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We have developed a quantum-mechanical formalism which permits the treatment of light propa-
gation within the conceptual framework of quantum optics. The formalism rests on the calculation
of the momentum operator for the radiation field, and yields directly a description for the spatial
progression of the electromagnetic waves. In this paper we give a quantum-mechanical treatment
for refraction and reflection by applying our formalism to propagation through a linear dielectric.
The fidelity with which this formalism reproduces all results known from classical optics demon-

strates its validity.

I. INTRODUCTION

Within the conventional formulation of the quantum
theory of light, traveling-wave phenomena are described
through the Hamiltonian of the electromagnetic field, and
particularly through the temporal evolution of the spatial
modes of the field. The modal Hamiltonian formalism is
quite well suited for the description of radiative emission
into the vacuum field:' When the Hamiltonian includes a
term coupling an emitter to an infinity of modes, energy
can be dissipated into the radiation field. On the other
hand, the description of nonlinear wave interactions,? in
which two (or more) waves interact with each other
through the nonlinear polarization of a material, is quite
cumbersome. The traveling waves have to be analyzed
each into an infinity of modes, and a nonlinear polariza-
tion term which couples the individual modes is intro-
duced in the Hamiltonian. Thus, the transfer of energy
between the two waves is described as a dissipative process
from one infinite manifold of modes into another. This
complicated quantum-mechanical procedure contrasts
sharply with the simplicity of the classical description of
nonlinear optical phenomena: the spatial differential
equations can be solved directly; energy is then transferred
between the two waves as they advance together in the
nonlinear material.

When the procedure used for nonlinear traveling-wave
phenomena is applied to linear propagation through
matter, the modal Hamiltonian formalism is seen to fail.
Inclusion of the linear polarization term in the Hamiltoni-
an
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(1.1)
(in standard notation) couples each mode to itself through
a term quadratic in the electric field. This term leads to
an increase in the energy of all the modes and thus gives
rise to a renormalization of their frequencies. This result
is, of course, incorrect since the frequency of a light beam
traversing a dielectric is not changed. The linear polariza-
tion of the dielectric gives rise to refraction which affects
only the spatial characteristics of light by renormalizing
its wave vector and its phase velocity, as is known from
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classical optics. However, the modal Hamiltonian ad-
dresses only the temporal evolution of the free-space nor-
mal modes which constitute a fixed set of solutions of the
spatial wave equation (with no polarization), and for this
reason it cannot account for spatial changes. This failure
of the modal Hamiltonian in describing propagation in a
linear dielectric indicates that its applicability to the
description of nonlinear propagation must also have many
limitations.

The problem of propagation through a linear non-
dispersive dielectric, one of the most basic problems of
classical optics, has not been treated yet in quantum op-
tics, to our knowledge. A theory of phenomenological
quantum electrodynamics in refractive media was
developed quite early,® but has not be applied to quantum
optics. In quantum optics, on the other hand, a procedure
has been devised to circumvent the problem of a dielec-
tric, by redefining the spatial modes in the cavity of
quantization;*’ the dielectric function of the medium is
introduced in the Helmholtz equation for the field in the
cavity, and thus a new spatial periodicity (wave vector) is
obtained for the modes, different from its free-space
value. It is these new modes that are used in constructing
traveling wave packets to describe optical phenomena
occurring in the medium, including nonlinear wave in-
teractions. Another procedure, based on the space-time
analogy for steady-state propagation, has been devised to
describe nonlinear propagation. By heuristically convert-
ing spatial progression into temporal evolution (through
division by the speed of light) this procedure permits us to
address nonlinear optical phenomena in a manner analo-
gous to their corresponding classical treatment.* Formal
space-time analogies have also been pointed out in the dif-
ferential equations for the propagation of short light
pulses.®

More recently, the problem of the quantum-mechanical
treatment of light propagation has received renewed in-
terest in connection with the description of nonclassical
states of the radiation field, such as the “squeezed”
states.” Work focused mainly on the description of dif-
fraction by applying the Green’s function for the classical
diffraction problem directly to the quantum-mechanical
field operators.®
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Clearly, it is necessary to extend the traditional theory
of quantum optics to describe propagative phenomena by
developing a quantum-mechanical formalism that can
treat traveling-wave phenomena without invoking the
modal Hamiltonian, and can treat both linear and non-
linear propagation on the same footing. In developing
this formalism, we may be guided by classical linear op-
tics: Introduction of a dielectric in the path of a light
beam does not change the total energy; the incident energy
is simply redistributed into the transmitted and reflected
waves. The quantum-mechanical Hamiltonian must thus
remain unchanged. On the other hand, both the local en-
ergy density and the momentum of the wave (its wave
vector) change because of the polarization induced in the
dielectric. Clearly, the momentum is the concept that is
appropriate for the description of refraction, and more
generally of propagative phenomena within the frame-
work of quantum optics: Since quantum mechanically
space and momentum are conjugate variables, the momen-
tum operator of the electromagnetic field permits the cal-
culation of its spatial progression, just like the Hamiltoni-
an permits the calculation of its temporal evolution. Use
of the momentum operator to describe the spatial progres-
sion of a wave was first proposed by Shen.* However, this
is the first paper where this proposal is thoroughly exam-
ined.

In this series of papers we develop the formalism for
the quantum-mechanical treatment of the spatial progres-
sion of electromagnetic waves in matter, through the cal-
culation of the momentum operator of the electromagnet-
ic field. In this paper, we examine propagation through a
linear dielectric, while in the following paper’ we treat
propagation through a nonlinear medium. When applied
to a situation already treated in classical optics (such as
refraction or reflection from a dielectric surface), this for-
malism reproduces all the known classical results. At the
same time, however, it permits the treatment of purely
quantum-mechanical propagative phenomena, such as
propagation of nonclassical states, or spontaneously ini-
tiated stimulated emission.” The paper is organized as
follows. In Sec. II we review some well-known results
from classical electrodynamics, recasting them in a way
that permits their direct application to the quantum-
mechanical description of light propagation. The nota-
tion is introduced in Sec. III by examining quantum-
mechanical propagation in the trivial case of plane waves
propagating in free space. In Sec. IV we establish the
quantum-mechanical Maxwell equations. These equations
are solved for a linear dielectric in Sec. V, where we
present a quantum-mechanical treatment of the refractive
index, of propagation through a refractive medium, and
of reflection on a dielectric surface. Finally, in Sec. VI we
present a discussion of our results.

II. A REMINDER OF CLASSICAL
ELECTRODYNAMICS

Propagation of the electromagnetic field is described
through the Maxwell equations,
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where D=E+47P is the electric displacement, B is the
magnetic induction, E and H are the electric and magnet-
ic field strengths, respectively, P is the (linear or non-
linear) polarization induced in the medium, and c is the
speed of light. We assume that there are no free charges
or currents, and that we are dealing with nonmagnetic
materials, so that B=H. We use Gaussian units
throughout the paper.

For simplicity, we shall consider only the case of plane
waves propagating along the z axis, with the electric field
polarized along x, and the magnetic field along y. This
reduces the Maxwell equations into scalar differential
equations, the directions of all vectors being implicit. We
shall further assume that light is propagating in linear
dielectric, where the induced polarization is at all times
proportional to the incident electric field,

P=XE , (2.2a)

where X is the (linear) susceptibility of the material, which
we assume for simplicity to be a scalar (neglecting its ten-
sorial properties), independent of frequency (no disper-
sion). It is convenient to define also the dielectric func-
tion € of the material

e=1+4nX (2.2b)
and the refractive index n
n=Ve. (2.2¢)

The Maxwell equations can be rearranged to give the
electromagnetic wave equation, which is usually the start-
ing point for the classical treatment of (linear or non-
linear) light propagation. Alternatively, they may be rear-
ranged to give energy and momentum flow equations,
which can also be used as the starting points for treating
propagation. This latter approach to the propagation of
the electromagnetic field will be reviewed in this section.
Its advantage over the wave equation is that it deals with
observables (such as energy and momentum) whose
quantum-mechanical equivalents can describe temporal
evolution and spatial progression in the quantized elec-
tromagnetic field. However, the energy and momentum
functions have to be chosen appropriately so that their use
in the quantum-mechanical description of propagation
gives the right results: When a light beam traverses a
nonabsorbing dielectric, the number of photons contained
in the beam, their frequency, and the total energy of the
beam must remain unchanged, while its wave vector and
the total momentum must increase proportionally to the
refractive index.

The material polarization P is a key concept in classical
electromagnetism, in that it can store part of the elec-
tromagnetic energy: The energy density u within the
volume of a dielectric is greater than that of the free field,
and this increase is attributed to the deformation of the
material
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In quantum optics, however, the bookkeeping is different.
The energy is carried by the photons and by the material
excitations. Far from all resonances, the material under-
goes transitions only to virtual states which generally live
less than 10~ sec for a transparent material in the opti-
cal region. Thus, for time scales of experimental interest,
energy is carried only by the field. This implies that for
an experiment that is not fast enough to resolve the pro-
cesses associated with the virtual excitations, the increase
in energy density in a transparent dielectric is regarded as
an increase in the photon density. This partition between
electromagnetic and mechanical energies suggests the
Minkowski definition for the momentum density!®

g=4—:rcD><B 2.4)

(which includes both the momentum of the field and the
momentum associated with the material polarization) as
the proper momentum function for quantum optics. The
usual (Abraham—von Laue) definition for the momentum
density

4mc (2.5)

refers to the momentum that can be attributed to the field
alone, and is independent of the medium in which light
propagates. Its use would require an explicit treatment of
the momentum associated with the virtual excitations of
the material. For this reason, we shall adopt the defini-
tion (2.4), even though its use in classical electrodynamics
is subject to controversy on thermodynamic grounds. We
may also define the Poynting vector S, which gives a mea-
sure of the energy flux as

S=-SExH. (2.6)
4

The energy flux is conserved when a light beam goes
through a dielectric; thus, an energy function proportional
to S would be the proper quantum-mechanical Hamiltoni-
an.

For the classical field, and in the absence of an external
driving agent, the energy-flow equation may be written as

d |E*+H? aP
—VS=— |25 |4 ES-, 27
v ot 87 at @.72)
while the momentum-flow equation is
a >
——g=V-T, 2.7b)
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where T is the unsymmetrical Maxwell stress tensor,>!°
whose elements are

1
T.p= F[EaD,rkHaBﬁ——%(E-D+B-H)8ag] (2.7¢)
with a,B=x,y,z. For a field that decays at infinity, Egs.
(2.7) give energy and momentum conservation upon in-
tegration over a volume totally enclosing the field,

L (2.82)
ot
G _, (2.8b)
ot
where
U= [ udv (2.92)
is the total energy in the closed volume ¥, while
G= [, g (2.9b)

is the total momentum. To obtain the actual values of U
and G, however, we have to consider an open finite
volume through which flow can occur. For one-
dimensional propagation Egs. (2.7) reduce to scalar form

oS Odu

_95 _ou 2.10
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where we have used T, =u, in Eq. (2.10b).

Equations (2.10) are usually integrated over a fixed
volume, in order to relate the energy flux to the change in
energy content in the volume. Here, however, in order to
make contact with the energy and momentum calculations
for the quantized electromagnetic field, we shall solve
Egs. (2.10) for the case of a finite light pulse, rather than
for a fixed volume. For simplicity, we may consider a
“square” pulse of length L (in free space), consisting of a
plane wave packet. When the pulse enters a dielectric of
index n, its velocity changes to v=c/n while all the
wavelengths that compose it become A'=A/n. Thus, a
pulse of length L in free space shortens to L'=L /n.
However, the duration of the pulse remains constant,

=t _L @.11)

v c

and is therefore independent of the medium. The energy
and momentum carried by this pulse may be calculated
through Eqgs. (2.10), by considering a surface 4 placed
downstream from the pulse. Since the electric and mag-
netic fields vary as z —ut, the total energy and momentum
crossing the surface may be obtained by integrating Egs.
(2.10) over the time and over space, giving

U=sar=34L _SV (2.12a)
c C
G =—”EK , (2.12b)

where V is the volume occupied by the pulse in free space.
For a general state of the radiation field, which is a super-
position of forward- and backward-going waves (varying
as z —ut and z +vt, respectively) Egs. (2.12) become

U=7V(S+ _S5), (2.13a)
Gz?V(uJ,—u,) , (2.13b)

where the + (—) index, the energy density and flux due
to, the forward (backward) waves alone. Clearly, Eqgs.
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(2.12) and (2.13) are independent of the medium in which
the pulse propagates, and permit us to keep track of the
energy and the momentum of the pulse as it traverse dif-
ferent media.

One of the basic results of classical optics is that the en-
ergy flux is conserved when an electromagnetic wave en-
counters a dielectric. Thus, for normal incidence on a
sharp vacuum-dielectric interface, we have the well-
known relationship among the incident ([I), reflected (R),
and transmitted ( T) waves

SI :SR +ST (2.14a)
and, in particular,
2
n—1
Sr= S, 2.14b
R n 1 ’ ( )
4n
, (2.14¢)
TS e
while the electric fields follow
2=l g (2.14d)
R= w1 |71 )
E,——2% F (2.14¢)
T— n +1 I .

since the electric field in each medium is related to the en-
ergy flux through

S=nE?. (2.14)

If the refractive index at the surface changes gradually
from 1 to n so that there are no reflections, or if the
dielectric is entered through an “antireflective” coating,
then the flux in the dielectric equals the flux in free space,

Sr=S; . (2.15a)

Equation (2.15a) together with Eq. (2.12a) imply that the
energy content of a pulse is not affected by the medium in
which the pulse is traveling, as long as there are no reflec-
tion losses. In the absence of reflections, the electric and
magnetic fields of the transmitted wave in the dielectric
are related to the corresponding incident fields (in free
space) by

Er=E; /Vn ,
Hy=VnH, .

(2.15b)
(2.15¢)

The energy density inside the dielectric is therefore in-
creased with respect to the free-space energy density by a
factor of n,

ur=nuy , (2.15d)

which implies a similar increase for the total momentum
of the pulse

GT=nG1 . (2156)

That is, the momentum carried by the pulse, defined ac-
cording to Eqgs. (2.4) and (2.9b), is always proportional to
the wave vector of its photons, which in turn is propor-
tional to the refractive index.
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We are now in a position to apply the above discussion
to the quantized electromagnetic field. For this, we note
that the periodic boundary conditions used in quantum
optics for the cavity of quantization are equivalent to con-
sidering the cavity as an open volume through which flow
occurs cyclically: The flux exiting on the right reenters
on the left. Thus, a propagating field may be considered
as a “square” pulse that fills exactly the volume of quanti-
zation at t=0. Propagation causes the energy (and the
momentum) of the square pulse to flow through the boun-
dary of the cavity, while the periodic boundary conditions
replenish the cavity through the opposite boundary. The
energy and momentum of the cavity of quantization cor-
respond to the energy and momentum of that pulse. They
are therefore given by Eqgs. (2.13) (with V being now the
volume of the cavity of quantization) and exhibit the
proper behavior for the description of temporal evolution
and spatial progression: The energy of the cavity is in-
dependent of the medium it contains, while its momentum
is directly proportional to the wave vector of the excited
field modes, and depends on the medium. Equations
(2.13) will therefore be used as the starting point for the
quantum-mechanical treatment of light propagation.
Their use to describe quantum-mechanical light propaga-
tion through a dielectric implies that the optical path
length of the cavity of quantization (i.e., the number of
wavelengths it contains for each mode) remains constant
upon introduction of a dielectric. This insures that the
periodic-boundary conditions of the cavity are the same
irrespective of whether the cavity is empty or contains a
dielectric, and establishes a correspondence between the
free-field and refracted-wave modes of the cavity. At the
same time, it means that the physical length of the cavity
of quantization shortens in the presence of a dielectric, so
that energy may be conserved. This result may seem
paradoxical when thinking of the cavity as a finite box of
fixed size and set boundary conditions. However, it
should be remembered that the periodic-boundary cavity
is simply a device for treating the propagating modes in
infinite space where energy conservation (as light traverses
different media) is insured by Eq. (2.8a).

We note that in this treatment of quantum optics ener-
gy is conserved while momentum is not conserved when
entering a dielectric, a problem that exists also in the con-
ventional treatment of classical optics. This apparent
discrepancy arises from the phenomenological treatment
of the material response through the polarization (or sus-
ceptibility) rather than through the explicit treatment of
the transitions to virtual states undergone by the atoms
when the dielectric is traversed by a light beam. Thus,
processes associated with these transitions, such as the
recoil of the atoms and the resulting Doppler shift of the
field, are neglected. However, we shall retain this level of
approximation in our formalism, since its assumptions are
compatible with the times scales and experimental condi-
tions of quantum optics.

III. QUANTUM PROPAGATION IN FREE SPACE

Following any classic textbook,! we can quantize the
electromagnetic field in a box large compared with experi-
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mental dimensions under periodic-boundary conditions.
For simplicity, we look only at propagation along the *z
axis and consider only the set { j} of longitudinal modes
having the lowest-order transverse structure (e.g., TEMy,
or plane waves), with the electric field polarized along x,
and the magnetic field along y. The electromagnetic vec-
tor potential operator Ais usually written as

172
A iw;t —ik.z 41
(z,t _Cz Vw (a;exwl ikjz +i¢
j
N —iwttikiz—i
tae T L 3a)

where @ j,fi ; are the creation, annihilation operators for a

photon in the jth mode of wave vector k; (with
k_j=—k;) and frequency w;=c |k;|. To simplify no-
tation, in all equations we use fi=1, and omit unit vectors
(x, y, and z) since the directions of all vector operators
are fixed. The @ ;,Zij operators follow Bose commutation
relations. It is convenient to rearrange Eq. (3.1a) in a
manner that is familiar to solid-state physics, by grouping
together the creation and the annihilation operators of
two counterpropagating waves,
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(Af io;t —iw;t, —ik;z
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zt—cz

ij
(3.1b)

where we have chosen the initial phase ¢ =0 for simplici-
ty. In this paper we shall not treat ¢ explicitly, since
linear-propagation phenomena do not depend on the ini-
tial phase of the field. Thus, in all our results, a nonzero
initial phase can be treated simply by considering the tem-
poral evolution of the relevant operators, and translating
the time origin appropriately. The individual j com-
ponents thus defined correspond to the complex “coeffi-
cients” of the spatial Fourier expansion of A. The electric
and magnetic field operators may then be obtained as

13+ <4
E :-————A.—_
(z1) c ot ?e’
2 172
(9] A~ ~
=3 —i|=" T—b_; (32a)
J
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Tzt T i
2 1/2
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=3 —is; [0 | B+ 3.2b)
J

Throughout the paper, the caret distinguishes a Hilbert-
space operator from the corresponding classical quantity.
In Egs. (3.2) s;==1 is the sign of j, and the ¢ and z
dependence is understood to be implicit in the b
operators. That is,

~ At it —ik;z

bj=aje 7 7, (3.3a)
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~ —iw;t +ik;z

by=aje T (3.3b)

We note that the individual components ¢; and iz\j of the

electric and magnetic fields are not Hermitian,

ej=¢e_j;, (3.4a)

~ + ~
hj=h_; (3.4b)
and thus do not constitute observable quantities. They are
simply a convenience to facilitate bookkeeping when per-
forming a spatial integration. The electric field of the jth
mode on the other hand, is an operator of the form

172
27Tw;

J
| 4

E,=—i (3.5)

which is Hermitian, and thus constitutes an observable.
Similarly, this applies for the magnetic field operator H 2

Another way of rearranging the electric and magnetic
field operators is to distinguish a positive- and a
negative-frequency part. The positive-frequency part of
the electric field operator corresponds to the sum of all
the annihilation-operator terms in Eq. (3.2a), while the
negative-frequency part corresponds to the sum of all the
creation-operator terms.

The implicit spatial and temporal dependence of the
3},7)} operators constitutes the propagation of the elec-
tromagnetic field. This propagation (spatial progression
and temporal evolution) can be recalculated quantum
mechanically by evaluating the total momentum and ener-
gy (Hamiltonian) operators for the electromagnetic field,
and setting up the corresponding differential equations.
The calculation of these operators can be done by using
Egs. (3.2), which permit us to convert all classical quanti-
ties associated with the electromagnetic field to the corre-
sponding quantum-mechanical operators, simply by re-
placing the electric and magnetic fields in a classical ex-
pression by Egs. (3.2).

Thus, the energy-density operator can be written as

1
f=—oIE? +H
i) 8(

A

2(@,@,+Aj ) (3.6)

This operator can be used in the calculation of the total
momentum of the field, through the quantum-mechanical
equivalent of Eq. (2.13b). However, since this latter equa-
tion results from integration over space of the spatial
derivative of #, the cross terms with /s« —j may be elim-
inated in Eq. (3.6). The reason is that these terms are sub-
ject to spatial oscillations of the form e’ % ” and thus
cancel out upon spatial integration, while the terms with
! = —j which do not oscillate, survive. Equation (3.6) can
then be written as

ﬁzzﬁj , (3.7a)
J
where
A 1 A A ~
uj-—g(eje_j—khjh_])
O)j I ~
=2—V(bjbj+b _ib_j+1) (3.7b)
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Thus, the energy-density operator is given by b A .
—L=i[#bj]=—iwb; , (3.15a)
N Wj ~ 3~ ot
u= 2 — ]-bj . (3.7¢) .
TV to give

The total momentum G then is l/)\j(t)zgje —iet (3.15b)

G= K(g+ —02_)=3 k]j,‘}fz;j . (3.8) This concludes the quantum-mechanical calculation of

j

This is the operator that describes the spatial characteris-
tics of the electromagnetic field: As is known from ele-
mentary quantum mechanics, the momentum operator
gives the spatial derivative of any wave function to which
it is applied,

Gy=—i

3 (3.9)

while the spatial derivative of any operator @ is given by
a Heisenberg-like equation involving the momentum,

30
oz

Equation (3.10) is a differential equation that permits the
calculation of the spatial dependence of the field opera-
tors, once the momentum operator is known. It thus gives
the spatial progression of an electromagnetic wave, just
like the ordinary Heisenberg equation gives its temporal
evolution.

For free-space propagation of plane waves, the momen-
tum operator of Eq. (3.8) gives the differential equation

~

(e.g., for the operator b;),

= _i[G,0]. (3.10)

~

db; A oA
—5—ZJ—=—1[G,bj]=tkjbj .

(3.11)

Integration of Eq. (3.11) gives the spatial progression of
the annihilation operator for the jth plane wave as

ik;z

b(z)=be" V", (3.12)

where the phase at z=0 is chosen as ¢=0. The spatial
progression of all other operators may be calculated in a
similar fashion.

Similarly, we may calculate the Poynting vector opera-
tor as

S=—EH=-"—3¢h_; 3.13
— - ?el j (3.13a)
giving
~ C(l)j ~t ~AF A~
j(>0)

The total energy of the free field inside the cavity of
quantization is thus
==Y
c

S, -8 )= w;b}b;. (3.14)
J
This operator corresponds to the Hamiltonian of the free

field, and describes the oscillatory temporal evolution of
each mode through the Heisenberg equation, for example,

light propagation in free space. The results are, of course,
trivial, as they simply reproduce the spatial progression
and temporal evolution given in the definition of the b;
operators [Eq. (3.3)]. They demonstrate, however, the
properties of the different quantum-mechanical operators
pertaining to the electromagnetic field that are used in
this paper.

IV. THE QUANTUM-MECHANICAL MAXWELL
EQUATIONS

The individual components of the rearranged electric
and magnetic field operators defined in Eq. (3.2),

1/2
. | 27w; ~t A
&= —Ii % b;j—b_p, (4.1a)
1/2
~ ) 27TCL)j ~+ PN

have a structure similar to that of the momentum and po-
sition operators (respectively) for the harmonic oscillator,
however, with a very important difference: Eqgs.(4.1) are
linear combinations of a creation and an annihilation
operator of opposite indices (*j). This gives rise to a
modified operator algebra (with respect to that of the har-

monic oscillator) in that it is the €; and h ; operators of

opposite index that give a nonzero commutator,

~

[¢,,61=[h;,h1=0, (4.2a)
o~ drw;
[ejth]:s—j v 8_1-,1 ’ (4.2b)

where §;; is the Kronecker 8 symbol. The structure of
Egs. (4.1) implies that €; and }Azj follow equations of
motion similar to those of the harmonic oscillator. We
shall show in this section that these harmonic-oscillator-
like equations of motion are the quantum-mechanical
equivalent of the Maxwell equations (2.1a) and (2.1b),
which for one-dimensional propagation through a linear
isotropic medium can be written as

OH € 0E

2~ oo’ (4.3a)
oF 1 0H
32— ¢ ar (4.3b)

The temporal derivatives of €; and h ; can be calculated
through the Hamiltonian (2.13a),
9 . Ve a S A
o =1[2’/,ej]:1?([5,ej]+ —[S.¢;1),

where the + (—) indices of the commutators refer to the

(4.4a)



35 QUANTUM THEORY OF LIGHT PROPAGATION: LINEAR MEDIUM

forward- (backward-) going waves as in the definition of
#. Evaluating the commutator of €; with the Poynting

vector operator S

)
o

- (4.4b)
4w J
we have
de . " "
?=zszj{(ej)+—(ej);}.—za)jsh (4.4¢)
and similarly
at —zcoj ]{(h )y —(h;) Y =iwjs;e; , (4.4d)
where, according to the definition (4.1),
9 172
TW; ~
(@) =—i | = bl ifj>0 (4.5a)
5 172
TW; ~
=i V’ b_; if j <0, (4.5b)

and so on, of (¢;)_, (h )4+, and (h )_. Equations (4.4)
show that ej and h are each other’s derivative, and are
time harmonic w1th frequency w;, both in free space and
inside matter, since the Poyntmg vector operator has the
same form (4.4b) irrespective of the medium in which
light is propagating.

The spatial derivatives are given through the momen-
tum operator (2.13b). To evaluate them, we first calcula-
tion the commutators of ¢; and hj with the energy-
density operator inside a dielectric

PO 1 25 4hh Ne1=22%5 (a.6a)
[u,ej]=§;21,[(€ele—1+ th_1,€j1= y (4.6
and
A S](l)j A
[@,h;]1= €@ - (4.6b)
The spatial derivatives are then given by
ae; A A L@
—672—l[G,ej]:—lSjT{(hJ)+—(hj)_}
194
= 4
vl (4.7a)
and
ah; A~ wjE o
—az—=—1[G,hj]=—lsj7 (@) —(e;)_}
€ 9 .
=7 4.7b
cot’ .70

Clearly, Egs. (4.7) have a form identical to that of the
classical Maxwell equations (4.3), indicating that the
Maxwell equations are implicit in the structure of the
operators (4.1), and correspond simply to their equations
of motion. This conclusion is, of course, trivial when ap-
plied to the free field, since the electric and magnetic field
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operators were defined by solving the Maxwell equations
in free space. However, Egs. (4.7) indicate that this con-
clusion is much more general, and applies also to propaga-
tion through matter. That is, although the operators €;
and h are initially defined for the free field, their equa-
tions of motion under the Hamiltonian and momentum
operators of the form (2.13) are valid also inside a materi-
al system, since they reproduce the Maxwell equations. It
is therefore possible to describe the temporal evolution
and spatial progression of the electromagnetic field inside
a material within the framework of the quantum-
mechanical equations of motion. Alternatively, the
Maxwell equations inside the material may be solved
quantum mechanically through the same algebraic tech-
niques of second quantization that permit the solution of
the equations of motion for Bose operators.

To this end we note that the commutators of ¢ e; and h
with the energy-density operator (4.6) have the same form
as the equations of motion for the momentum and posi-
tion operators under the Hamiltonian of a harmonic oscil-
lator with a change in its mass, from m to m/e. The
solution to this problem is well known: Diagonalization
of the Hamiltonian yields the renormalization of the oscil-
lation frequency due to the mass change. The same
method can be applied to the solution of the Maxwell
equations (4.7). Diagonalization of the energy-density
operator should give the renormalization of the wave vec-
tor due to refraction.

V. REFRACTION AND REFLECTION

We consider the free-space electromagnetic field quan-
tized inside a large volume under periodic-boundary con-
ditions. If the cavity of quantization is filled with a linear
dielectric material, the electromagnetic energy-density
operator is given by Eqgs. (2.3), (2.2), and (3.2) as

——(E2+H2+417-XE )

OO

1

- 5.1
7 2 (5.1)

(e6_j+hih_;j+amxee_;)
where, as discussed in Sec. III, the cross terms are elim-
inated when dealing with the field inside a large volume.
Substituting ¢; and hj in terms of the free-field Bose
operators, the jth component of the energy-density opera-
tor can be written as

0= gb*b +bT b —2mx (b~

(5.2

Thus, inside a dielectric, the energy-density operator # is
not diagonal when expressed in terms of the free-field
operators. This implies that the free-field states are not
momentum eigenstates in the dielectric, since the linear
polarization introduces a coupling between the free-field
+j waves.

The energy-density operator # may be diagonalized
through a Bogolyubov transformation which permits us to
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express Eq. (5.2) in terms of refracted-wave operators.
This transformation consists of the application of a uni-
tary operator of the form

e”ﬁ , (5.3a)
where ¥ is a real number, while R is an anti-Hermitian
operator of the form

j j

J
(5.3b)

It relates the refracted-wave creation (annihilation) opera-
tors ﬁj/ (ﬁj) to the corresponding free-field operators
through

§;=e—Vﬁb\;e”ﬁ:(cosh‘y)i)\;—(sinhy)g,j ,  (5.4a)

Bj=e~"Rpe"R=(coshy)b;—(sinhy)b T ;,  (5.4b)
and

b]=e"RB e ="R—(coshy)B [+ (sinhy)B_;, (5.5a)

by=e™RBe~7R=(coshy)B, +(sinhy)B1, . (5.5b)

Substituting Eqs. (5.5) into Eq. (5.2) we can eliminate the
off-diagonal terms (the cross products of +j and —j
operators) for

'y:-}:ln(l—kmr)():%lnn (5.6)
to obtain
~ na)j AtA At A

2V

where n is the refractive index. The eigenvalues of the
energy-density inside the dielectric are thus increased by a
factor of n with respect to the corresponding values in
free space, as in the classical case (2.15d). The momen-
tum operator is then given by

Cl@,—a_)=3 K;BB, (5.8)
J
with K;=nk;. The spatial progression of the refracted
wave is given by Eqgs. (3.10) and (5.8) as
= inz

EJ(Z)ZBJQ

(5.9)
as expected from classical considerations. We note that in
this formalism the exact form of the refractive index as a
square root arises from the nonperturbative treatment of
the antiresonant terms in Eq. (5.2). These terms have the
form E;g :j _H;j[';_j, oscillate rapidly at a frequency of
2wj, and do not conserve energy to first order. However,
if these terms are neglected, the refractive index becomes
n =1+42mX [by inspection of Eq. (5.2)], which is the re-
sult of first-order perturbation theory, and is valid for
small X.

The unitary operator (5.3) that diagonalizes the energy
density relates all refracted-wave operators to their free-
field equivalents, through Egs. (5.4) and (5.5). Thus, the

electric and magnetic field operators inside the dielectric
can be obtained by inserting Egs. (5.5) into Egs. (3.2) as

172
~ 2w ~ ~
Ez)=3 —i Ll B]-B_) (5.102)
; nV
and
D) 172
~ TR ; A~ N
Hzn=3 —is; | = T+B_;).  (5.100)
J

Similarly, the Poynting vector operator inside the dielec-
tric is given by

A C(l)j Ata At oA
§= 3 S B]B-BLB_) (5.11)

j(>0)

so that the Hamiltonian can be calculated through Eq.
(2.13a) as

#=3wBB;. (5.12)
J

Thus, the temporal evolution of the refracted wave is

given by

—iw;t

Equations (5.8) and (5.12) show that both the Hamiltonian
and the momentum operator are diagonal in the
refracted-wave basis set. The refracted-wave Hamiltonian
retains the same eigenvalues as the free-field Hamiltonian,
whereas the eigenvalues of the refracted-wave momentum
operator are renormalized by a factor of n with respect to
the corresponding free-field eigenvalues. This is, of
course, in accord with the well-known result of classical
optics, that inside a linear dielectric the frequency of a
time-harmonic electromagnetic wave retains its free-space
value, whereas its wave vector is changed by the refractive
index. Thus, Egs. (5.8) and (5.12) describe completely the
propagation of the electromagnetic field inside a dielec-
tric, yielding the results expected from classical optics.

One of the basic problems of classical optics is the
treatment of a vacuum-dielectric interface. This problem
has been addressed through the conventional formulation
of quantum optics,” by first redefining the radiation
modes so that the new modes consist each of three seg-
ments, representing the incident, reflected, and transmit-
ted (possibly evanescent) waves; the new modes are then
quantized in a manner analogous to that of the free-space
modes. However, the mode redefinition requires the full
classical solution of the wave equation at the interface, im-
plying that the spatial progression of the light waves in-
side the dielectric is still addressed within a classical
framework. We shall show that the relationship between
the free-field and refracted-wave operators permits a
rigorous quantum-mechanical treatment of the vacuum-
dielectric interface. We note, however, that since in this
paper we consider only one-dimensional propagation (and
consequently normal incidence on the interface) we do not
get evanescent wave solutions except, of course, when the
refractive index is purely imaginary as in the polariton
problem.

We now consider that the volume of quantization of the
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electromagnetic field consists of two half-spaces separated
by a plane interface at z=0, perpendicular to the direction
of propagation of the plane-wave modes of the field. The
— z half-space is empty (free space) so that the free-field
energy and momentum operators (3.8 and 14) are applic-
able to it, while the + z half-space is filled with a linear
dielectric, so that the refracted-wave energy and momen-
tum operators describe propagation in it. We consider a
forward-going wave packet of finite extent, so that it is in-
itially totally within the empty half-space, and can thus be
described completely in terms of free-field operators.

If the interface is such that the refractive index varies
gradually between 1 and n, so that reflections are elim-
inated, then the forward-going wave packet enters the
dielectric with no loss. The smooth variation of the re-
fractive index can be formalized as an “adiabatic switch-
ing” of the interaction term proportional to X in Egs. (5.1)
and (5.2), so that when the wave packet enters the dielec-
tric all free-field eigenstates in the — z half-space go over
to the corresponding refracted-wave eigenstates in the
+ z half-space. Equivalently, the free-field creation (an-
nihilation) operators for each mode go over to the corre-
sponding refracted-wave operators. We may thus consid-
er the behavior of each mode across the interface separate-
ly. In particular we examine the case in which each mode
in the empty half-space is in a coherent state (in the ¢ =0
quadrature). To simplify notation in what follows we ex-
amine only the +j modes. When the wave packet enters
the refractive half-space, it will still consist of a superpo-
sition of modes excited to a coherent state,

s Ay Y
—1a(bj+bj) —za(Bj+B )

J }0> >
(5.14)

la;)=e |0)—|a;)=e

where |0) is the free-space vacuum in the — z half-space,
and the refracted-wave vacuum in the + z half-space.
Such states have quasiclassical properties in that they
present a nonzero expectation value for the electric and
magnetic field operators; in particular, in the refractive
medium their values may be obtained through Egs. (5.10)
as

J

i)

—iath, +b _
talb;+b ; |0>—>]GT,UR>=€

la;)=e

Clearly, the corresponding expectation values of the elec-
tric field satisfy

2

= E;, (5.19a

r= M )
n—1

Exr=——7"E 5.19b

R n+1 I ( 9)

(where the subscript R denotes the reflected wave), while
the mean photon numbers (or energies) verify

4n

N 5.20a)
(n+1)2 7 (5.20a

Nr

—ia{[2Vn)/tn+ DB +B D+ [tn— 1/ + DY _+5 1 )

2 172
A on
Er=(d|E|a@)=2a an (5.15a)
and in free space as
2 172
A~ @ ;
E;={a|E|a)=2a : , (5.15b)

where the subscripts I and T refer to the incident and
transmitted fields. Equations (5.15) imply that

Er=E;/Vn (5.16a)

as in the classical equations (2.15b). Similarly, for the
magnetic field Eq. (5.14) gives

identical to the classical Egs. (2.15¢). It is easy to verify
that the mean number of photons in the mode, the energy,
and the energy flux do not change, while the energy densi-
ty and momentum are multiplied by the refractive index.
Ordinarily, a sharp vacuum-dielectric interface entails
an abrupt discontinuity in refractive index from 1 to n
across the interface. When the wave packet reaches the
interface, its jth component is reflected into the —j free-
field wave and/or is transmitted into the + j refracted
wave. The behavior of the wave packet due to the sudden
change in the momentum operator at z=0 can be treated
within the “sudden approximation”: The free-field waves
get projected onto the refracted waves. We may calculate
this projection through Egs. (5.4), which can be rewritten

as
~t 2Vn a4 n—1 |»
= i b_; 5.17
b; n+lB’+ w1 |27 (5.17a)
~ 2Vin 4 n—1 |rt
b;= B; b_; .
I — i+ n 1 —j> (5.170b)

where we have used the explicit expressions for coshy and
sinhy through Eq. (5.6). When a coherent wave packet
reaches the interface, it gets split into a transmitted and a
reflected coherent wave packet,

|0) . (5.18)

2

n—l N (5.20b)

n+1

R=

giving transmission and reflection coefficients for the
field and for the energy identical to the corresponding
classical coefficients (2.14).

Equations (5.17) imply that the negative-frequency part
of the incident electric field wave projects onto the
negative-frequency part of the transmitted wave and onto
the positive-frequency part of the reflected wave. Conse-
quently, as in Eq. (5.18), both the negative- and the
positive-frequency parts of the electric field operator are
necessary to describe reflection within this formalism,
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even though the positive-frequency part (which corre-
sponds to the annihilation operators) may give zero con-
tribution to the description of the incident wave in terms
of photons.

A single photon, that is, a wave packet created by a sin-
gle excitation of the electric field (e.g., dipole emission of
one quantum) in the jth free-field wave,

(bj+b))j0)=b]|0), (5.21a)
will give at the interface
2Vin 8 st n—1 4 ~ 4
—(B;+Bj)+—(b_;+b _; 0
n+1( i+ J)+n+1( j+b ;) | 10)
2V 4+ n—1nx4
= B;|0 b_;10), 21b
n 1 210 Tl 10), (521

that is, it will be transmitted with a probability given by
the classical energy-transmission coefficient, or will be re-
flected with a probability given by the classical energy-
reflection coefficient.

Similarly, a wave packet created by a double excitation
of the electric field (e.g., formally by a term quadratic in
the electric field),

(b;+b]12(0)=b6]10)+|0), (5.22a)
may split in three different ways at the interface,
4 1 2
no oatat n— NS
—F—B;B;|0 b b 10
(n+1)27 7100+ n+1 b —10)
20n —1WVn 44
(n_uB}bijlonlO), (5.22b)

(n+1)?

that is, both photons may be reflected or both transmitted,
or one photon may be reflected and one transmitted, each
process occurring with the probability of the correspond-
ing product of the classical reflection and transmission
coefficients. A more thorough examination of two-
photon (nonlinear) processes will be given elsewhere.’
These results demonstrate that the diagonalization of
the energy-density operator for a linear medium is
equivalent to the solution of the quantum-mechanical
Maxwell equations, and permits a quantum-mechanical
description of linear propagative phenomena, reproducing
the results of classical optics. In particular, our formal-
ism gives a quantum-mechanical theory of the refractive
index as the parameter that renormalizes the momentum
eigenvalues in the medium and describes the spatial pro-
gression of the refracted waves. The quantum-mechanical
description of propagation through the momentum opera-
tor permits us also to address the problem of a medium
interface through the standard techniques of quantum-
perturbation theory, and gives a successful quantum-
mechanical description of reflection and transmission of
the electromagnetic field at an interface. Within this
quantum-mechanical formalism, the entity reflected or
transmitted at an interface is not the photon, but rather the
electric and magnetic fields that create it, as in classical
optics. This seemingly paradoxical result is due to the
fact that in the conventional picture of the photon as an
eigenstate of the number operator, only the negative-

frequency part of the field is considered, while both in the
classical and in the quantum versions of the Maxwell
equations, propagation and boundary conditions are for-
mulated for both the positive and the negative parts of the
fields simultaneously.

Before closing this section we shall point out the close
relationship that exists between the classical phenomenon
of refraction, and the recent considerations on quantum
mechanical “squeezing,” that is, on the creation of states
of the electromagnetic field which exhibit a quantum-
mechanical noise level (in one quadrature) below that of
the vacuum fluctuations. The unitary transformation
(5.3) that diagonalizes the energy-density operator inside a
refractive material is precisely the “two-mode squeeze
operator” introduced for describing a class of two-photon
coherent states’ that exhibit nondegenerate squeezing.!'
This transformation relates free-space waves to refracted
waves through Egs. (5.4) and (5.5), and this means that
free-space number eigenstates (photons) are related to re-
fracted wave eigenstates through

le >refr:e_yR ‘ Nj >free s
‘Nj >free:e7/R | Nj >refr s

where N; is a positive integer or zero. In other words, re-
fracted photon states are two-mode squeezed states of the
corresponding free-space photons, and vice versa. In par-
ticular, the refracted-wave vacuum (N;=0), when ex-
pressed in terms of free-space eigenstates, consists of a su-
perposition of all two-mode number eigenstates where
both modes are equally excited,

(5.23a)
(5.23b)

—ytbb_—bTbt
‘O>refr:e Y(b] - I0>free
B coslhy > tanh"y [NjN e, (5.24)
N=0

and has thus a structure identical to that of the output of
an ideal two-photon device. However, Eq. (5.24) has no
physical significance in the time scales of quantum optics,
since the free-field photons that appear in it are produced
by energy nonconserving terms, and constitute therefore
virtual states. In other words, inside a dielectric there is
no experiment that can detect free-space photons and thus
there is no way to investigate the consequences of Eqgs.
(5.23) and (5.24) regarding squeezing. To clarify this
point, we look at the quantum noise characteristics of the
refracted-wave vacuum as measured in a hypothetical ex-
periment that mixes the + j and —j modes with a local
oscillator on the surface of a photodetector in the dielec-
tric (notwithstanding the geometrical restrictions of one-
dimensional propagation) and detects the two quadratures
of the resulting photocurrent. If free-space photons were
detectable inside the dielectric, then the two-mode
quadrature-phase amplitude operators relevant to such an
experiment would be

i) (5.25a)

(5.25b)
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whose variances for the refracted-wave vacuum are

. 1
refr{0 | AG; |0>refr=5;<%, (5.26a)
etr{0 | AGy; | 0) =2 >+, (5.26b)

2

where n is the refractive index. Similar variances would
be obtained for refracted coherent states, indicating that if
the free-field could be measured inside a dielectric the
noise that is in phase with the signal would exhibit, fluc-
tuations below those of free-space vacuum (A=), while
the noise level in quadrature with the signal would be
higher than that of the vacuum fluctuations. However,
inside a dielectric we can only detect refracted waves
whose electric field operators are given by Eq. (5.10).
Since a photodetector is a photon number or energy
measuring device, Eq. (2.14f) implies that the relevant
quadrature-phase amplitude operators inside a refractive
medium are

Bu=——5B]-B . (5.27a)
321.:—\/1—5(13}3_1-) : (5.27b)

which give identical variances for both quadratures,
refr<o | A/J)Ij 1 O>refr:refr<o I A//3\2j I O>refr: ';‘ >

meaning that squeezing due to refraction is not observ-
able.

(5.28)

VI. CONCLUSIONS

The conventional theory of quantum optics rests on a
set of basic assumptions, such as the following.

(1) The field is quantized as a set of quasidiscrete
modes inside an empty (vacuum) cavity with periodic
boundary conditions.

(2) The total energy of the field (its Hamiltonian) is
given by the integral of the electromagnetic energy density
over the physical volume of the cavity in assumption (1).

(3) The dynamical behavior of the field may be calcu-
lated by applying the Hamiltonian obtained in (2) to the
proper superposition of modes, corresponding to the ini-
tial conditions of a given problem.

These assumptions permit a successful treatment of the
electromagnetic field in vacuum, as it interacts with ma-
terial points representing emitters, absorbers, or detectors.
At the same time, however, these same assumptions are at
the root of the shortcomings of conventional quantum op-
tics. In particular, it is impossible to treat directly the
spatial progression of a wave under these assumptions,
since the Hamiltonian formalism in (3) can only deal with
the time dimension. The calculation of spatial progres-
sion is avoided by fixing the spatial characteristics of the
modes defined in (1) to the proper form, and then calcu-
lating only the temporal evolution of a wave packet com-
posed of these modes, traveling like a train on predeter-
mined tracks. This is in contrast to the treatment of
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propagation in classical optics, where spatial differential
equations can be set up to calculate explicitly the spatial
progression of the field, including the determination of its
mode structure. The difficulties associated with spatial
calculations in quantum optics are even more pronounced
when examining propagation through bulk matter, since
in that case its basic assumptions break down. In particu-
lar, there is no prescription on how the periodic-boundary
conditions in (1) get modified upon introduction of a
medium, while at the same time assumption (2) gives a
change in total energy of a traveling wave when a polariz-
able material is present, a result that is at variance with
the actual behavior of the electromagnetic field.

These difficulties may be overcome by qualifying or re-
formulating these assumptions, and thus extending the
scope of quantum optics to include the description of pro-
pagative phenomena inside a medium. The new assump-
tions are the following.

(1') The periodic-boundary cavity constitutes an open
volume permitting flow through its boundaries, and is a
device for dealing with traveling waves in infinite space
(where the modes are standing waves vanishing at infini-
ty). We may postulate that, upon introduction of a linear
medium in infinite space, the dimensions of the periodic-
boundary cavity get modified so that the number of wave-
lengths it contains remains unchanged. This insures that
periodic-boundary conditions still hold, and establishes
the right correspondence between the free-space and
refracted-wave modes of infinite space.

(2') Since quantization is done in a “flow cavity,” the
total energy of the field corresponds to the energy flux.
The same holds for the total momentum of the field, the
momentum flux being given by the energy density.

(3’) The temporal evolution of the field is given by the
Hamiltonian (2'), while its spatial progression can be cal-
culated through the momentum operator given in (2').
This permits us to treat on the same footing both the tem-
poral and the spatial coordinates of an electromagnetic
wave.

The simultaneous use of the Hamiltonian and the
momentum operators defined according to (2') yields
spatial-temporal equations of motion for the electric and
magnetic fields, having a form identical to that of the
classical Maxwell equations. This confirms the validity of
assumptions (1')—(3’) and implies that the formalism
based on them is not subject to the limitations of conven-
tional quantum optics, but can also treat medium-
dependent propagative phenomena quantum mechanical-
ly. Thus its use should permit a rigorous description of
quantum propagative phenomena, as for example spon-
taneously initiated (noise-driven) stimulated processes,
which are usually treated through classical propagation
theory. In classical theory initiation is produced by a sta-
tistical noise field, which in essence simulates quantum-
mechanical uncertainty.

For propagation through a linearly polarizable medium,
the quantum-mechanical Maxwell equations can be solved
exactly through second quantization operatorial tech-
niques. In particular, diagonalization of the energy densi-
ty (or momentum) operator inside a refractive medium
gives directly the refractive index, the renormalization of
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the wave vectors (i.e., the momentum eigenvalues) and the
corresponding change in the spatial structure of the field
modes. This treatment can readily describe all refractive
phenomena, such as reflection and transmission at an in-
terface, as well as the propagation (i.e., spatial progression
and temporal evolution) of an electromagnetic wave in a
refractive medium. In the diagonalization of the momen-
tum (energy-density) operator, all the terms resulting from
the different products of positive- and negative-frequency
parts of the field have to be taken into account to describe
refraction: In the expansion of the refractive index as a
power series of the susceptibility, only the first-order term
is due to the energy-conserving (nonoscillating) field
terms. All higher-order terms result from rapidly oscillat-
ing, energy-nonconserving products of positive- or of
negative-frequency-field terms.

To obtain a correct description of propagative phenom-
ena, the contributions of both the positive- and the
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negative-frequency parts of the electromagnetic field have
to be treated on the same footing, even if one of the two
parts may be redundant in some situations. In particular,
in the description of the field in terms of photons, the
positive-frequency part is usually dropped, since it corre-
sponds to negative-energy photons, or equivalently to pho-
ton annihilation in the vacuum. However, in the descrip-
tion of reflection and transmission of the field at an inter-
face, if the positive-frequency part of the incident wave is
neglected, the reflection of photons from a dielectric sur-
face cannot be described.

The fidelity with which this quantum-mechanical treat-
ment of linear propagation reproduces all the results
known from the classical treatment of refraction demon-
strates the validity of our approach, based on the momen-
tum operator. In the next paper in this series we shall use
the momentum-operator approach to treat propagation
through a nonlinearly polarizable medium.
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