RAPID COMMUNICATIONS

PHYSICAL REVIEW A

VOLUME 35, NUMBER 1

JANUARY 1, 1987

“Robust” bistable solitons of the highly nonlinear Schrodinger equation

R. H. Enns and S. S. Rangnekar
Department of Physics and Theoretical Science Institute, Simon Fraser University,
Burnaby, British Columbia, Canada V5A 156

A. E. Kaplan
School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907
(Received 6 August 1986)

We found that for some highly nonlinear Schrédinger equations (as contrasted to the cubic
equation) the criteria of stability of solitary waves against small and large perturbations do not
coincide, which results in the existence of “weak” and “robust” solitons, respectively. We have
shown that bistable solitons, predicted earlier by Kaplan [Phys. Rev. Lett. 55, 1291 (1985)], are
robust for some particular nonlinearities and, therefore, physically feasible. We have also suggest-

ed a general criterion for robustness of solitons.

Solitons, by definition, are stable solitary solutions of
nonlinear wave equations. These equations and their soli-
tons result from many problems in the theory of elementa-
ry particles, nonlinear optics and electrodynamics, plasma
physics, hydrodynamics, biology, etc. It is well known, for
example, that the nondegenerate solitary-wave solutions of
the cubic nonlinear Schrodinger equation (which has
many applications in nonlinear optics) are stable against
both small and large perturbations; in particular, two such
singular solitary waves survive their collision, with their in-
dividual energies and momenta conserved after the col-
lision,! i.e., they are solitons. Since the cubic nonlinear
equation is the most famous of the nonlinear Schrodinger-
like equations studied so far, the distinction between these
two types of stability has never been, to the best of our
knowledge, clearly drawn in the literature. Very often for
such (and other)? nonlinear equations, the conditions of
stability from small-perturbation analysis are automatical-
ly regarded as universal criteria for soliton existence.
However, this issue becomes increasingly important, espe-
cially in application to highly nonlinear Schrédinger equa-
tions with their functions of nonlinearity drastically dif-
ferent from the simplest known cubic nonlinearity. It has
been recently demonstrated by Kaplan? that for a certain
class of nonlinearities, bistable (and, in general, multi-
stable) solitary waves can exist which carry the same ener-
gy but have distinctly different profiles and speeds of prop-
agation. The issue of the stability of these new solutions is
of prime importance for their physical feasibility.

In this Rapid Communication we show that the stability
against small perturbations alone (as well as instability
against large perturbations alone) does not provide a
comprehensive description of stability of solitary-wave
solutions of highly nonlinear Schrodinger equations. In or-
der to explore this issue, we introduce here the notion of
“robust™ solitons as distinct from “weak’ solitons in the
sense that the latter are stable against (sufficiently) small
perturbations, whereas the former are stable against any
possible perturbation, including large perturbations; in

" particular, perturbations in the form of collisions with oth-
er solitary waves. (Solitons of a cubic Schrédinger equa-

kR

tion are robust in this sense.) By studying a wide variety
of nonlinear models, many of which exhibit bistability for
certain ranges of the parameters, we have found nonlinear
models which exhibit robust (in particular, bistable
robust) solitons as well as models which exhibit weak soli-
tons. Some of them also have solitary solutions which are
unstable against any perturbations. We shall further sug-
gest a general criterion for “robustness,” which is valid for
arbitrary nonlinear models. The fact that “robust” bi-
stable solitons of the highly nonlinear Schrddinger equa-
tion are possible may prove to be of significant importance
for such nonlinear optical applications as fiber-optics com-
munication with undistorted pulses,* compresssion of opti-
cal pulses,*® and optical switching and bistability,® and
may prove to stimulate the search for the materials and
mechanisms with appropriate nonlinearities. Examples of
such higher-order nonlinear mechanisms are light-induced
phase transitions and multiphoton resonances (see, e.g.,
Ref. 3).

The generalized nonlinear Schrédinger equation? for the
complex electric field amplitude E for one-dimensional
pulse propagation is

2i9E/8z +%E Jax*+Ef(|E|?) =0, 1)

where f(|E |2) is an arbitrary function of the intensity
I=|E |2 Here z <z, z, being the distance coordinate in
the direction of propagation, while x is proportional to
t —z1/vg, t being the time variable and vg the group veloci-
ty. The same equation governs two-dimensional self-
trapping.® The first three invariants (i.e., quantities in-
dependent of z) of Eq. (1) are found to be

J1=f_:Idx s
L=i [ (BEF—ccdx @
J3=fjw[|Ex|2—L1f(s)ds]dx .

corresponding to conservation of the total power, total
“transverse” momentum, and “transverse” energy of the
field, respectively; they are consistent with the first three
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conservation laws! for the cubic Schrédinger equation,
when f(I)xI. We used J; and J3 to check the numerical
accuracy of our computer simulations. For the purpose of
studying collisions, solitary-wave solutions of Eq. (1) of
the form

E(x,z)=U(x —wz)exp(idz/2+iwx)

are sought, where U = | E | is a real function satisfying the
condition U— 0 as |x | — oo, & is a real constant, and w
is playing the role of a (real) velocity parameter. The re-
sulting equation for U is of the form

d*U/dx*+Ulf(U?) —-4§1=0 , 3)

with §=86+w?. All of the analytic results obtained earlier
by Kaplan? now follow with & replaced by §. We now con-
centrate on the stability issue, particularly for those f(I)
which yield bistable solitons. We designate the total
power J, for the particular case of a solitary solution as
P -=f_: U?dx, where P(8) can be determined® directly
without explicitly solving Eq. (3) for U(x). Bistability
occurs when the P vs J curve is “N shaped” or, equivalent-
ly, 5(P) is “S shaped.” As illustrative examples of models
displaying bistability with both robust and weak solitons,
we consider here (1) the polynomial model f=a;l
+ay03—asl’ with a,a2,a3>0 and (2) the “linear +
smooth-step” model, f=al for I <Io All—1—pyu)
I3/I?] for I = Iy with @, A>0, p=al¢/A, and 0<pu <1.
The first model corresponds to Eq. (13) of Ref. 3(a), while
the second is a generalization of Eq. (10) of the same
reference. These two models will illustrate the central
points and conclusions reached from studying’ a large
number of nonlinear functions f(I).

(1) The polynomial model. To build a polynomial
model with bistability present, one should note that for
f=al", with a and n > 0 one can analytically show that
the power P~ (§)Yn=12 For n=1 (cubic Schrédinger
case), dP/d6> 0, for n =3 it is negative, etc. For a <0
the opposite sign applies. Thus, for the polynomial model
f=aI+ayl®—asI’, an N-shaped P (§) curve will result
by suitably adusting a;, a;, and a3 with each of the three
branches of the N associated with one of the terms in
fU). For this model, P and U(x) cannot be obtained
analytically. To obtain the solitary profiles, Eq. (3) was
integrated numerically for different values of & using a
standard fourth-order Runge-Kutta scheme. The area
under the U? curve then gave us P as a function of §. For
a given value of the ratio R =a,as/a$, a universal power
curve results if (a;+/as/a;)/2P=p is plotted against
[\/(as/as)/a,16/6.=pB, where 6. is the value of & at
which dP/d5— o. Bistability was found to occur for
R =0.08, Fig. 1 showing the p(8) curve for R =0.04. In
this case 6 =2.62. Lowering the ratio R increases the
size of the “dip” in the p(B) curve but does not affect the
conclusions reached about stability. Kaplan® had suggest-
ed a general stability criterion for arbitrary f(I), namely,
that stable solutions should correspond to those portions of
the p(B) curve for which dp/dB >0 (or dP/d5>0) and
vice versa. He further suggested that in the context of bi-
stability, the stability should be tested by allowing solitary
pulses with the same value of p but different values of B to
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FIG. 1. Normalized power p vs the parameter 8 for the poly-
nomial model for R =0.04 and §,=1.5. The points labeled a, b,
and c¢ correspond to three different possible solitary-wave solu-
tions with the same p==0.83. Inset shows stability of the
solitary-wave solution corresponding to ¢ against a (sufficiently)
small perturbation. Mesh size: Ax =0.08 for all plots,
Az =5%107% The pulse reappears on the opposite edge due to
the use of periodic boundary condition.

collide and see whether the pulses emerged unchanged or
not.

In a preliminary numerical study, Enns and Rangnekar®
had found that this stability criterion was satisfied for the
smooth-step model f=A(1—13/I%),] = I,, and zero for
I <Iy proposed by Kap_}an,3 this model having a stable
upper branch for B=J§/A=p,=0.15 and an unstable
lower branch for g < ;. From the bistability viewpoint, a
more important test’ is to study the collision between two
solitary pulses belonging to the upper and lower branches
of a model (e.g., the polynomial model) for which both
branches have dp/dp > 0. In Fig. 1, the three points la-
beled a, b, and ¢ correspond to different B values (0.027,
0.218, and 0.724, respectively) with the same p(==0.83).
According to the above criterion, solitary-wave profiles
corresponding to a and ¢ should remain stable under col-
lision, but the one corresponding to b should be unstable.

To study the collision process, Eq. (1) was simulated nu-
merically, using the same explicit scheme with periodic
boundary conditions as in Refs. 8 and 10. Although dif-
ferent speeds could be (and were) assigned to colliding sol-
itary waves, for convenience |w | =5 for the pulses in all
plots presented here. In the lab frame w > 0 ( <0) corre-
sponds to a velocity less (greater) than vg. The numerical
accuracy was determined by monitoring the invariants J,
and J3, Eq. (2). In all our computer runs, max | AJ/J; |
was better than 1.5% and max | AJ3/J3]| better than 5%.

Figure 2 shows the collision between solitary pulses cor-
responding to the points a and ¢ in Fig. 1. The smaller
pulse (a) remains unchanged after the collision; however,
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FIG. 2. Collision between solitary waves corresponding to
points a (Eulse initially on left) and ¢ (on right) of Fig. 1 with
R =0.04, §,=0.056, 5, =1.5, Az =1073,

the larger pulse (c) clearly disperses, i.e., is not stable
against collision with the smaller pulse. When pulses cor-
responding to b and c collide (not shown), both pulses were
observed to completely flatten out after the collision, the
behavior being expected for the middle one, but again, not
for the larger pulse. All combinations of possible collisions
and ratios R were considered, the general conclusion being
that solitary pulses belonging to the upper (positive-slope)
branch are not stable against large perturbations (in the
form of collisions) even though dp/dB > 0. A similar un-
stable behavior had been observed for sufficiently large
pulses by Cowan, Enns, Rangnekar, and Sanghera"’ (see
their Fig. 4) for the nonlinear model f=al+a,I?
(ay,a;> 0) for which dP/d§ is positive everywhere (no bi-
stability present). What about stability against (suffi-
ciently) small perturbations? The inset of Fig. 1 shows
that for a sufficiently small perturbation (in this run just
numerical noise, but also valid for collision with sufficient-
ly small pulses) the solitary pulse corresponding to c is
stable. Similarly, the solitary-wave profile of Fig. 4 of
Ref. 10 was also found to be stable against a small pertur-
bation (even against non-negligible perturbations). There-
fore, all of them are weak solitons. Indeed, for all models
studied, the following was found to be universally true:
dP/d6>0 guarantees stability against (sufficiently)
small perturbations. It is a necessary but not sufficient
condition for robustness of a soliton. On the other hand,
dP/d& <0 guarantees unconditional instability®® (as will
be illustrated for the next model).

Since the question remains unanswered about whether
one can ever have stability against large perturbations for
twosolitary waves with the same power and both with
dP/dé> 0, we returned to the smooth-step model intro-
duced in Ref. 3 and studied for stability in Ref. 8. We
reasoned that since in this model the upper branch was al-
ready stable against collisions in our numerical runs,
perhaps it would be possible to splice a lower stable branch
onto the smooth-step model. This led us to the linear +
smooth-step model, the point being that f «I (for arbitrary
I) yields the cubic nonlinear Schrddinger equation with
known soliton solutions. It should be noted, however, that
modification’ of this model by including a quadratic term

in I for I <1, did not alter the conclusions.

(2) The linear + smooth-step model. For this model,
Eq. (3) is exactly integrable,’ yielding solitary-wave pro-
files in terms of hyperbolic and trigonometric functions.
The power formula, P=P(§) [or p=p(B), with
p=P~/A/Iy and B=5/A] is also readily found. For u =0,
these formulae reduce to those of the smooth-step model in
Refs. 3 and 8. The curves in Fig. 3 show how p varies as a
function of u. Bistability occurs for u < 0.42. Again we
can select three points for the same p, e.g., a, b, and ¢ on
the x4 =0.1 curve with 8=0.031, 0.065, and 0.4, respec-
tively, all corresponding to p==6.97. Figure 4(a) shows a
collision between pulses corresponding to c¢ (the large
pulse) and a (the small pulse). Both pulses, after collision,
appear to be identical to the input profiles, i.e., they are
quite stable. Further, like solitons of the cubic
Schrodinger equation, ! the pulses corresponding to a and ¢
are found to be able to survive collisions with themselves;
they are typical robust solitons (which is also confirmed by
simulations of collisions with large nonsoliton pulses).’
An example of this robust behavior is given in Fig. 4(b),
where two large pulses corresponding to ¢ remain un-
changed after the collision. The pulse corresponding to b,
on the other hand, was found to be unstable against col-
lisions with pulses corresponding to a and c. Indeed, any
point on the p(B) curves with dp/dB <0 was found to be
unstable against infinitesimal perturbations as can be seen
in the inset of Fig. 3, where the solitary wave correspond-
ing to the point b’ (8=0.032) on the x =0.05 curve begins
to radiate after colliding with a second pulse too small
(B=10"12) to be seen in the plot. For all combinations of
collisions and all u values (including u > pc.), it was found
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FIG. 3. Normalized power p vs B for the linear + smooth-step
model for different u values. The points @, b, and ¢ on the
1 =0.1 curve all correspond to p==6.97. Inset shows instability
against collision of a solitary wave corresponding to point 5’ on
the 4 =0.05 curve with a solitary pulse too small (8=10712) to
be seen in the plot. Parameters: A=Ip=1, Az =3x1073,



FIG. 4. Typical collision results for the linear + smooth-step
model. (a) For solitary waves corresponding to points @ and ¢ on
the u=0.1 curve of Fig. 3. Pulse c is initially on the left, a on the
right. (b) For two solitary waves corresponding to point ¢ on the
u=0.1 curve of Fig. 3.

that those pulses corresponding to dp/dB > 0, were stable
against collisions, i.e., it is possible to create a nonlinear
model for which robust bistable (for u < u¢) solitons are
possible.

Results such as these raise the question of what general
class of bistable models can robust solitons occur for.
Consistent with the above models and many others that we
have studied,” we would suggest the following criterion for
robustness. Solitary waves are robust solitons (i.e., stable
against both small and large perturbations) if (a)
dP/d5 > 0, stability against (sufficiently) small perturba-
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tions (this necessary condition has already been discussed
at length), (b) f(I)/I>=0(1) as I — oo, stability against
collapse (“self-focusing”), and (c) f(I) is a non-negative
and nondecreasing function for I >0, stability against
dispersion.

Condition (b) prevents the occurrence of “self-focusing
singularities” which occur!! for f ~aI" (a > 0) for large I
for n=2. It excludes, e.g., the model f=aI+a,l?
(ai,a;>0) for which explosive behavior occurred.'®!!
Condition (c) is suggested as a sufficient condition and
may be somewhat stronger than is actually needed; we in-
troduced it to rule out dispersive models such as the poly-
nomial model discussed above and the model with a, <0
examined by Cowan et al.'® For the latter, “quasisoliton”
behavior was observed in the collision process but, in gen-
eral, accompanied by an appreciable radiative peak or
background. Radiation is associated with dispersive ef-
fects. If f(I) decreases sufficiently at large I, then the
derivative terms of Eq. (1) will predominate and it is well
known that these terms tend to disperse or spread pulses.

In conclusion, for highly nonlinear Schrédinger equa-
tions we have (i) demonstrated the necessity to distinguish
between stability against. small and large perturbations,
(ii) introduced the concept of robustness for solitons and
suggested a criterion for robustness, and (iii) most impor-
tantly shown that bistable robust solitons are possible.
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