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Pair creation by an intense linearly polarized pulse in the vicinity of a nucleus is considered. It is

shown to be negligibly small for all laser intensities for essentially all frequencies. Some novel

theoretical effects are obtained from the relativistic generalization of the ponderomotive potential.

I ~ INTRODUCTION H =N f d r P (a p+Pm+ V)g+H, +H;„, . (2. 1)

An ultra-intense laser pulse propagating in a near vac-
uum experiences a variety of absorptive processes which
degrade its energy. One of these is the creation of an
electron-positron pair in the vicinity of a bare nucleus.
However, the cross section for this process at optical fre-
quencies or below is so small at any laser intensity as to
make it completely negligible. It may be the smallest
(nonzero) cross section on record. It does however exhibit
some very interesting features for the theorist which are
probably reflected in other processes which couple relativ-
istic charged particles to intense laser fields. These are
detailed below.

If the laser is circularly polarized then the pair must be
created with a very large relative angular momentum
since a very large number of photons, each with angular
momentum R, will be absorbed. This will create a large
angular momentum barrier between the particles which
will make the cross section even smaller. We therefore re-
strict ourselves to a linearly polarized laser and at the end
compare with previously obtained results for circular po-
larization. '

The first problem in the calculation is the creation pro-
cess itself. Perturbation theory (for about 10 photons) is
out of the question. It is avoided by a transformation of
the QED description of the field to a classical one via the
"phase representation " of the laser model. The interac-
tion with the Coulomb field of the nucleus is treated in
first order and the resulting "Fermi golden rule" form is
obtained. This exhibits some very peculiar forms largely
due to relativistic propagation of the charged particles in
the laser field in Volkov states. For example, the relativ-
istic generalization of the ponderomotive potential causes
some very surprising distortion of the particle kinematics
so that absorption of extra photons (in some cases) actual-
ly reduces the energy of the emerging particles. The de-
tails of this and other effects are presented in the next sec-
tion. The reader who wishes to avoid the details of the
calculations is urged to skip to the discussion fo11owing
(2.26) and to the final result following (2.39).

Here, V= Ze /r i—s the interaction of the charge parti-
cles with the (infinitely massive) nucleus and N is the nor-
mal ordering operator. The laser field energy is

H, =coN =era a, (2.2)

H;„,=eN d r aA r (2.3)

where the vector potential is
1/2

A= E(eik r&+e. —ik rat)2K
V

(2.4)

The remaining symbols have their usual meaning. The
occupation number of the laser mode (N) is assumed to be
very large and the unitary transformation to the phase
representation for the laser mode gives

1/2
1 8a=e '~ N+—
I

=e ' N' 1 — +
2N t)P

(2.5)

and its Hermitian conjugate so that

(2.6)

All but the leading term of (2.6) is neglected with the re-
sult that

H =N f d r gtI [pa+eA(r, g)]+Pm+ VI&—ito
a

(2.7)

where

and

A(r, it ) =E/co cos(k.r —P) (2.8)

where N is the number operator for the laser mode and
the interaction energy is

II. OUTLINE OF THE CALCULATION E=(8srcoN/V)'i e (2.9)

Our starting point is the QED Hamiltonian of the
electron-positron field coupled to only the laser mode of
the electromagnetic field (fi=c = 1)

is the equivalent classical field strength. The c number
Nto has been dropped from (2.7) since it has no dynamic
effect. The Schrodinger equation
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i —H 0=0~ B

Bt
(2.10)

where az ——e /A'c=(137) ' and Io ——0.88X10' W/cm .
The phase term is

can be written, with the transformation 8=/ co—t, in the
form Sq, (v) =kq, x f dv'C (v')+ —x q f dv'C(v')

~ B
~
——H 0=0,
Bt

(2.1 1)

where

(2.16d)

where

H =X f d r gtIa [p+e A(r, cot+8)]+Pm+ V]g .
v = cu( t —k.r) . (2.16e)

i —a [p+e A(r, ~t)] —Pm Xq, (r, t) =0B
(2.13)

(2.12)

Here, 0 enters only as an unobservable phase and may be
eliminated by a shift in time.

The electron-positron field can be expanded in the com-
plete set of Volkov states which satisfy

The function C(v) is a generalization of the cosine occur-
ring in (2.8). It is supposed to include the envelope of the
laser pulse. We shall eventually go to the limit of a very
long pulse in which case C(v) will become cosv. Finally,
Zq, . is the matrix part of the plane-wave Dirac state.

The electron-positron field can be expanded in this
complete set

which are orthonormal, q, i =1,2
Xqi~qi+ g X q ibqi

q, i =3,4
(2.17)

f d r Xq, (r, t )X&,'(r, t) =5;; 5(q —q') .

These states can be written

(2.14)

Aq' m (Eq kq)' (2.16a)

where k is the (z) propagation direction of the laser pulse.

g t=o"(k X x) —ia.x,
2

x=eE/2m', x = 4aFz & z Ry I
i6co Ip

(2.16b)

(2.16c)

Xq,
——(2~) [I+iraq, C(v)g .]

X exp [ i [q r Eq, t —Sq—;(v) ] [Zq;, (2.15)

where Eq ——+(m +q )'r, the plus sign being used for the
spin states labeled i =1,2 and the minus sign for i =3,4.
q is the momentum of the particle outside the pulse. The
other factors are

where in the usual way aq,. is interpreted as an electron
destruction operator and bq, as a positron creation op-
erator. Then the lowest-order matrix element of H (2.12)
between a particle vacuum and a state with one electron
(q, i) and one positron (q', i') is

(qi, q'i'
~

H
~

0) = f d r Xq, (r, t) i + V X. q,'(r, t),
Bt

(2.18)

where we have used (2.13). The first term describes the
transition in the absence of V which will vanish since the
energy-momentum conservation laws forbid this transi-
tion. The second term, proportional to V, gives the ma-
trix element of interest and the time integral of this term
is the lowest order (in V) S matrix. After some algebraic
calculation this can be written as

2
dk' C' "

(2~)'

V V

X exp i —(k,' —q, —q—,') —4bz dv'C (v') b& dv'C(v)—

X [(V,+q;)'+«, +E, q, q,')']—— (2.19)

where the k,' arises from the Fourier transform of V and
qz is the part of q perpendicular to the propagation direc-
tion and

2
b, =—x.(qA, q

—q'A.
q ),

and now only positive energies occur in A. (2.16a). We de-
fine the matrix products

A;" (q, q') =Zq, .m (n)Z q,', (2.21a)

with

bz —— x (Aq+Aq ),2'
(2.20) m(0)=1, m(1)= i(A@+A. gt—),

m (2)= —Xqi(,q gg
(2.21b)
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If C(v) is taken to be cosv then the remaining integrals
can be performed

4~i Ze
Sq q + 27ro(Eq+Eq +2cobq Nco)

(2~)

q;„=mx (1+2x )

Eq,„——m (1+x )(1+2x )

such that

(2.27a)

2

n=0
(2.22)

N;„= (1+2x )' (2.27b)

For small x (2.16c), this becomes the expected result,

(2.23)

g'"~(b, ,b, )=f (cosO)"

X expi ( NO+ b ) sin 0+b q sin2O),

(2.24)

where

D = ( q~ +q,
'

) + (E~ +E~ —q, —q,
' )'

and we define modified Bessel functions

(2.27c)

where Up e E /4m co is the nonrelativistic ponderomo-
tive potential. However, when this expansion is not per-
missable the number N will decrease for increasing E~ for
Eq (E;„,a surprising result.

The total transition rate for all possible numbers of
photons can be gotten as

&=+2rr f d qd q'6(E&+Eq +2cobq Nor)—

which have been studied previously. The T matrix for
the process is obtained from Xt. '+~ T

2 N
1

2
TN (2.28)

Sz z '= —2mi g o(Eq+Ez +2mhz Nco)Tv—(qi, q'i)

with the result

(2.25)

where the spin trace arises from the sum over polarization
of the particles and T& is given by (2.26). For a YAG (yt-
trium aluminum garnet) frequency N;„will be of the or-
der of 10 so we may convert the sum to an integral and
the result is

2 2

T&(qi, q'i') =—,—g A;; (q, q')g ~(b, b, ) .
4~Ze 1 (n) I (n)

(2~) D „()
(2.26)

2m f d qd q' 4vrZe

(2~) D

(2.29)

Some unusual aspects of the problem emerge at this
point. First, D ' is the Fourier transform of the poten-
tial. In the usual cases it is evaluated at the momentum
transfer to the particles. The first term in (2.23) is just the
square of the perpendicular part of the momentum
transfer but the second term contains the energies and so
is different. These arise from the parts of cos(cot —k.r)
which go beyond the dipole approximation. They are the
dominant terms for small q and q'.

The energy 6 function in (2.22) gives the number of
photons absorbed as a function of the final state of the
particles, q and q'. Note the appearance of 2cobz (2.22),
which is the relativistic generalization of the ponderomo-
tive potential. The photon number is larger than
(Ez+Ez )Ice because the particles are created inside the
pulse and so have oscillatory kinetic energy in addition to
that due to their translational motion. This effect has also
been interpreted as mass shift of the electron due to dress-
ing by the laser field. The sum of these two kinetic ener-
gies is not conserved as the particles are left behind by the
pulse. This phenomenon has been encountered before. It
is due to the fact that the amplitude of the pulse is neces-
sarily time dependent and so is the ponderomotive poten-
tial which governs the average motion of the particle.

We may also ask for the minimum number of photons
which must be absorbed to create the pair. The minimiza-
tion of Eq+E~ +2cub2 with respect to q and q' occurs at
q =q' with q pointing in the —z direction and

where, Eq. (2.21),

T"" =tr (2.30)

(2.31)

where the sum runs over the two saddle points of

0= NO+ b ~ sinO+ b2sin20,

for which I ~0. This results in

(2.32)

1/2

O
~

t(g2 g2) —)/4—
Xcos R + —, tan —+nN (2.33)

where cosO, is the (complex) saddle point obtained from
6'=0 and we define

The large value of I/cu may be exploited for the
evaluation of g (2.24). This has been done previously by
Reiss and we may simply paraphrase his results. There is
no real stationary phase point in the integral of Eq. (2.24)
so we resort to the method of steepest descents. This re-
sults in
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cos8& ——
~

cosH&~ e'

e" i, , =A+is .

(2.34a)

(2.34b)

that it is good for qz but that such an expansion for q, is
very slowly convergent. Then only the qz /m expansion is
made in I with the result

These may all be expressed in terms of two real parame-
ters

(2.37a)

——=(Eq+Eq )/2mx (A,q+r(.q ),1

2b, 2

bi =x.(qA,„—q'Aq )/2mx(kq+r(q ) .

(2.34c)

(2.34d)
where

+1 ln2' m(Aq+Aq )

(2.37b)

(+1 +P
—1+ +p
2

I =(2/+ 1) ln
2b2

Then the necessary relationships are
I /2 1/2

8'q =(m +q, )'r, r(.q
=m (8'q —q, ) (2.37c)

These are independent of qi. The requirement that
I' '~ 0 leads to the restriction x (2/e for the validity of
this expansion. We also get

[9'(k 2)+ —Pl+1—)+p(29'+k)]
1/2 ' 1/2

/+1 g —1

2 2

(2.34e) I'"=q&C +qj C —) (x.(qkq —q'Aq ))

where

(2.37d)

where

$+1
2

1/2

+8' ~

m(Aq+A. q )

1C= ln4' +q

3 kq(8'q+8'q )

m(Aq+Aq )
(2.37e)

A +8 =128bzp(g —7) ),
~

cos8i
~

=g,
tan@= ——(g —q2)'" .

7l

(2.35) y=[2mco(Aq+Xq )] (2.37f)

and C is gotten from C by interchanging q and q'. In all
the other factors of (2.36) we set qzqz ——0. The remaining
qz, qz integrals are straightforward. The remaining in-
tegrals take the form

A simple examination of (2.34e) and (2.20) shows that I
is of order m /co ~) 1. Somewhat more extensive algebraic
manipulations are required to show that I ~0 so that—(2m /co)I
(2.29) is proportional to a factor e where I —l.
This is the main reason that 8' the pair creation rate per
nucleus, is so extremely small.

We proceed with the evaluation of W by using (2.33)
and noting that R is also of order m/~ so that the last
factor in (2.33) oscillates rapidly. But g'"Iv appears bi-
linearly in 8' so this factor can be averaged by
cos (R . )~—,. Then W can be written

3 3 21 f d qd q' 2Ze 2r(A2+B )—
rrco (2~)3 D

X [T +2rIT '+gT" +2(2r) g)T—

f f dq, dq,'e f(q„q,'), (2.38)

where f is a function which does
The integral is evaluated by
minimum of I' ' which occurs
where p is obtained from

x =(1+e ")exp( —cothp) .

not depend upon m/co.
expansion around the
at q, =q,'=q=m sinhp

(2.39)

2 2 ~ In in 4O'= Z aF e '"e "cosh psinh p
m

&& [(2 cosh@ —sinhp) —4e "sinh p]

For x =10 this yields p=0. 2 which substantiates the
remark that q, is almost relativistic ( —0.2m) even at such
small values of x . Again the integrals are straightfor-
ward with the result:

T12+g2T22) (2.36)
&( [2cosh@+ sinhp+ 7 sinhp, coshiue" ]

This is a function of the two parameters m/~~)1 and x
(2.16c), which is both frequency and intensity dependent.
The fact that I )0 for all values of these parameters
shows that 8'-e for any laser intensity, no matter
how high. For lasers available now we may take Ace-1
eV and I—10' W/cm which yields x =10 . Then it
is reasonable to attempt a nonrelativistic expansion (in
q/m) of the integrand in (2.36). The surprising result is

X [2 coshp+ sinhiM+ 3sinhp coshpe" ]

where

2I,„= e "cothp .(0] 2m

CO

(2.40)

(2.41)
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2p= ln
X

2 2
ln

X

—2

+ 0 ~ ~ (2.42)

—sx &0~The result is of order e ' /sec for Z =100 for the
numbers quoted above. Evidently this is not of practical
interest.

In order to compare our result for a linearly polarized
laser with that for the circularly polarized laser, ' it will be
sufficient to compare only the dominant factor,
exp( —2I' „), with the analogous one occurring there.
However, I should first point out the essential difference
between the two calculations. It is that the modified
Bessel functions appearing here (2.24) are replaced by the
ordinary ones in the circular polarization calculation.
This occurs even in the nonrelativistic domain and is due
to the fact that the 3 term in the Hamiltonian is a con-
stant for circular but not for linear polarization. The
dominant factor in (2.40) arises from the steepest-descent
treatment of the "Bessel" functions and so it is not
surprising that a difference exists.

For small x, (2.39) can be inverted as

so that

2m
e =exp 2 5

ln
X2

—
3

(2.43)

For similar conditions Yakovlev' gives [Eq. (33)]

exp
2m 1 1

ln +ln ln
$2 g2

(2.44)

where g =e Folmca in our notation. If the circularly
and linearly polarized lasers have the same intensity then

g =x /2. Then for small x, (2.43) is much larger than
(2.44) because of the large value of m /ca.
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