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Monte Carlo method for scattering reactions
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We propose how to rewrite the scattering solution of the Schrodinger equation in terms of positive
matrix elements of positive operators. These can be interpreted as probability distributions and we

suggest applying a Monte Carlo method for its calculation. We outline the relation between the
probability distributions and 5-matrix elements for scattering reactions.

I. INTRODUCTION

where

0' —'=s lim exp(iKt)exp( iH"t)P"—
f~+ oo

(1.2)

are the corresponding Moiler operators and P" is the
channel projector onto an asymptotic state. ' There are
many different approaches to calculating N-body scatter-
ing matrix elements and amplitudes. One of the most
widely used methods for the description of stationary
scattering theory is the set of Faddeev-Yakubovski in-
tegral equations. ' The latter is a coupled set of nested
equations for Crreen's functions in different subsystems,

The Monte Carlo technique has proven very useful in
many-body physics or systems with many degrees of free-
dom. In particular for lattice-gauge theories, using a
space-time lattice, one has been able to calculate mass
gaps, correlation length, etc.' In nuclear physics, the
Monte Carlo Green's function method has been used to
calculate ground-state binding energies of light nuclei.
The latter method uses the positivity of the coordinate-
space Green's function and the ground-state wave func-
tion. It is based on a reformulation of the Schrodinger
equation for the ground state in terms of positive proba-
bility functions. The Monte Carlo Green's function
method has been devised by Kalos and co-workers.
Other random-number methods have been used to deter-
mine properties of the a particle. '

In this paper we want to propose a formulation of the
scattering problem amenable to the Monte Carlo tech-
nique. Our main purpose is the discussion for the case of
nonrelativistic potential scattering.

The solution of the bound-state problem can be viewed
as the solution of an eigenvalue problem of the Hamiltoni-
an with certain boundary conditions, namely, a rapid
fall-off behavior of the wave function at a large distance.
On the other hand the scattering problem can be viewed
as the solution of an eigenvalue problem with boundary
conditions which reflect the asymptotic states.

Let us consider a scattering process, described by the
full Hamiltonian H, where the asymptotic incoming and
outgoing state is described by H" and H&, respectively.
Let us consider the potential V to be strong and short
ranged. Then the S matrix is given by

which incorporate the boundary conditions. Due to its
complicated structure it is not useful for our purpose to
construct positive probability functions, which determine
the solution.

In stationary scattering theory, the resolvent

G(z) =(z H) ', Im—(z)~0 (1.3)

plays an important role. It obeys the simple resolvent
type of equation

G(z)=G (z)+G (z)VG(z), (1.4)

X exp(iH" T)P", (1.6)

where T denotes a large but finite time parameter.
This approximation has been found useful and the error

was found well under control in the numerical experience
gained from time-dependent scattering calculations in
nonrelativistic few-nucleon reactions' ' as well as in
relativistic-field-theory applications.

Our aim is to relate the S matrix to some positive prob-
ability densities. The problem of calculating the S matrix
is basically solved, if one knows the time evolution
exp(iHT) corresponding to the full Hamiltonian. But in-
stead of trying to express the time evolution in terms of
some positive probability densities, it looks more promis-
ing to express the resolvent G(z) in terms of positive
probabilities.

Hence we relate the time evolution exp(iHT) to the

which could be used to calculate G (z).
However, Eq. (1.4) has the decisive drawback that in

the scattering region, which requires taking the physical
limit z =E+ic, c.~+0 the solution is not unique in the
case for three or more particles due to the existence of dif-
ferent asymptotic states. This was one of the incentives to
construct the more complicated Faddeev- Yakubovski
equations. '" By imposing additional boundary conditions
on Eq. (1.4) the ambiguity can be made to vanish.

In this paper we do not want to go the limit z =E +i@.,
c—++0 because of the boundary-condition problem. We
suggest incorporating the physical boundary conditions by
using the time-dependent Moiler wave operators, given by
Eq. (1.2).

We introduce the following approximation:

'~Q (+T)=exp(+iHT)exp(+iH"T)P", (1.5)

Sit ~S@,( T, —T) =Pit'exp(iHtt'T)exp( —2iHT)
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resolvent G(z) via a Cauchy integral

exp(iHT)= J dz exp(izT)G(z),
1

2&l
(1.7) cr()-(}

where C is a closed contour which can be chosen to have a
finite distance from the real axis. Some care has to be ex-
ercised with regard to closing the contour at the high-
energy "end."

This "end-point" problem can be resolved in two ways.
(i) From the rigorous point of view Eq. (1.7) has a well-

defined meaning, if H is a bounded operator. Thus also
its spectrum o(H) is bounded and lies in the interior of
and at a finite distance from the closed contour C (see
Fig. 1). However, in physical applications the Hamiltoni-
an H is unbounded. It is possible to approximate the un-
bounded Hamiltonian H by a bounded Hamiltonian
H(u), such that H(u) tends to H in the sense of strong
resolvent convergence and the time evolution
exp[iH(u)T] tends to exp(iHT) in the strong sense, when
the approximation parameter u tends to its limit. This
has been proven for a large class of potentials in Refs. 22
and 23. Then if H is replaced by H(u) in the time evolu-
tion and the resolvent, Eq. (1.7) is exactly valid.

(ii) From the practical point of view it seems easier to
keep the unbounded Hamiltonian H, but to approximate
the contour C by Cz which ends at a high-energy cut off
A (Fig. 2). The physical justification for doing so is the
intertwining property of the wave operators and the ener-

gy conservation of the S matrix. This property implies
that an asymptotic state of a sharp energy E& is mapped
on a scattering state corresponding to the point E& in the
spectrum of H and an asymptotic wave packet covering a
finite energy interval [Ei,E&] is mapped on a scattering
state corresponding to the same interval in the spectrum
of H. Thus changing the contour C to Cz at a sufficient-
ly large distance from the interval [E,,Ez] should have
an arbitrarily small effect on the S-matrix element.
Hence we write

FIG. 2. Schematic plot of a spectrum o.(H) which extends to
+ oo with a cutoff contour curve Cz.

there is a positive constant a such that H'=H +a is posi-
tive. Then we continue to work with H'. Then we
proceed to calculate the probability functions P", Q",
R", P, Q, R, the resolvent 6, and the time evolution
U corresponding to H'. The time evolution U~( T)
=exp(iHT) corresponding to the original Hamiltonian H
and the time evolution U~ (T)=exp(iH'T) corresponding
to the Hamiltonian H' are simply related by

U~(T) =exp( iaT)U—~ (T) . (1.9)

A (z)= [[Re(z)—H] +Im(z) [

B(z)= H[[Re(z) —H] +Im(z) ]

Re[G(z)]= —,
' [6(z)+G (z)],

Im[6 (z)]=—[G (z) —G (z)] .
2l

Then one has

(1.10a)

(1.10b)

(1.10c)

(1.10d)

Re[G (z)]= [Re(z) H] I [Re(z) —H] —+ Im(z) ]

This expression is then substituted in Eqs. (1.5) and (1.6)
for the wave operators and S matrix.

In order to express G(z) in terms of positive operators
we define

S@,( T, —T) =Pg exp(iH p T)
2&1

=Re(z)A (z) B(z), —

Im[G(z)]= —Im(z) [[Re(z)—H] +Im(z) ]

(1.1 la)

X I dze " G(z)exp(iH T)P",

which relates the approximate S matrix to the resolvent
G(z). Now we want to express G(z) in terms of some
positive operators.

We assume that H =H + V is self-adjoint and more-
over positive. If H is not positive, then it is reasonable to
assume that H has a lowest-lying negative eigenvalue and

= —Im(z}A (z) .

One can split 6
G(z) =Re[G(z)]+i Im[G(z)]=z*A (z) B(z) . —

(1.11b)

(1.12)

One observes that both A (z) and B(z) are positive opera-
tors, which is based on the fact that a positive function of
a positive self-adjoint operator is positive.

In Sec. V we will exploit this property to construct pos-
itive probability distributions and discuss their relation to
the S matrix. In Sec. III we briefly review the Monte
Carlo method. In Sec. IV we give some concluding re-
marks. In the Appendix we discuss an approximative rep-
resentation of the time evolution.

II. PROBABILITY DISTRIBUTIONS
FOR A CONTINUOUS HAMILTONIAN

FIG. 1. Schematic plot of spectrum o.(H) with a contour
curve C.

Firstly, we set up equations for the positive operators
A (z) and B(z), given by Eq. (1.10a} and (1.10b), which
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uniquely determine the resolvent G(z) for any z off the
real axis via Eq. (1.12).

The resolvent Eq. (1.4) has an alternate form,

G(z)= G (z)+G (z) VG (z)+G (z) VG(z) VG (z) .

(2.2)

G (z) = G'(z)+ G (z) VG'(z) .

Substituting Eq. (2. 1) into Eq. (1.4) one obtains

(2.1) Using Eqs. (1.10)—(1.12), and assuming that the interac-
tion V is self-adjoint, we split Eq. (2.2) into its real and
imaginary parts,

Re[G (z)] =Re[G (z)]+Re[G (z)] VRe[G (z)]—Im[GD(z)] VIm[GO(z)]

+Re[G (z)] V Re[G (z)] VRe[G (z)]—Re[G (z)] VIm[G(z)] VIm[G (z)]

—Im[G (z)]VRe[G(z)] VIm[G (z)]—Im[G (z)] VIm[G (z)] VRe[G (z)],
Im[G(z)]=Im[G (z)]+Re[G (z)] VIm[G (z)]+Im[G (z)]VRe[G (z)]

+Im[G (z)]VRe[G(z)]VRe[G (z)]+Re[G (z)]VIm[G(z)]VRe[G (z)]

(2.3a)

+Re[6 (z)] VRe[G(z)]VIm[G (z)]—Im[G (z)]VIm[G(z)] VIm[G (z)] .

This set of coupled equations can be expressed in terms of the positive operators A (z), B(z), defined by Eqs. (1.10a) and
(1.10b). In order to do this we rewrite Eq. (1.1 la) and (1.11b),

A(z)=—

B(z)=—

Im[G (z)]
Im(z)

Re(z) Im[G(z)] —Re[G(z)] .
Im(z)

(2.4a)

(2.4b)

Substituting Eqs. (2.3a) and (2.3b) into Eqs. (2.4a) and (2.4b) and expressing on the right-hand side (rhs) Re[6(z)],
Im[G(z)], Re[G (z)], Im[G (z)] by A, 8, A, 8 via Eqs. (1.1 la) and (1.11b) one obtains

A (z) =A (z)+2Re(z)A (z)VA (z) B(z—)VA (z) —A (z)VB (z)

+[4Re (z) —
i
z

~

]A (z)VA(z)VA (z) —2Re(z)8 (z)VA(z)VA (z)

—2Re(z)A (z) VA(z) VB (z)+8 (z) VA(z)VB (z) —2Re(z)A (z)VB(z)VA (z)

+8 (z)VB(z)VA (z)+A (z)VB(z)VB (z),
B(z)=8 (z)+ z

~

A (z)VA (z) —8 (z)VB (z)+2Re(z) ~z
~

A (z)VA(z)VA (z)

—iz
i

8 (z)VA(z)VA (z) —iz
i

A (z)VA(z)VB (z) —iz
i

A (z)VB(z)VA (z)+8 (z)VB(z)VB (z) .

(2.5a)

(2.5b)

We define

I (z)=A (z)+2Re(z)A (z) VA (z)

B(z)VA (z) ——A (z) VB (z), (2.6a)

Y1 (z)= VA (z),

X,"'(z)=A'(z) V,

YB (z)= VB (z),

(2.6m)

(2.6n)

(2.6o)

XI (z)=[4Re (z) —~z
~

]A (z)V,

YI (z)= VA (z),

X1 (z)= —2Re(z)B (z)V,

Y", (z) = VA'(z),

X3 (z) = —2 Re(z)A (z) V

Y","(z)= VB'(z),

X4 (z)=B (z)V,

Y4"(z)= VB (z),

X( (z)= —2Re(z)A (z)V,

Y, "(z)= VA (z),

X1 (z) =8 (z) V,

(2.6c)

(2.6d)

(2.6e)

(2.6f)

(2.6g)

(2.6h)

(2.6i)

(2.6j)

(2.61&)

(2.61)

XI (z)=2Re(z)
~

z
~

Ao(z) V,

YI (z)= VA (z),
X (z) = —

~

z
~

'8'(z) V,
(z)= VA (z),

X1 (z)= —iz i
A (z)V,

YB (z)= VB (z),

X, (z)= —iz
i

A (z)V,

YI (z)= VA (z),
Xg (z) =8 (z) V,

Y~ (z)= VB (z) .

(2.6q)

(2.6r)

(2.6s)

(2.6t)

(2.6u)

(2.6v)

(2.6w)

(2.6x)

(2.6y)

(2.6z)

(2.6b) I (z)=B (z)+ ~z
~

A (z)VA (z) B(z)VB (z), —(2.6p)
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Then Eqs. (2.5a) and (2.5b) can be written, by using Eq.
(2.6),

B(z)=I (z)++X "(z)A(z)Y" (z)
a

++X (z)B(z)Y (z) . (2.7b)

A (z) =I"(z)++X "(z)A (z) Y" (z)

++X" (z)B(z)Y "(z), (2.7a)

Now we want to construct positive probability distribu-
tions. Let Iej (1 & 2 denote a complete orthonormal
basis of expansion functions. Then Eq. (2.7) can be writ-
ten in the form (suppressing the summation over a in the
notation)

I
A(z)

I
e. & = &e II"(z)

I
e. &+g&e

I

X"'(z)
I
ek &&ek

I
A(z)

I
ei &&ei

I

Y" (z)
I
e„&

k, l

+X&e
I

X" (z)
I

ek &&ei
I
B(z)

I
ei&&ei

I
Y "(z)

k, l

&e
I
B(z)

I
e„&=& II (z)

I

e &+g&e IX "( )
I
ek) &ek

I
A(z) I ei&&ei

I

Y" (z)
I
e„&

k. l

+g&e IX' (z) Iek)&ei IB(z) Iei)&ei
I

Y (z
k, l

(2.8a)

(2.8b)

We want to use the property of a positive operator C that an arbitrary matrix element can be expressed in terms of posi-
tive matrix elements

&fi I
c If&&= ,

'
&fr+f2 I

c I—fr+f2&——&fi+ifz c Ifi+if2&+
2

&fi I
c If|&+

2
&f2 I

c If2& .

Hence we define the following functions, which are positive for all z, I, n,

P „(z)=&e +e„
I
A(z)

I

e +e„),
Q „(z)=&e +ie„

I
A(z) Ie +ie„),

R'(z)=&e IA(z)Ie ),
P „(z)=&e +e„ IB(z) Ie +e„),
Q „(z)=&e +ie„ IB(z)

I
e +ie„),

R (z)=&e IB(z) Ie ),

(2.9)

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

(2.10fl

which will be later interpreted as probability distributions. We denote the matrix elements of the operators I, L, Fby

0 „(z)=&e IO(z) Ie„) . (2.11)

Now we substitute Eq. (2.8) into Eqs. (2.10). Then we express on the rhs the matrix elements of A and B in terms of
P",Q",R ",Ps, Q,R by using Eq. (2.9),

P" „(z)=I" (z)+I"„(z)+I„" (z)+I„"„(z)

++[X~k(z)+X„"k(z)] ,
' Pk"i(z) ——Qk i(z—)+ [Rk"(z)+Ri"(z)] [ Yi m(z)+ Yi"„"(z)]

k, l

+g[Xm k(z)+X„k(z)] —,Pk i(z) ——
Qk i(z)+ [Rk(z)+Ri (z)] [ Yi m(z)+ Yi „"(z)]

k, l

Q" „(z)=I" (z)+iI" „(z) iI„" (z)+I„"—„(z)

(2.12a)

+/[X";k(z) —iX.",k(z)] —,Pk i(z) ——
Qk i(z)+ [Rk"(z)+Ri"(z)] [Yi","(z)+i&l",."(z)]

k, l

++[X~k(z) iX~k(z)] 2 Pk i(z) ——
Qk i(z)—+ [Rk(z)+Ri (z)] [Yi (z)~+iYi „(z))

k, l

(2.12b)
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R~(z) =I~ ~(z)++X~ k(z) TPk"I(z) ——Qkr(z)+ [Rk (z)+RI"(z)] Y~"~(z)
2

0

++X~ k(z) —,Pk I(z) ——
Qk ((z)+ [Rk(z)+RI (z)] Y( ~(z),

2

P „(z)=I (z)+I „(z)+I„(z)+I„„(z)

(2.12c)

++[X~k(z)+X„k(z)] , Pk ~—(z)——Qkr(z)+ [Rk (z)+R~ (z)] [Y~~(z)+ YI „(z)]
k, l

++[X~k(z)+X„k(z)] , Pk ((z—)——
Qk ((z)+ [Rk(z)+RI (z)] [ Y( ~(z)+ YI „(z)],

k, l

Q „(z)=I (z)+iI „(z)—iI„(z)+I„„(z)

(2. 12d)

+.+[X~"k(z)—iX„k(z)] , Pk ~(z) ——Qkr(z—)+ [Rk (z)+R~ (z)] [Y~ (~z)+i Y~„(z)]
k, 1

0 0

++[X~k(z) —&X„k(z)] , Pk ~(z) ———Qkr(z)+ [Rk(z)+R~ (z)) [YI ~(z)+s YI „(z)],
k, 1

(2.12e)

R~(z)=I~ ~(z)++X~"k(z) , Pk ~(z) ——
Q—k ~(z)+ [Rk (z)+RI (z)] YI ~(z)

k, l

+g Xm, k«) TPk, l(z) Qk, l(z) + [Rk (»+Ri (»l Yi'm (»
k, l

(2.12f)

Equations (2.12) constitute a set of coupled linear equations for the determination of the positive probability distributions
PA QA RA PB QB RB

There are a number of symmetries and relations among these probability functions. From Eq. (2.10) one obtains the
following relations, which holds among the P",Q,R, as well as among the P,Q, R

~mn +nm

Q „+Q„=2(R +R„),
P =2Q =4R

Using Eqs. (1.10a) and (1.10b) which yields

B (z) =HA (z),

a(z) le. &=g&e IH lek~~ek IA«) le. &

(2.13a)

(2.13b)

(2.13c)

(2.14a)

(2.14b)

one can express P,Q,R in terms of P",QR", ,

P~„(z)=g(H~k+H„k) z [P~~(z)+P~„(z)]——[Q~~(z)+Qk"„(z)]+ [2Rk(z)+R~(z)+R„(z)]
2 " 2

(2.15a)

Q~„(z)=g(H~k —iH„k ) ,
'

[P~~ (z) + iP~"„(z—)]——[Q~~ (z) +&Q~„(z)]+ [(1+i )Rk"(z) +R~ (z)+&R„"(z)], (2.15b)
2 "

2

R~ (z) =g H~k , P~~ (z) ——Qk~ (z—)+ [Rk (z) +R~ (z) ]m (2.15c)

A (z) =A (z*),
&(z)=&(z*) . (2.16b)

By definition (2.10) this immediately implies for both sets
Hand B,

(2.16a)

Finally, one has the following symmetry under reflection
of z on the real energy axis. Equations (1.10a) and (1.10b)
yields

P(z) =P(z'),
Q(z) = Q(z*),

R (z) = R (z' ) .

(2.17a)

(2.17b)

(2.17c)

After having solved Eq. (2.12) for P,Q,R ",P,Q, R
one can reconstruct an arbitrary resolvent matrix element
from the probability distributions by using Eq. (1.12),
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(e~
~

G(z)
~
e„)=z* —,P~„(z)——Q~„(z)+ [R~(z)+R„(z)] — , P—~„(z)——Q~„(z)+ [R (z)+R„(z)]

(2.18)

From that the S matrix is obtained by Eq. (1.18).

III. MONTE CARLO METHOD

We want to solve Eqs. (2.12) for the unknown functions
P",Q",R",P,Q,R . Because we would like to be able
also to treat a many-body system, we propose to apply a
Monte Carlo method. The set of Eqs. (2.12) is a set of
coupled linear equations. Monte Carlo solutions of linear
operator equations using Markov chains are discussed by
Hammersley and Handscomb in Ref. 24. However, those
results are given only for cases where the operator of the
linear equation is smaller than one in a certain norm. In
our case we do not assume such a stringent constraint to
hold, because we also want to treat potentials describing
strong forces. However, in our case we know that the
functions P",Q",R",P,Q,R, have in addition the
property of being positive. Thus we suggest applying the
Monte Carlo technique similarly to the Monte Carlo
Green's function method. " The latter technique aimed
to calculate the ground state, and it relies on the fact that
the ground-state wave function (for bosons) is a positive
quantity and hence can be viewed as a probability in a
Monte Carlo computation. The same holds in our case
for the functions P",Q",R",P,Q,R . We write Eq.
(2.12) in abbreviated form as

(3.1)

where P stands for P",Q",R",P,Q,R and P stands
for the inhomogeneous terms in Eq. (2.12). We define a
succession of functions g'"' by

(3.2)

and P is the asymptotic QI"' for large n Now the M. onte
Carlo method is employed to sample sets of "coordinates"
at random from a trial function P' '. We call a set of
"coordinates" v a configuration. For any configuration
v„, and given 1(t'"'(v„), we obtain v„+& and p'"+ "(v„+&)
by sampling E (v„+&, v'„)g'"'(v'„) and adding P( v„+ & ),
which is considered as a density function for the configu-
ration v„+&. The population of a configuration for a
given value n is denoted as generation.

We want to conclude this section with two remarks.
Firstly, one might ask why we have started from the
once-iterated resolvent equation (2.2) instead of the
simpler original equation (1.4). The answer is that Eq.
(2.12) derived from Eq. (2.2) is more suitable for Monte
Carlo purposes than an analogous equation derived from
Eq. (1.4) would have been. In fact, creating a new config-
uration v from an old one v' by Eq. (3.2) proceeds via cal-
culation of the matrix elements IC(v, v'). If we would
have used the equation analogous to (2.2) derived from

(1.4), the kernel K(v, v') would have contained 5 func-
tions, imposing severe constraints on the new configura-
tion which might lead to conAicts with Monte Carlo sam-
pling.

Secondly, we would like to point out a possible source
of error in a numerical calculation. Although the proba-
bility distributions P, Q, R are positive by definition via
Eq. (2.10), the Monte Carlo solution P'"'(v) for a finite-
dimensional configuration, obtained via Eq. (3.2), is not
necessarily positive, because the inhomogeneous term P
and the kernel K allow for negative contributions. This
should be accounted for, e.g. , by choosing a sufficiently
large configuration for the trial function or eventually by
putting negative values of g'"'(v) to zero.

IV. CONCLUSION

We have suggested how to solve the Schrodinger equa-
tion for scattering reactions of many-body systems or sys-
tems with many degrees of freedom. This should be use-
ful in atomic and molecular physics as well as in nuclear
physics (heavy-ion reactions). The basic idea is to calcu-
late the resolvent G (z) for energies z off the real axis, by
splitting G into in positive functions. A set of linear
equations is set up which determines those functions. The
positivity of those functions is an essential ingredient to
render the scheme suitable for application of the Monte
Carlo method, which is an efficient tool to treat many de-
grees of freedom. Finally, we have proposed how to relate
the S matrix of a scattering reaction to the resolvent G (z)
(off the energy axis), namely, by incorporating the scatter-
ing boundary conditions via finite-time Moiler wave
operators and constructing the time evolution via a
Cauchy-type contour integral of G (z).
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APPENDIX APPROXIMATION
OF THE SPECTRAL REPRESENTATION

OF exp(iHT)

In Eq. (1.7) we have related the time evolution
exp(iHT) to the resolvent G(z) via a cauchy contour in-
tegral which avoids the complications when going to the
real energy axis z =E+ic, v~+0. In this appendix we
want to present an alternative approximate representation
of exp(iHT) via a spectral representation, where
z =E+ic. approaches but does not reach the real axis.
We find that the error is small if cT« 1.

The spectral theorem for a self-adjoint Hamiltonian H
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exp(iHT)= f dEexp(iET)P(E) .

We write the spectral projector P (E) formally as

P(E)=5(H E—),

(A 1)

(A2)

We want to approximate the 6 function by a regular dis-
tribution. We use

1 c6(x)= lim-
E~+0 W ~ +p

Substituting Eq. (A4) in (A2), Eq. (Al) reads

exp(iHT) = lim —f dE exp(iET)
1

@~+0 7T (H E) +—E

(A4)

= lim —— dE exp iET Im G E+ic,1

v~+0 7T

(A5)

Compared to the representation via the contour integral
[Eq. (1.7)] where G(z) has to be evaluated for all z values
of the contour, Eq. (A5) has the advantage that G (E +i E)

where the 5 function of an operator shall be understood in
the following sense. Let

~ gE ) denote an eigenstate of H
corresponding to the eigenvalue E'. Then

f dE@H E)
~
qE') f dE~(E E)

~

qg')
~
qE')

(A3)

has to be evaluated only at or in the vicinity of the scatter-
ing energy E. But like in Faddeev-Yakubovski integral
equations of stationary scattering theory one has to take
the limit 8~+0. One might ask the question: How large
is the error for exp(iHT) at a given T if one takes a small
but nonzero value of the rhs of Eq. (A5)'? It can be writ-
ten

dE exp ~ET
1 E,

7T (H E) —+e1,z-
LZT LZT

dz +e —'r dz
2&l c+ z —H c— z —H

(A6)

1 —exp(+ET)
I
« I . (A7)

Taking the limit c~O in (A6) and connecting the curves
C+, C at E=+oo by a traverse line yields again the
Cauchy contour integral representation [Eq. (1.7)] of
exp( iH T).

where C+ denotes the line integral given by z =E +ic,, E:
+ oo ~—ao, and C corresponds to z =E —i c., E:
—ao ~+ oo. The expression (A6) shows that the error is
governed by exp(ET) and exp( —ET), respectively. In oth-
er words, for a finite but large scattering time T one has
to choose the line integral close to the real energy axis,
such that
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