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Two-photon bremsstrahlung
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We present a calculation of the cross sections for two-photon bremsstrahlung in a Coulomb po-
tential. The calculation was done in second-order nonrelativistic perturbation theory and in the
dipole approximation. The potential was taken into account exactly by using the Coulomb
Green's function. The matrix element was integrated analytically as far as possible and then corn-
puted numerically quite accurately. Limiting cases are discussed. Results are presented here for
a special emission geometry. These are compared with the recent experiment of Altman and
Quarles, and large discrepancies are found.

One or more bremsstrahlung photons can be emitted by
an electron decelerated in an atomic collision, though the
corresponding probability decreases rapidly with the num-
ber of photons. This is why all practical interest has been
focused on the one-photon process, which has been studied
in quite some detail. ' On the other hand, the two-photon
bremsstrahlung has attracted a different kind of interest,
being regarded as an example of a multiple-production
process since the early days of quantum mechanics, when
it was first envisaged by Heitler and Nordheim. Besides,
it was realized that it is a typical quantum effect, in the
sense that its probability cannot be estimated unambigu-
ously from classical theory by application of the correspon-
dence principle. Because of the complexity of the calcula-
tions involved, it was only much later that advances were
made toward a quantitative description. Moreover, after
many years in which the effect was an impossible chal-
lenge for the experimental detection capabilities, quite re-
cently an effort was finally made toward its identification.

All calculations done so far refer to the Coulomb poten-
tial, and were'carried out in the relativistic Born approxi-
mation, which is valid at high initial and final electron en-
ergies. Thus, even at high incident electron energies, the
Born approximation is not apt to describe the entire pho-
ton spectrum (namely, its high-energy end, corresponding
to low final electron energies). Within this approximation,
special emission geometries were considered by Zazunov
and Fomin, and by Nadzhafov, but subsequently Smir-
nov presented an intricate analytic formula to cover the
general case. The situation is confused by the fact that
these results do not agree among themselves in the cases of
overlap, neither do their nonrelativistic limits agree with
the simple direct evaluation of the nonrelativistic Born ap-
proximation.

The experiment was performed by Altman and Quarles
and was carried out at x-ray energies. It is of the pioneer-
ing kind, at the limit of present detection capabilities. The
results turned out to be almost three orders of magnitude

larger than the prediction obtained from Smirnov's Born-
approximation cross section. This striking discrepancy
raises questions concerning the applicability of the Born
approximation at the relatively low energies of the experi-
ment, about the correctness of Smirnov's formula, and
about the experiment itself.

In an attempt to shed light on these issues, we now
present the results of a nonrelativistic calculation of the
two-photon bremsstrahlung in a Coulomb potential, done
within the dipole approximation. The validity of the calcu-
lation is therefore restricted to photon energies and elec-
tron kinetic energies sufficiently small with respect to the
electron rest energy mc, and to sufficiently small nuclear
charge Z [(ctZ) «1, where a is the fine-structure con-
stant). This calculation is a natural extension of one we
have recently completed for the case of two-photon stimu-
lated emission and absorption. It evaluates the matrix
element given by second-order perturbation theory with no
approximations, so that the initial and final velocities of
the electron can be arbitrarily low. We have pushed the
analytical calculation as far as possible and have eventual-
ly resorted to a very accurate numerical computation. Our
analytical result represents the analog of that obtained by
Sommerfeld for the one-photon case.

We assume that we are dealing with an electron transi-
tion from initial momentum p; to final momentum pf con-
tained in d Q„and that the two photons have energies co,
polarization vectors e, and propagation unit vectors k
contained in dO (o =1,2). The basic cross section for
the process, defined as transition probability per unit time
interval, per differential energy intervals and solid angles,
divided by the incoming electron current, can be written'

d'o
d co t d co2 d 0 ) d 0 2 d 0,

where M is the transition matrix element. In the nonrela-
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+S(e( vy)(e2 v;)+T(e~ vy)(e2 vf) (3)

where v, =p,/p, (a =i,f), and P,Q,R,S,T are invariant
amplitudes.

We have carried out the integrations involved in Eq. (2)
in momentum space by applying techniques developed ear-
lier. ' After a tedious analytical calculation the ampli-
tudes of Eq. (3) were expressed as one-dimensional in-
tegrals over Gauss hypergeometric functions. A typical
example is P, equal to P =P( Q)t+P( Q)2, where P(Q)
is given in Ref. 8, Eqs. (8) and (9).

This rather complicated analytic result simplifies con-
siderably in a number of limiting cases.

(l) High initial and final electron energies (E;,E/)) 1).
The analytic result reduces in this limit to'

d'o
dcotdco2d Q~d Q2d Q,

a (aZ) (e~ &) (e2 &) py f 2 4
16K co~N2 pr'

with ftt =2k and h=pI —p;. Equation (4) can be ob-
tained also directly from Eqs. (1) and (2) by applying the
Born approximation to the initial and final states of the
electron, as well as to the Green's function. By summing
over the photon polarizations in Eq. (4) we get'

d'a
dcotdco2d Qtd Q2d Q,

[1 —(k, a)'][1—(i2 a)'l (5)
4g co~c02 p;

I

tivistic dipole approximation M is given by

M =&«,',-'
~
(e2 p)G'+'(Q, )(e, .p)

~

u&+')

+&u,',-' ~ (e, P)a'+'(Q2)(e2 P)
~ u,'+'& . (2)

Here P is the electron momentum operator, u&, u&,
+ are

continuum Coulomb states corresponding to tfie indicated
asymptotic momenta and having incoming or outgoing
spherical wave behavior, respectively, and 6&+1(Q) is the
Coulomb Green's operator for energy parameter Q+ie
(for definitions, see Ref. 8). The values of interest for Q
are Q =E; —co (cr=1,2). Conservation of energy re-
quires that E; =Ey+ mI+ co2. Our formulas are written in
Z scal-ed atomic units, i.e., momenta are expressed in
units of Z a.u. , and energies in units of Z %, where A is
the rydberg except when otherwise noted. "

Rotational invariance requires that M can be written as

M =P(et e2)+Q(e~ v;)(e2 v;)+R(e~ v;)(e2. vf)

where B=h/A. Equation (5) disagrees with the nonrela-
tivistic limits of Zazunov and Fomin, and of Smirnov. s'"

(2) Low photon ele-ctron energy ratio for one of the
photons only (co2/E/«1, although co2 itself needs not to
be small with respect to 1; co~ unrestricted). To lowest or-
der in co2 the analytic result for M is M =2co2 '(e2 5)
XM'(pI, p;,e~), where M' is the one-photon bremsstrah-
lung matrix element connecting the electron states of
momentum p; and py, with the emitted photon having po-
larization e~. Thus

d'o
d co~ d co2 d Q ~ d Q2 d Q,

a(aZ)' (e2~)' d'o
4n co2 dco~ d Q~ d Q, '

(6)
where d cr/dco~d Q~d Q, is the one-photon bremsstrah-
lung cross section corresponding to M'. ' Equation (6) is
an extension to our case of the low-energy theorem of
Low' for one-photon bremsstrahlung.

(3) Low photon-electron energy ratios for both photons
(co~/Ey&& l, co2/E/ &&1, although co~, co2 themselves need not
be small with respect to 1). In this case, to lowest order in
co~ and for 0~0, the one-photon bremsstrahlung matrix
element can be written

M'(pI, p;) = (e( h)fc(p;,a),4z (7)
CO&

where fc (p;,6) is the Coulomb elastic scattering ampli-
tude for energy E; [see Ref. 8, Eq. (11)]. Since

~ fc ~

=
~ ftt ~, the fivefold differential cross section Eq.

(6) coincides with Eq. (4) and by summing over the pho-
ton polarizations we again get Eq. (5).'

The number of variables in the fivefold differential cross
section Eq. (1) is too large to keep track of all of them. In
experiment the direction of the final electron momentum
was not recorded, neither were the photon polarizations.
We denote the corresponding fourfold cross section [i.e.,
Eq. (1) summed over e~,e2 and d Q, ] by d o/
d co ] d co2 d Q & d Q 2.

We have first computed the cross section Eq. (1) with
great accuracy (to better than 10 relative accuracy) and
then d o/d co~ d co2d Q ~ d Q2. We have checked that in the
limiting cases (1), (2), and (3) considered above our nu-
merical results go over smoothly into the predictions ob-
tained from the analytical formulas given there.

Of the variety of emission directions k~ and k2 possible,
we shall consider here the special geometry of the Altman
and Quarles experiment: k~ and k2 are perpendicular to

.p;, and opposite to each other (k~ = —k2). For reference,
we give the fourfold differential cross section correspond-
ing to Eq. (5) in this special geometry:

d c3 a(aZ) x 27 5 2+ 3 4+(3 2 5) ln
dco~dco2d Q~d Q2 2n co)co2 64x (1+x) (8)

which is relevant for the limiting cases (1) and (3) above.
We have denoted here x pI/p;.

In Figs. 1 and 2 we represent log~p(Z d o/dco~dco2
&cd Q~ d Q2) for some fixed values of E& and cot, as func-
tion of co2. A common trait of these figures is that all cross
sections are monotonically decreasing with co2. The fastest

I

decrease occurs at small m2, where the cross sections
behave as 1/co2 [see Eq. (6)]. The cross sections are al-
ways enhanced by diminishing co~. In a few cases we have
also shown the limiting formula Eq. (8) (dashed curves).
Its validity is quite restricted, and the error increases to-
ward the upper end of the photon spectrum. '
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