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Relativistic effects on giant resonances in electron-impact double ionization
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The electron-impact double-ionization cross section for Fr+ is calculated in the distorted-wave
Born approximation. A giant resonance in the 5d subshell ionization-autoionization contribution to
the cross section is found to be quite sensitive to changes in the double-well potential caused by rela-
tivistic effects on bound-state wave functions.

Double ionization is an important electron-impact ioni-
zation mechanism for heavy atomic ions. Recent stud-
ies' of electron ionization in the xenon isonuclear se-
quence have found that the ratio of double to single ioni-
zation can vary from 0.2 to 0.7 as a function of electron
energy. The increased likelihood of double-ionization pro-
cesses in not only xenon ions but also in many other heavy
atomic ions has important consequences for the modeling
of the time evolution of ion state populations in a plas-
ma.

Contributions to the electron-impact double-ionization
cross section can be made by the following collision pro-
cesses:

g-+gq+~g q+ ++/-+g-+g-
and

e +A'+ (A" + "+)*+e +e

g (q+2)++ (2)

The first process is called direct double ionization and the
second is called ionization-autoionization. The further
processes of excitation —double-autoionization and
resonant-recombination —triple-autoionization can also
contribute to the double-ionization cross section. For
most heavy atomic ions the largest contribution to the
electron-impact double-ionization cross section is made by
ionization-autoionization. If we assume the branching ra-
tio for autoionization of low-charge state atomic ions is
close to unity, predicting the double-ionization cross sec-
tion reduces to a calculation of the relevant innershell ion-
ization cross sections. Thus insight into the validity of
single-ionization theory can be made by comparison with
the growing number of crossed-beam double-ionization
experiments.

For Fr+ the electron-impact double-ionization cross
section is dominated near threshold by contributions from
the 5d innershell ionization-autoionization process. The
5d ionization cross section for Fr+ is found to be strongly
affected by a shape resonance in the l =3 scattered elec-
tron continuum. Previous calculations ' of the 4d and 4f
ionization cross sections for various heavy ions have
found similar giant resonances. In the following para-
graphs we will show that relativistic effects play a strong

role in determining the strength of giant resonances for a
very heavy atomic ion like Fr+.

The electron-impact ionization cross section may be
calculated in a distorted-wave Born approximation. The
average-configuration cross section is described by a triple
partial-wave expansion of the first-order Born scattering
matrix element. An integration is performed over the
possible distribution of final-state energy between the
scattered and ejected electrons. The maximum interfer-
ence approximation of Peterkop' is used to describe ex-
change between the two final-state electrons. The bound-
state orbitals needed to evaluate the Slater radial integrals
found in the cross-section expression are calculated using
a wave-function code developed by Cowan. " We used ei-
ther the standard Hartree-Fock method (HF) or the
Hartree-Fock method with relativistic modifications
(HFR), which includes the mass-velocity and Darwin rela-
tivistic corrections within modified differential equa-
tions. ' The continuum-state orbitals needed to evaluate
the Slater integrals are obtained by solving the radial
Schrodinger equation in the distorted-wave approxima-
tion. A local semiclassical potential' is used for the ex-
change interaction in the distorted-wave equations. Al-
though the major relativistic effect on the continuum or-
bitals is the relativistic modification of the target distort-
ing potentials, a mass-velocity potential is also included in
the relativistic formulation of the distorted-wave equa-
tions.

The results of distorted-wave Born calculations for the
electron-impact double-ionization cross section of Fr are
shown in Fig. 1. The dotted curve in Fig. 1 is an estimate
of the direct double-ionization process only, obtained us-

ing a binary-encounter approximation calculation. ' The
threshold energy for double ionization of Fr+ is calculat-
ed to be 54 eV. The solid curve labeled HF in Fig. 1 is a
nonrelativistic calculation for the total cross section in-
cluding the contribution from Sd ionization-
autoionization. The HF threshold for Sd ionization is
78.2 eV. The solid curve labeled HFR in Fig. 1 is a rela-
tivistic calculation for the total cross section including the
contribution from 5 d ionization-autoionization. The
HFR threshold energy for 5d ionization is 71.6 eV, al-
most 7 eV lower than the HF value. An average-
configuration Dirac-Fock calculation, using the wave-
function code developed by Grant, ' yields a 5d ionization
energy of 71.4 eV, in good agreement with the HFR re-
sults.
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FIG. 1. Distorted-wave Born calculations for the electron-
impact double-ionization cross section of Fr+. The dotted curve
is a binary-encounter approximation calculation for the direct
double-ionization process only; the solid curve labeled HF is a
nonrelativistic calculation for the 5d ionization-autoionization
contribution plus direct double ionization; the solid curve la-
beled HFR is a relativistic calculation for the 5d ionization-
autoionization contribution plus direct double ionization.
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FIG. 2. Effective potentials and continuum wave functions
for Fr+. The solid curve labeled VHF is the Hartree-Fock effec-
tive potential; the solid curve labeled PHF is the Hartree-Fock
k,f continuum orbital; the solid curve labeled VHFa is the
Hartree-Fock relativistic effective potential; the solid curve la-
beled PHFa is the Hartree-Fock relativistic k,f continuum orbi-
tal. The energy k, /2=10 eV.

At around 100-eV incident electron energy the
distorted-wave Born results of Fig. 1 differ by about a
factor of 1.5. The difference can mainly be attributed to
relativistic changes in the bound-state orbitals used to
construct the scattering potentials. Although all partial
wave are affected to some degree, it is interesting to exam-
ine in detail the l =3 scattered partial wave because it
contains a giant resonance. The radial Schrodinger equa-
tion for the P& &(r) distorted wave is given by (in atomic

S

units)

1 d k,+ V ff(r) — Pk ~(r)=0
dy 2 (3)

where k, is the scattered electron momentum and V,ff( )r
is an effective local potential. In Fig. 2 the average-
configuration effective potentials and k,f continuum orbi-
tals are plotted for the nonrelativistic and relativistic
cases. The most obvious difference in the effective poten-
tial curves is that the positive energy barrier between the
inner and outer potential wells is slightly larger in the rel-
ativistic case. The difference in barrier heights is caused
by changes in the bound-state orbitals; the largest change
in the outer orbitals is the relativistic contraction of the 6s
orbital from a mean radius of 2.02ao to 1.81ao. The en-

ergy of the scattered wave is 10.0 eV in Fig. 2. As the en-
ergy increases, the nodes of the scattered wave move fur-
ther into the barrier region. Average-configuration effec-
tive potentials for the l =3 ejected partial wave also ex-
hibit a double-well structure. The potential barrier for the
ejected wave is much smaller than that for the scattered
wave; in fact, it is negative. Again, however, the barrier
height in the relativistic case is slightly larger.

Unlike photoionization calculations, the triple-partial-
wave nature of electron ionization complicates the inter-
pretation of what effect any particular node penetration
delay due to a larger barrier height has on the total cross
section for Fr+. Substantial changes are found in the
dominant l; =4, l, =3, l, =3 partial-wave cross section.
The HFR value for the direct-dipole Slater integral,
R"(5dk;g, k,fk,f), is about 40% larger than the HF value
at small ejected energies for an incident energy 20 eV
above threshold. This results in an HFR ejected-energy
differential cross section which is about 2.6 times the HF
value at small ejected energies. Integrating over all ejected
energies, the HFR value for the l; =4, l, =3, l, =3
partial-wave cross section is found to be 1.4 times the HF
value. Summing over all partial waves, the relativistic 5d
ionization cross section for Fr+ is about 1.5 times the
nonrelativistic cross section in the threshold energy re-
gion.

Electron-ionization calculations ' that go beyond the
average-configuration method, outlined above, to include
either LS term-dependent or ground-state correlation ef-
fects are reasonably successful for moderately heavy ions.
For heavy ions, like Fr+, attempts to go beyond the
average-configuration method are complicated by the
presence of strong spin-orbit splittings. A Dirac-Fock
calculation for Fr+ yields a 5d(J = —, ) ionization energy
of 68.4 eV, while the 5d (J = —, ) ionization energy is 73.4
eV. Atomic structure calculations for high Rydberg
states indicate that a substantial breakdown of LS cou-
pling will occur for ejected electron configurations such as
Fr +5d 6s 6p k,f. Thus it appears that an intermediate-
coupled formulation of the ionization cross section is
needed to go beyond an average-configuration calculation.

In conclusion, the distorted-wave Born calculations for
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the 5d ionization cross section of Fr+ are found to be
quite sensitive to relativistic effects on bound-state wave
functions in the vicinity of a giant resonance. Such sensi-
tivity, combined with the long-standing problem of the
choice of phase between direct and exchange contribu-
tions, calls into question the potential accuracy of such
first-order Born calculations for any giant resonance in
very heavy atomic ions. No doubt future experimental
measurements of the double-ionization cross section in

heavy ions will shed light on some of the problems facing
ionization theory.
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