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Phase dynamics with a material derivative due to a fiow field
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We show that a flow field, which can be either externally imposed or caused by the geometrical
configuration, gives rise to a convective term or a material derivative in the resulting phase equa-
tion. The stationary solutions of this equation are in agreement with recent experimental results
on convection with a through flux and on the flow between two rotating concentric cones (a
modified Taylor configuration). We also discuss the fact that there is no additional independent
dynamic degree of freedom associated with these flow fields.

I. INTRODUCTION

The theory of phase dynamics —the analog of hydro-
dynamics for pattern-forming nonequilibrium systems in
large-aspect-ratio cells, e.g. , for Rayleigh-Benard convec-
tion (in which a thin layer of a simple fluid is heated from
below) or for the Taylor instability (in which the fluid in
the gap between two concentric cylinders is subjected to a
torque by rotating the inner or both cylinders) —has been
developed gradually over the last few years. Shortly after
it was recognized' that a phase diffusion equation is also
applicable to describe the long-wavelength relaxation of a
set of convective roles well above the onset of the instabili-
ty, this prediction was confirmed experimentally for
large-Prandtl-number fluids. Since then the approach
has been generalized to various systems. The influence of
vertical vorticity on convective phase dynamics was eluci-
dated, propagating modes were predicted to occur for a
number of systems, ' nonlinearities in the phase equa-
tions were included, " and the influence of defects
was investigated. ' ' In addition, it has been discussed '

that the concept of phase dynamics should also be applic-
able to pattern-forming systems under the influence of an
external field or an external load such as, e.g., the
Rosenzweig instability in ferrofluids or buckling in metal
plates.

Here we extend the previous lines of thought in a
diff'erent direction. We investigate to what extent there
exists an analog of the convective term or material deriva-
tive which arises in all nonlinear hydrodynamic equations
for variables close to local thermodynamic equilibrium.
Evidently this question is quite subtle for pattern-forming
nonequilibrium systems, since there is no reason to expect
that the density of linear momentum arises naturally as an
additional quasihydrodynamic variable in a phase-dy-
namic description. Therefore we will discuss in Sec. II the
influence of an externally imposed flow field and establish
close contact between some of the predictions and recent
experimental results. ' In Sec. III we discuss a simple
model for the case of an internally generated flow field
and compare its implications with results of experiments
which have been carried out for the flow between concen-
tric rotating cones. ' 's This is followed by a short section
containing conclusions and a perspective.

II. THE APPEARANCE OF A MATERIAL
DERIVATIVE IN PHASE DYNAMICS

In this section we consider the effect of an external flow
held on a one-dimensional set of rolls. We were stimulat-
ed by early experimental observations'9 to consider a situ-
ation where this superimposed flow leads to a change in
the wave vector along the cell and to a stationary situa-
tion.

Since the superimposed flow field v is not an internally
generated quantity, it clearly does not obey an equation by
itself, so that we can focus on the question of how to in-
corporate the eff'ect of this field into the phase equation,
which reads without flow for spatial variations in one di-
mension:'

P=Dii4'xx . (2.1)

Clearly the fact that a stationary situation arises is in-
compatible with a driving term proportional to v in Eq.
(2.1), as this would correspond to a propagation of the roll
pattern which is not observed. ' It is obvious, however,
that such a term would be allowed by symmetry argu-
ments. Since the new term has to break the x —x,—

p symmetry, the lowest-order nontrivial term satis-
fying these requirements and not giving rise to a propaga-
tion of the pattern takes the form v8„&. Formally this
term looks like a material derivative or a convective term
giving rise to the phase equation

(tl, + 8„)Q Dip„„, (2.2)

thus describing a transformation of Eq. (2.1) to a situa-
tion with advection due to the imposed flow field. It is im-
portant to note that there is no additional equation for v,
as is the case for hydrodynamic systems close to equilibri-
um, since v is completely controlled externally.

In the case of a stationary situation the implication of
Eq. (2.2) is easy to see. One obtains a variation Ak of the
wave number k or cell size as one moves along the cell

h, k v

Do

Relation (2.3) ties in nicely with the detailed experimen-
tal results and their thorough discussion by Pocheau, Cro-
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(ai+ vax)& =s& —g I &
I '&+Dii&xx (2.6)

gives near threshold rise to a phase equation of the form
(2.2). That is, in the amplitude equation the flow term
also appears in the form of a material derivative.

quette, LeGal, and Poitou, ' which have been carried out
for convection in an annular geometry with a through Aux.
Fairly close to the onset of the instability and for small
flow rates the authors find that k/Di is independent of the
flow rate and that h, k varies linearly with x along the az-
imuthal direction of the cell over most of its length.

Starting from Eq. (2.2) it is straightforward to incorpo-
rate higher-order effects and nonlinearities along the lines
of Refs. 6 or 11. We obtain

p+ va„p+ ava„„„p+pv (a„p)a„„p

=D„a„„y+D,a„„„„y+E,(a„y)a„„y, (2.4)

or, equivalently,

j+v(I+aa„„+pa„y)a„y

=(D„+D,a„„+E,a„q)a„„q . (2.5)

The higher-order gradient terms and the nonlinearities be-
come more important as the variations in p become more
rapid as they do, e.g. , close to the filling holes.

Using the technique of Newell and co-workers, 3 it is
easy to see that an amplitude equation of the form

Thus, we are led to the following "minimal" model
equation

P
—v +va„p =D ~~a„p, (3.1)

where x is the coordinate parallel to the generating line.
Equation (3.1) has —to the order in the gradients
considered —a structure isomorphic to that obtained for
the displacement field parallel to the density wave in
smectic-A and cholesteric liquid crystals, where in Eq.
(3.1), however, v is the mean-flow velocity. From an in-
spection of Eq. (3.1) it is immediately clear that the first
two terms on the left-hand side can account for the propa-
gation of the vortex pairs whereas the "convective" term
and phase diff'usion can compensate each other to give rise
to a linear variation of pair sizes as in Sec. II. Higher-
order gradient terms and nonlinearities can be added to
Eq. (3.1) in the same spirit. To get a closed system of
equations, one can write down an equation connecting
gradients of v and gradients of p. As for the case of the
Benard convection in simple Auids, this equation is not
dynamic. For the Benard convection this is in agreement
with experimental results and with the amplitude-
equation approach. Since Eq. (3.1) takes a very simple
form, it is highly desirable to test its range of applicability
in detail. Close to the onset of the instability the simplest
possible amplitude equation leading to Eq. (3.1) takes in
one dimension the form, again using the technique
developed by Newell and co-workers,

i+va„W =~a —g ~W I
'~+iWv+D, W„„. (3.2)

III. FLOW BETWEEN CONCENTRIC
ROTATING CONES

In an interesting experiment on a generalized Taylor
configuration, namely, two concentric cones with constant
gap, where the outer one is fixed and the inner one is ro-
tating, Wimmer' ' observed a number of interesting
phenomena. First of all there is always a large-scale flow
parallel to the generating line of the cone as a result of the
fact that the velocity is smaller for bigger cross sections
and thus for the flow which arises at the larger radius and
vice versa.

For the case of a gap completely filled with vortices,
which exists over a large range of values of the Reynolds
number, Wimmer found that the size of the vortex pairs
decreased linearly along the axis of the cones (cf. Fig. 3 of
Ref. 17)—very similarly to the case of the rolls discussed
in Sec. II. In addition, Wimmer found in his experiments
that the vortex pairs were propagating with a constant ve-
locity v in the direction parallel to the generating line. As
the Reynolds number was increased, the velocity of propa-
gation decreased;' the same feature also emerged for a
cone rotating in a cylinder thus producing a variable
gap.

To describe these phenomena in the framework of
phase dynamics we clearly need a driving force to account
for the velocity with which the vortex pairs move and to
obtain a linear dependence of the pair size along the gen-
erating line. A material derivative similar to that dis-
cussed in Sec. II seems mandatory, especially given the
fact that there is also the possibility of a stationary state
as the Reynolds number is increased.

In closing this section we note that there are also experi-
mental results on convection in a rectangular box with
Poiseuille Aow, which indicate that it is possible that the
whole ro11 pattern propagates with apparently no change
in the wave number, thus giving rise to a phase equation
of the form

p =Diary+ av, (3.3)

IV. CONCLUSIONS AND PERSPECTIVE

In the present note we have shown that both external
flow and —in some cases —internally generated flow, can
show up in the resulting phase equations as a convective
term and we have also discussed how this can be linked
with amplitude equations valid close to onset. For the
case of the rotating concentric cones it is highly desirable
to perform additional high-precision experiments to
confirm or modify the picture suggested above, as the re-
sults presented so far have emphasized the qualitative as-
pects of the phenomena observed. In particular, it seems
worthwhile to check in detail the twofold way the Aow

field enters the phase equation, as a convective and as a
driving force.

It seems remarkable that in none of the examples dis-

without a material derivative. Therefore it will be neces-
sary to understand better in which geometries and for
which flows Eqs. (2.2), (3.1), and (3.3), respectively, ap-
ply. A question which goes, however, beyond the scope of
the present Rapid Communication.
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cussed nor in any realistic physical system has there been
any indication of additional dynamic degree of freedom
brought about by an externally imposed flow field or by an
internally generated velocity field. On the contrary, all
the experiments reported so far ' ' can be analyzed
without a velocity field as a dynamic variable.

Finally, we note that the modifications of the phase
equation discussed here are not restricted to systems
showing convective rolls or Taylor-type vortices, but can
also be expected to occur in pattern-forming systems pro-
ducing spirals with a continuously changing pitch which

have been observed in precipitation and solidification ac-
companied by convection.
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