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Dynamical systems: A unified colored-noise approximation
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By use of an adiabatic elimination procedure and a time scaling t =r ' t, where i denotes the
correlation time of colored noise e(t), one arrives at a novel colored-noise approximation which is

exact both for i =0 and i ~. The theory is implemented for one-dimensional flows of the type
x f(x)+g(x)e(t). The approximation has the form of a Smoluchowski dynamics, which is valid
in regions of state space for which the damping y(x, r)—:r 't —r't [f' —(g /g)f] is positive and

large, and times t » r'~2/y(x, r). This novel Smoluchowski dynamics combines the advantageous
features of a recent decoupling theory that does not restrict the value of i, together with those
occurring in the small-correlation-time theory due to Fox. The approximative theory is applied to
a nonlinear model for a dye laser driven by multiplicative noise. Excellent agreement for the sta-
tionary probability is obtained between numerical exact solution and the novel approximative
theory.

x -f(x)+e(t),
(e(t)e(s)) (D/r)exp[ —(

~
t —s (I/r)] .

(la)

(lb)

In one dimension, (1) describes the dynamics without loss
of generality: A possible multiplicative noise structure
e(t)~ g(x)e(t) can always be transformed into additive

Recent work on dye lasers' and the optical ring laser
gyroscope has emphasized the physical role of colored-
noise sources. An already well-known situation in which
strongly colored noise determines the physics is the
phenomenon of motional narrowing in magnetic reso-
nance. Another area of active colored-noise research ad-
dresses escape problems that are currently in the limelight
from both the theoretical and experimental points of
view. In this context, a frequency-dependent friction
mechanism, being coupled to colored noise via the
Auctuation-dissipation relation, can considerably modify
the classical barrier transmission. Except for two-state
noise there exists presently no exact analytical theory for
nonlinear dynamical systems driven by correlated noise.
Thus, one is forced to either perform laborious numerical
studies or to invoke approximative schemes. The common
approximative schemes developed in the recent litera-
ture ' describe only corrections to the white-noise limit;
i.e., they are necessarily restricted to small noise correla-
tion times. Presently, there is only one scheme, originated
by one of the authors' (see also Ref. 2) which does not re-
strict the value of the noise correlation time ~. This novel
decoupling approximation, however, is, by construction,
limited to probabilities with small widths. Generally, this
implies a small noise intensity D. In order to improve on
the present state of aA'airs an ideal approximation scheme
should encompass the advantages of the decoupling
theory, ' but should also accurately describe the behavior
for moderate-to-strong noise intensity, in a way that holds
for the small correlation time theories.

In the following we restrict the analysis to a one-
dimensional dynamical Aow, driven by exponentially
correlated, Gaussian (central limit theorem) noise e(t):

noise, if we only transform the state variable x x
=f"g '(y)dy. Equation (1) is equivalent to the two-
dimensional (Markovian) flow

x+ y(x r)x f(x) =D' 'g—(T' 'i), (3a)

where

y(x r) -r ' '+r' '[ f'(x)l— (3b)

The derivative f '(x) is positive in region—s of local stabil-
ity. Most remarkable is that whenever —f'(x) &0 one
has y(x, r) & 0 for all x and r; and y(x, r) approaches
infinity both for r 0, as well as for i ~. Then the
conventional adiabatic scheme' proceeds by setting x 0.
This conventional procedure gives a multiplicative process;

x -f(x)+e,
(2)./. —+(D'"/.)g(t), &g(t)g(s)) -2b(t —.) .

Because (2) does not obey detailed balance, it does not
present a simplification over (1); i.e., exact solutions are
beyond analytical means both for (1) and (2). Before we
proceed let us emphasize the following requirements of the
new approximation scheme. (i) It must be simple (Fok-
ker-Planck form), enabling direct analytical evaluation.
(ii) It must (hopefully) work for all correlation times r, as
well as for weak-to-moderate-to-strong noise inten-
sity D.

As is well known from the study of adiabatic elimination
of fast variables, "' in the limit r 0 from (2), again one
obtains an exact Fokker-Planck dynamics (Smoluchowski
equation). Thus, we are guided to seek an approximation
which for r~ 0 and r ~ approaches a Smoluchowski-
type limit; i.e., it becomes exact both for r-0 and r
For intermediate ~ values such a scheme is then expected
to give a useful approximation. A theory of this type can
indeed be constructed. First, we eliminate the variable e in
(2) and introduce the new time scale t =r'l2t. This then
yields (caret denotes diA'erentiation with respect to x),
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i.e., a Langevin dynamics

x =f(x)/y(x, z) + [D '"i '/'/y(x, z)]Q(t ) (4a)

driven by Gaussian white noise (Q (t )Q(s )) =28(t —s ), with a corresponding (Stratonovich ' ) Fokker-Planck dynamics
2

W; (x, z) = (I[f(x)/y(x, i)] Dz—'"y'(x, i) y '(x, z)] W;(x, z))+Dz '/
2 [y (x, z) W; (x, i)] (4b)

Note that the effective diffusion coefficient D(x, i) =Di '/ /y (x, i) & 0 always stays positive Its. stationary probabili-
ty is readily found to read, explicitly, '4

t Z

W„(x,i) -N '
~

1 —if '(x)
~ exp[ ——,

' if '(x)/D]exp D ' f(y)dy

-Z 'W t(x, i-0)
~

1 —if'(x)
~
exp[ —

2 if (x)/D] (4c)

with N, Z denoting the corresponding normalization con-
stants. Equations (4a)-(4c) are our main results. The
usual Smoluchowski result (i =0) follows immediately.
For small D we can approximate i'/ y(x, z) 1—i(f'(x)), and recover from (4b) the decoupling
theory;' i.e., we only have to substitute within the (i=0)
theory the diffusion D D/[1 —z(f '(x ))]. It should be
pointed out, however, that the decoupling theory holds for
probabilities of small width(s), independent of the posi
tivity condition y(x, i) & 0; i.e., 1 —zf'(x) & 0. Most re-
markably is the observation that W„(x,i) in (4c) precise-
ly equals W,t(x, z) within the Fox theory; i.e., the recent
small-correlation-time theory which supersedes the con-
ventional small-noise-correlation-time theories. Note,
however, that the Fokker-Planck equation in Fox theory
substantially diff'ers from the Smoluchowski dynamics
(4b) [e.g. , the diffusion coefficient in Ref. 9 takes on nega-
tive values for 1 —if '(x ) & 0; in contrast, D(x, i) in (4b)
is strictly positive]; nevertheless, they possess identical sta-
tionary probabilities.

The dynamics in (4b) (including equilibrium correla-
tions) is thus expected to represent accurately' the exact
colored-noise behavior for times t obeying

t » y '(x, z) =[i ' —i' f']

I

wherein with f '(x ) —2e" & 0 the damping y(x, i) is
positive for all x and ~. Thus, we obtain for the stationary
probability W„(I,i) -W„(x,i) ~

dx/dI
~

(see Ref. 14) the
result

W„(I,i) -Z '(1+2iI)exp[iI(2a —I)/D] W,, (l, i-0)
(7a)

with

Wo (I, i =0) =I 1('/ ' exp j I/Dl— (7b)

This solution has the following behavior: For the critical
noise intensity D =D, =a, W„(I=0, z) approaches a finite
value. For D & D„we have W, (It0, i) =0, while for
D & D„W„(I,i) approaches (an integrable) infinity; i.e.,
W„(I 0, z) ~. For this critical D, value [which coin-
cides precisely with the exact value, D, a (Ref. 17)] we
depict in Fig. 1 the approximative stationary probability
W,t(I, i) in (7), together with the numerically exact sta-
tionary probability (dotted line) evaluated in Ref. 17. The
agreement is remarkably good. In Fig. 2 we show
W„(I,i) for a supercritical D value of D =2. The approx-
imation and the exact result lie within line thickness. De-
viations from the exact result are with z O(1) most pro-
nounced for small I values, I~ 1/4; i.e., for

i.e., t » i/(1 —zf '), and in space regions x obeying
y(x, i)»D '/

~ f '/f ~, particularly within the whole state
space if f ' & 0 for all x. The latter condition follows be-
cause the adiabatic elimination of x requires that the
change of the force field over the characteristic length,
l - y '(x, i)D '/, is small '6 (x indicates the correspond-
ing characteristic value of [y,f ',f( within the length l).

Next we test this assertion with an example widely dis-
cussed in the Laser community.

A dye laser obeys near threshold a multiplicative col-
ored-noise dynamics of the form

I 2(a —III+J2Ie (5)
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With x lnI, (5) can be transformed into additive colored
noise; i.e.,

x 2(a —e")+J2e
From (3a) we obtain with the time scale t = i ' t,

x+ [i—/2+2 l z2 /x]ex 2(a ex) vr2D i/2((zl/2t) (6b)

0.5 1 1.5 2 2.5

FIG. 1. Stationary probabilities for the dye-laser model 'L5)

for the pump parameter a 1 and critical noise intensity
D D, 1, as a function of the noise color i. The approximation
(7) (solid line) is compared with the numerical matrix-continued
function solution (dotted line) of Ref. 17.
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FIG. 2. The stationary probability at a supercritical noise in-
tensity D 2 and pump-parameter value a 1 for various noise
correlation times z. The approximation in (7) and the numerical
exact solution coincide within line thickness. Note the develop-
ment of a local maximum at finite intensity I with increasing
noise color.

y(l, z=l) =1+21-O(I).
In conclusion, we have developed a unified colored-noise

theory which gives surprisingly accurate approximate re-
sults for the noise driven nonlinear dynamics. The theory
holds without restriction on the noise intensity D and
strength of noise color z, only if y(x, z) attains a
sufficiently large (positive) value. If the probabilities are
narrow, the novel approximation gives results equivalent to
the decoupling theory in Ref. 10. Most surprisingly is its
connection with Fox theory. Originally devised as a
small-correlation-time approximation, we now note that it
also actually holds for moderate-to-strong noise color, sub-
ject to the restriction y(x, z) &)D'/

~
f'/f ~. Particularly,

iff '(x) (0, for all x, the (additive) colored-noise approxi-
mation in (4b) holds in the whole state space. Unfor-
tunately, this novel approximation does, with f'(x) )0,
not cover the case of multistability at moderate-to-strong
noise color z, and cannot describe exponentially small (or
large) statistical quantities. 's Presently, we attempt to ex-
tend the adiabatic elimination principle inherent in (3) to
higher-dimensional systems.
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