystal, is obtained by multiplication with the transmis-
sion T; which amounted to 30% for the undoped (d=0.4
mm) and 13% for the doped sample (d=0.5 mm).

The dependence of the gain on the pump energy density
is shown in Fig. 2 measured with picosecond pulses. A
maximum gain G=14 is obtained at 100 mJ/cm? pump
energy density and a beam intersection angle 6=28.3°. The
saturation and decrease of the gain at higher energies will
be discussed later. The dependence of the maximum gain
on the beam intersection angle is shown in Fig. 1(a). This
gain has a pronounced minimum at an angle of 2.5°—3°.
This minimum is due to a change from a three-wave-
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FIG. 2. Two-wave-mixing gain as a function of pump energy
The

density measured with picosecond pulses (z,=50 ps).
dashed curve is calculated from Eq. (12).
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mixing process to two-wave mixing (theory, see below).
At small angles a third weak beam is visible behind the
sample which is produced by diffraction of the bump
beam into a direction opposite the signal beam. At large
angles 6> 5°, the third beam is not visible or very weak
because it is not phase matched, as will be discussed later.

With longer pulses (16 ns), gain is only observed up to
angles of 2°, i.e, in the three-wave-mixing regime. The
grating decay time is calculated from Eq. (5) to 7,=24 ns
at 0=2°. For larger angles, two-wave mixing has to be
considered. However, the grating decay time 7, becomes
then smaller than the pulse width and therefore amplifica-
tion does not take place anymore.! The initial decrease of
the gain with increasing angles 6 is about the same for pi-
cosecond and nanosecond pulses. It can be assumed there-
fore that this decrease and the following minimum in the
gain curve is not caused by a changing ratio t, /7, but by
the change from three-wave mixing to a two-wave pro-
cess.

In Figs. 3 and 4, the dependence of the gain for
nanosecond pulses is shown for silicon samples with dif-
ferent doping and different temperatures. Samples with
low doping and small absorption (@=10 cm™}) give a
much higher net gain, T;G. Doping leads to free-carrier
absorption (intraband transitions), whereas the initial ab-
sorption is due to interband transitions resulting in free-
carrier production. This is necessary to obtain gain.
Doping results only in linear loss, so that T;G is smaller
than in undoped samples. The interband absorption can
be changed with temperature (Fig. 4). Low temperature
results in low absorption so that higher pump energies are
needed to obtain gain.

All experiments were performed with energy densities
in the range from 1—300 mJ/cm? The maximum pulse
amplifications were observed at 100 mJ/cm? energy densi-
ty. Above 300 mJ/cm?, surface damage takes place. The
densities of generated electron-hole pairs are in the order
of 10" cm—3.

Interaction of laser pulses with silicon has been studied
extensively also in the context of laser annealing.'®!!
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FIG. 3. Three-wave-mixing gain as a function of pump ener-
gy density for high- and low-transmission samples (t,=16 ns).
The solid curves are calculated from Eq. (20).
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FIG. 4. Temperature dependence of three-wave-mixing gain
for a high-transmission sample (d =1 mm, 6=1°, t, =16 ns).
Solid curves show calculation using Eq. (20).

Pulse energy densities of 0.1—5 J/cm? are used for this
purpose, resulting in plasma densities up to 10%° cm~3;
much larger than in our experiment. Therefore, high den-
sity effects, e.g., Auger recombination, which are impor-
tant in laser annealing are of minor importance here. The
optical absorption of silicon amounts to some 10 cm ™! so
that carriers are excited over the total thickness of the
crystal in contrast to laser annealing where carriers are
produced only in a thin surface layer. Therefore, surface

recombination is not considered in the present paper.

THEORY: BASIC EQUATIONS

The amplitudes of the incident signal and pump waves
are denoted with C_, and C ), respectively. The ampli-
tudes C,, of the mth-order diffracted beams are deter-
mined by'

1 9C,, i 9*C, dC, k2
v 8t 2k, 822 T oz T 2k,

(mz—l)c,,,+%c,,,

=ik,.p 2 N Cp_p - (1)
L=—w
The Lth spatial Fourier component of the charge carrier
density grating is given by
Ny

aNL e
ar =K 2 C,,,C,:,L—;:‘. (2)

m=—o

Here, 0 is the beam intersection angle outside the sample,
6’ the intersection angle in the sample, k, the vacuum
wave vector,

' ck,

. 0 0
kx=k05m3, kz=nkocos—2—, U:nzko .

(3)

n=3.56 is the refractive index of silicon. The coupling

parameters are defined as

2
a k ofMNe p

- - 4
K V, ke-h kz N ( )

where a is the interband absorption coefficient (10 cm ™!

at room temperature) and n,,=—10"2! cm? is the
dispersion volume of the electron-hole pairs.}?> The grat-
ing decay times 7, are given by

L =7op+D,kIL?, (5)

where 7, is the carrier lifetime and D, =10 cm?/s is the
ambipolar diffusion coefficient. For our experiments, car-
rier recombination is negligible (7,_;, — o).

Because of the inversion symmetry of the silicon crys-
tal, all amplitudes C,, =0 for m =0, +2, +4,... . If the
phase grating modulation induced by C,; and C_, is
small compared to 1 (as in the experiments described
here), only one additional diffracted beam with amplitude
C 3 has to be considered. Hence, the general equations
(1) and (2) reduce to

8C,;  4ik;} . a
—az+ + ka+3=lke.hN2C+1—7C+3,
4
aC_ a
o =tkeaN3Co1—5Coy (6)
ON N
atz + =5 =k(C3C5 +C 1 CE )

The pump beam amplitude C, is considered to change
only by absorption. 7 is written instead of 7, and
Z =z +vt. The phase shift due to N is included in the
amplitudes C,,. In addition, the second-order derivatives
are neglected.

TWO-WAVE MIXING

For large beam intersection angles 6 >> 60, the addition-
al third beam C 3 is quenched by interference. 6, may be
calculated from

0,
4k3,o d/k,=m, kx,():kosin—z—o- . 7

For example, d =0.4 mm, A=1.064 yum yield, 6,=3.9°,
which is of the order of the minimum gain angle in Fig.
1(a). To solve Eq. (6) with C;=0, rectangular incident
pulses are assumed, i.e., C4,(z=0,0)=C4,(0), 0<t <t,.
An analytic solution is obtained for small signal gain,
where C  ((z,t)=C_(0) is assumed. Pump wave absorp-
tion is discussed later. One obtains with these assump-
tions

¥?C_,
dz ot

. 1 aC_, a
:lKke-h|C+1|2C~1"? % o

at

®

Here, Z is replaced by z, since in the experiments
described here vt,/d >>1. This means, that the time
derivative in Eq. (1) may be ignored. For the present, the
first-order derivatives in Eq. (8) are neglected, i.e., 7— oo,
a=0. The influence of grating decay and signal wave ab-
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sorption is discussed below. = 1 ) 2
Introducing the variable G= [C_1(0)]%, fo | Coild,p) | %t

u=u(z,t)=(—duk,, | Coy|%t)?, 9)
Eq. (8) reduces to the ordinary differential equation

2
i L

an? T du C_(u)=0, a=0, 7= . (10)

The solution is given by Kelvin functions ber and bei:!?
C_i(z,t)=C_,(0)[ber(u)—ibei(u)] ,a=0, 7= o
=C_(0)[1—iu?/4—u*/64+iu®/2304+ --- ] .
(11

The energy gain experimentally determined is calculated
as

2
= ;[ber(w)bei'(w) —ber’(w)bei(w)]

>

a=0, T=0 , (12

where w =u (d,t,). This theoretical dependence is shown
in Fig. 2, together with picosecond experimental results.
The experimental gain is smaller than the theoretical one
at a given pump energy density. This can be explained
with pump wave absorption, as discussed below.

Grating decay and signal wave absorption are con-
sidered now by taking into account the first-order deriva-
tives in Eq. (8). Using the Riemann integration
method'*! the following result is obtained:

C—l(z,t)ZC_l(O)E—aZ/Z {ber[u(z,t)]—l'bei[u(z’[’)]}e_’/“'_’_i ft bei[u(z tr)]e—t’/rdzz
T t'=0 ’

i ! . ’ —t'/T
- fr,=0be1[u(z,t )]le ~/dt’

If linear pump wave absorption is taken into account,
then | C,,|? is replaced by | C_,(0)|% ~% in Eq. (8).
In this case, ¥ must be replaced by 3

i(z,t)=[ —4k,;, | CL1(0) |2t (1—e %) /a]'? . (14)

This correction applies for Egs. (11), (12), and (13).
For a=10 cm~! and d=04 mm, one obtains
(1—e~%)/a=0.82d. This explains quantitatively the
difference between experimental and theoretical curves in
Fig. 2 up to 40 mJ/cm?. Above 40 mJ/cm? the two-
wave-mixing gain is expected to be influenced also by
nonlinear pump wave absorption. At E =40 mJ/cm? the
carrier concentration is N=«xE=2x10" cm~3 Since
the free-carrier cross section is 0, , =5Xx 1078 cm?!® the
total1 absorption coefficient is a’'=a-+o,,XN=20
cm” .

The saturation and decrease of the gain at high pump
energies is explained as follows. The carrier density satu-
rates at high pump energy densities because of free-carrier
absorption. The free-carrier grating results from a small
spatial modulation from the pump energy density. The
amplitude of the grating therefore decreases if the total
carrier density saturates. The decreasing grating ampli-
tude causes a reduction of the gain. In addition, the gain
is reduced by the decreasing transmission of the silicon
crystal. A detailed theoretical description of the reduction
of the grating amplitude and transmission at high pump
energies has been worked out for evaluation of a four-
wave-mixing (FWM) experiment in silicon.!” Maximum
FWM reflectivity was obtained experimentally and
theoretically at a pump energy density of about 100
mJ/cm?, the same value giving maximum gain. FWM re-
flectivity and the two-wave-mixing gain are explained by
a similar grating mechanism. We conclude therefore that

(13)

-
also the gain maximum is explained by the same mecha-
nism as the FWM maximum: free-carrier absorption.

For t = o the integrals in Eq. (13) can be evaluated!®

C_i(z,t=00)=C_ (0)exp[ —az/2—iu*(z,7) /4], (15)

which shows that no gain is obtained for cw signal and
pump waves. On the other hand, for 7= or short
pump and signal pulses, Eq. (13) results in Eq. (11) if gain
is defined with respect to the unamplified transmitted sig-
nal energy.

Results of some numerical evaluation of Eq. (13) are
shown in Fig. 5. The experiments described in this paper
satisfy u <7.5. The integrals appearing in (13) were cal-
culated numerically. Pump and signal wave absorption is
neglected. The intensity gain curves with u (z,t,) =const
are approximately straight lines. This means an exponen-
tial dependence of the intensity gain from 2,/ for con-
stant pump energy density. Therefore, the following
approximation may be used to calculate the intensity gain
| C_i(z,1,;m)/C_1(0) | %

Cﬁ](z,l) :

_— 1~ 2 2 B
c o) | ~'=lberluzn]+beilu(z,0] -1

X exp{ —[1.3+0.004u%(z,0)]t /7} ,

t=t (16)

p -
Since ¢, is fixed in our experiments a variation of t, /7T
means a variation of the beam intersection angle accord-
ing to Eq. (5). The solid lines in Fig. 5 thus demonstrate
the angular dependence of two-wave-mixing gain.
The maximum beam intersection angle for which pi-
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FIG. 5. Calculated intensity gain as a function of normalized
time ¢,/7. The solid lines show the dependence on reciprocal
grating decay time 7 with constant pump pulse width ¢, and en-
ergy density. The dashed lines demonstrate the dependence on
pulse width 7, with constant pump intensity and fixed grating
decay time 7.

cosecond pulse amplification can be obtained is estimated
from t,/7=0.5, t, =50 ps to be 6=130".

The dashed lines r =u?(z,7)=const in Fig. 5 show the
intensity gain at time ¢, with fixed pump intensity and
fixed grating decay time. According to Eq. (12) the ener-
gy gain G is the time average of the intensity gain.

THREE-WAVE MIXING

If the beam intersection angle 6 is sufficiently small,
the dephasing term in Eq. (6) can be neglected. Again

assuming rectangular pulses and C L (z0)
= C, (0)exp( —az /2), one obtains
82N2 1 8N2 aNZ a 17)
3tz r oz a1 %’
resulting in
Ny(z,t)=kC . 1(0)C* |(0)e ~*r(1—e~"'7) (18)
and

C_i(z,t)=C_(0)e ~/2 |1 — izﬁ(z,f)( l—e=t/7) | .

(19)

This equation predicts that gain is possible in the three-
wave-mixing regime also with long pulses or even with
continuous waves.

It should be remembered that no cw gain is obtainable
with two-wave mixing. The energy gain is obtained as

4

= utd,r) v |, —t /7

G—1=2"%7T 7 |\ 3 p/T_ L
16 L, | > +2e 5e

—2tp/‘r

(20)

Dependences of the gain on the pump energy calculated
from Eq. (20) in comparison with experimental results are
shown in Figs. 3 and 4. For low-transmission samples, in-
terband absorption [for calculating k from Eq. (4)] has to
be distinguished from total absorption [for calculating u
from Eq. (14)]. The interband absorption amounts to
10 cm~! at T=25°C. The total absorption is specified in
Fig. 3. The heavily doped sample (low transmission) ex-
hibits good agreement between theory and experiments,
whereas the high-transmission sample gives an experimen-
tal gain which is larger than expected from theory at low
pump energies. The temperature dependence of a for the
calculation shown in Fig. 4 has been taken from Ref. 19.
Calculated and experimental values in Fig. 4 agree at
+ 25 to —25°C, whereas the experimental gain becomes
larger than that calculated at low temperature. This can
be possibly explained by a temperature change of n,_j.

TRANSITION BETWEEN TWO-
AND THREE-WAVE MIXING

To describe the transition from three-wave mixing to
two-wave mixing, the dephasing term in Eq. (6) must be
taken into account. The following perturbation calcula-
tion is simplified by neglecting absorption and grating de-
cay, i.e., the following equations are used instead of (6):

9C,; . .
———+IAC+3:lke_hC+)N2 )

oz

(21)

aC—l . *

3z :‘lke-hC+IN2 ’

and

N, N .

at =K(C+3C+1+C+1C_l) . (22)

A =4k?/k, is a function of the beam intersection angle 0
according to Eq. (3).

A first approximation for N, may be calculated from
(22) by replacing all wave amplitudes by their values at
z =0 (given field approximation):

N =k [(CCY +C 1 C O )dt=kC,,C% . (23)

Equation (23) is valid since the zeroth-order approxima-
tions of C,; and C_; are given by C(H,%:O,
C% =C_,(0). Asbefore, C_,(0) is the amplitude of the
incident rectangular signal pulse. C_, is regarded as con-
stant.

Replacing N, by N3 on the right-hand side of Egs.
(21), these can be solved to give the first approximations
for C 3 and C_;:
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c=c_,(0) 1~iu2(2,l‘) ,
ok (24)
ch)= ;"’ C% . C* ()t (1—e—7)
c2—c oyl u [1+—i—(e"42
4 16 84 | Az
For the Bragg condition, Eq. (25) yields
c? =c_,0) LA , Az>>1. (26)
T 4 64

This means that the first three terms of the exact solution
(11) for two-wave mixing are reproduced. On the other
hand, from small 9, Eq. (25) results in

2
L

c? =c_,0) , Az <<1 . Q7

This is the exact result, Eq. (19), for a=0and 7= .
For comparison with experimental results, the second-
order approximation for the gain must be calculated:

1

G=—>
| C_1(0)] %,

t
[ 1c2a,n | . (28)
Equation (28) is easily evaluated since u? is proportional
to t, according to Eq. (9). The result of the elementary in-
tegration is not given here explicitly. In Fig. 1(b) numeri-
cal values of the gain G are given as a function of the
beam intersection angle for uld,t,)=1, 3, 5, and 7. It
should be noted that a maximum instead of a minimum
would be obtained in Fig. 1(b) if n,, were not negative.
For the experimental data shown in Fig. 1(a), u =7 is

This result can be used on the right-hand side of Eq. (22)
to determine the second-order approximation for N,
which allows the calculation of the second-order approxi-
mation for the signal wave amplitude:

valid. Comparison of the corresponding curve in Fig. 1(b)
with the experimental curve in Fig. 1(a) shows that experi-
ment and theory give about the same minimum gain angle
at 2.5°—3°. The calculated gain values are larger than the
measured one because of free-carrier absorption, as dis-
cussed above. Another reason for this deviation is given
by the approximations used in the calculations.

SUMMARY

Energy transfer from strong pump beams to weak sig-
nal beams crossing in silicon samples has been investigat-
ed. This leads to amplification of picosecond pulses with
a gain up to 20. At small intersection angles the interac-
tion is described as a three-wave-mixing process, whereas
at larger angles, two-wave mixing is important. At inter-
mediate angles of 2°—3° a sharp decrease of the gain is ob-
served.

The fast energy transfer process in silicon may have ap-
plications not only for signal amplification but for beam
switching, modulation, and deflection. Further work is
necessary to optimize the transfer efficiency.
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