Comments

Comments are short papers which comment on papers of other authors previously published in the **Physical Review**. Each Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Comment on "Molecular-dynamics simulation of excess-electron transport in simple fluids"

Norman Gee and Gordon R. Freeman Chemistry Department, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Received 16 December 1985)

A recent treatment of the saturation drift velocity v_{sat} of electrons in dense, supercritical argon [Leycuras and Levesque, Phys. Rev. A 32, 1180 (1985)] gives positive values of dv_{sat}/dn at $n/n_c = 1.2 - 1.6$, whereas the experimental values are negative in both the supercritical gas and the liquid at these densities [Jahnke, Meyer, and Rice, Phys. Rev. A 3, 734 (1971); Huang and Freeman, Phys. Rev. A 24, 714 (1981)]. Other difficulties are mentioned.

A recent treatment of the saturation drift velocities v_{sat} of extra electrons in dense, supercritical argon¹ does not fit certain features of the experimental data.^{2,3} In particular, the change of v_{sat} with density, dv_{sat}/dn , is predicted to be positive in the density range $n/n_c = 1.2 - 1.6$ (n_c is the density of the critical fluid),¹ whereas it is observed to be negative in both the supercritical gas² and the liquid³ at these densities. Several comments are offered.

(1) At constant density, increasing the temperature to change from the liquid to the supercritical gas increases v_{sat} slightly but does not alter the value of dv_{sat}/dn (Fig. 1, experimental points from Refs. 2 and 3).

(2) Figure 3 of Ref. 1 displays calculated values of $v_{sat} = 400-900$ m/s over the argon density range

FIG. 1. Saturation drift velocity of electrons in argon as a function of density: ∇ , supercritical gas, 155 ±3 K, experimental, Ref. 2; \blacktriangle , supercritical gas, ~155 K, theoretical, Ref. 1; \bullet , coexistence gas and liquid at indicated temperatures, experimental, Ref. 3; --, Ref. 2 as quoted in Ref. 1. 2.69×10^{25} molecule/m³=1 amagat (Leycuras and Levesque response).

n = 9.6 - 14.4 $(10^{27} \text{molecule/m}^3)$. Experimentally, at n = 8.1 - 12.9 $(10^{27} \text{molecule/m}^3)$ a plateau in the drift velocity occurs at 900-600 m/s, at fields $E \approx 10 - 30$ kV/m.³ This appears to be the plateau to which Leycuras and Levesque¹ refer. At higher densities, $n \ge 14.8 \times 10^{27}$ molecule/m³, this plateau does not exist;³ it has collapsed into the long, gentle increase of drift velocity with field that occurs at high fields in argon at all densities.³⁻⁵ The plateau at intermediate fields at $n \le 13 \times 10^{27}$ molecule/m³ is attributed to electron heating by the field and the rapid rise of the momentum-transfer cross section σ_m on the high-energy side of the Ramsauer-Townsend (RT) minimum.⁶ At $n > 13 \times 10^{27}$ molecule/m³ the electron-molecule separation distance is continually too small to allow the RT effect to occur.³

(3) In argon at $n < 13 \times 10^{27}$ molecule/m³ the experimental value of dv_{sat}/dn is negative in both the supercritical gas and the liquid (Fig. 1), whereas that predicted by Leycuras and Levesque for the supercritical gas is positive.¹ Values of v_{sat} in the supercritical gas, displayed in Ref. 2, are included in Fig. 1. No velocity plateau was obtained at $n < 10.6 \times 10^{27}$ molecule/m³;² the S curve attributed¹ to that reference seems to be in error, since there is not an experimental value $v_{sat} = 600$ m/s at 0.0096 atoms/Å³.²

(4) The 10% dip in v_{sat} indicated in the calculated values at *n* near 13.1×10^{27} molecule/m³ is within the reported 10% uncertainty of the calculations.¹ The dip is also too narrow to be credible (Fig. 1). The uncertainties in the calculated results can also be assessed from the earlier report.⁷

(5) In liquid argon near the triple point, where $n=21\times10^{27}$ molecule/m³, a much higher velocity plateau occurs at a much higher field strength: $v_{sat}=8000$ m/s at E=7-9 MV/m.⁵ This plateau does not occur at low densities and is due to a different mechanism than that discussed in the above item (2). The mechanism probably involves inelastic processes of relatively high-energy electrons. The Leycuras mechanism predicted a value of v_{sat} only 50% of the observed.⁷

(6) The model in Ref. 1 includes the assumption that the extra electron is localized on a single argon atom. It attributes the maximum electron-transfer rate, and hence the value of v_{sat} , to the molecule-molecule collision rate. This is contrary to the observation that v_{sat} is slightly higher in the low-density gas than in the dense gas or low-density liquid.³ The localization model for electrons in supercritical or liquid argon, whether the electron is assumed to be localized on one or several molecules,⁸ has been argued to be untenable.^{6,9} The arguments need not be repeated here. Quasilocalization of electrons occurs in dense gases and low-density liquids at temperatures near the vapor-liquid coexistence curve, if the applied electric field is not too high.^{3,10-12} At the field strengths required to attain v_{sat} , quasilocalization does not occur.^{3,10(b)} Quasilocalization does not occur even at low field strengths in argon at $n \ge 14 \times 10^{27}$ molecule/m³;³ extra electrons reside in a conduction band.^{3,10,13-15}

(7) The statement that "one can easily verify that for every gas the abrupt decrease of the mobility (less pronounced in methane) occurs at a density for which the onset of localization is predicted by the Mott expression $\langle k\Lambda \rangle = k (n \langle \bar{\sigma}_m \rangle)^{-1}$, where k is the wave number associated with the electron in thermal equilibrium with the fluid, Λ is the mean free path, n the number density of the fluid, and $\langle \bar{\sigma}_m \rangle$ the thermal average of the momentum transfer cross section at the fluid temperature" has recently been shown to be untrue.¹⁶ In helium at 2.7K $\leq T \leq 293$ K, and in hydrogen at 78 K $\leq T \leq 293$ K, the density-normalized mobility $n\mu$ decreases at much lower densities than predicted by the Mott expression. The value of $n\mu$ has decreased to 0.72 of the low-density gas limit $(n\mu)_0$ at a density 6.3 times smaller than that,

- ¹A. Leycuras and D. Levesque, Phys. Rev. A **32**, 1180 (1985).
- ²J. A. Jahnke, L. Meyer, and S. A. Rice, Phys. Rev. A 3, 734 (1971).
- ³S. S.-S. Huang and G. R. Freeman, Phys. Rev. A 24, 714 (1981).
- ⁴L. S. Frost and A. V. Phelps, Phys. Rev. 136, 1538 (1964).
- ⁵L. S. Miller, S. Howe, and W. E. Spear, Phys. Rev. **166**, 871 (1968).
- ⁶G. R. Freeman, J. Chem. Phys. 74, 3079 (1981).
- ⁷A. Leycuras and J. Larour, J. Phys. C 15, 6765 (1982).
- ⁸G. Ascarelli, J. Chem. Phys. 71, 5030 (1979).
- ⁹W. F. Schmidt, U. Sowada, and K. Yoshino, J. Chem. Phys. **74**, 3081 (1981).
- ¹⁰(a) J.-P. Dodelet and G. R. Freeman, J. Chem. Phys. 65, 3376 (1976);
 (b) S. S.-S. Huang and G. R. Freeman, *ibid.* 68, 1355 (1978).
- ¹¹G. R. Freeman and S. S.-S. Huang, Phys. Rev. A 20, 2619

 n_M , predicted by the Mott expression.¹⁶ Electron behavior in many dense gases has recently been assessed¹⁶ with respect to the Mott expression¹⁷ and that of Ioffe and Regel.¹⁸ The latter applies cleanly to electrons in helium and hydrogen, where the electron-molecule interaction is repulsive. Neither expression applies cleanly to gases in which the interaction with thermal electrons is attractive (argon, xenon, ammonia, water, ethane, and so on).¹⁶

(8) The methane vibrational phase-relaxation results of Marsault cited in Ref. 19 display a maximum in bandwidth at the critical density n_c and a minimum near $2n_c$. They are reminiscent of the bulk viscosity of argon, which has a maximum at n_c and a minimum near $2n_c$.²⁰ While the vibrational bandwidth and the bulk viscosity reflect the molecular dynamics in the fluid, they do not support either the conduction-band model or the attachment model of electron transport, because they could be consistent with both types of model. In the deformation potential version^{14,15} of the conduction-band model, electron mobility is determined by fluid-density fluctuations, as are the changes of vibrational bandwidth in methane¹⁹ and bulk viscosity of argon.²⁰

(9) The localization of an electron on a single argon atom proposed in Ref. 1 is very different from the quasilocalization of a thermal electron by a large density fluctuation in a dense gas near the vapor-liquid coexistence curve.^{10,21} The latter has been demonstrated to occur in many gases, but under limited conditions.^{3,10,11,21,22}

We are grateful to the Natural Sciences and Engineering Research Council of Canada for financial assistance.

(1979).

- ¹²D.-Y. Kuan and C. Ebner, Phys. Rev. A 23, 285 (1981).
- ¹³S. Kubota, A. Nakamoto, T. Takahashi, S. Konno, T. Hamada, M. Miyajima, A. Hitachi, E. Shibamura, and T. Doke, Phys. Rev. B 13, 1649 (1976).
- ¹⁴S. Basak and M. H. Cohen, Phys. Rev. B 20, 3404 (1979).
- ¹⁵R. Reininger, U. Asaf, I. T. Steinberger, and S. Basak, Phys. Rev. B 28, 4426 (1983).
- ¹⁶N. Gee and G. R. Freeman, Can. J. Chem. 64, 1810 (1986).
- ¹⁷N. F. Mott, Adv. Phys. 16, 49 (1967).
- ¹⁸A. F. Ioffe and A. R. Regel, Prog. Semiconductors, 4, 237 (1960).
- ¹⁹A. Leycuras and D. Levesque, following paper, Phys. Rev. A.
- ²⁰G. R. Freeman, Can. J. Phys. 51, 1686 (1973).
- ²¹N. Gee and G. R. Freeman, Phys. Rev. A 20, 1152 (1979).
- ²²N. Gee and G. R. Freeman, J. Chem. Phys. 78, 1951 (1983).