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Higher-order squeezing from an anharmonic oscillator
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We show that ordinary coherent light, interacting with a nonabsorbing nonlinear medium
modeled as an anharmonic oscillator, is highly squeezed, at least up to the sixth order.

Recently Hong and Mandel' have introduced the notion
of higher-order squeezing of quantized electromagnetic
fields as a generalization of the much-discussed second-
order squeezing. By higher-order squeezing one means
that the Nth-order moments of the fields may take on
values less than their coherent-state values. Since the
squeezing effect is uniquely nonclassical only for even
moments, one may be restricted to calculate only mo-
ments for which N =2n. In Ref. 1 it was shown that a
number of systems exhibit higher-order squeezing; in
some cases the degree of higher-order squeezing is even
greater than in second order. Systems discussed in Ref. 1

are degenerate parametric down conversion, harmonic
generation, and resonance fluorescence. Kozierowski has
recently shown that higher-order squeezing is obtainable
in kth harmonic generation. In this paper we show that
coherent light interacting with a nonabsorbing nonlinear
medium modeled as an anharmonic oscillator becomes
highly squeezed at least to sixth order. Previously, Tanas
has shown that second-order squeezing is produced by
this system. Milburn has also discussed, among other
things, the second-order squeezing for this system. We
show here that the fractional squeezing increases with or-
der.

The higher-order squeezing is defined in the following
1way. We let E] and E2 stand for the Hermitian quadra-

tures of the field such that

squeezed to second order. Now, according to Ref. 1 the

E& quadrature is squeezed to the Nth order (N even) if

for some angle cp. The degree to which the state is
squeezed to the Nth order is conveniently given by

& (AEi ) &
—(N —1)!!C

(N —1)!!C~l2

qz is negative for Nth-order squeezing and
~ qtv ~

has a
maximum value of 1. In our calculations we write

E)(t)=a(t)e' ' +'+a (t)e

( t ) =a ( t )e i I cut —y —tt/2) +a t( t )
t' ( cot te ttl2 I——

so that C=1.
Now, for the system of interest here the Hamiltonian is

H =Area a + —,Ka a

where K is the anharmonicity parameter related to the
third-order susceptibility of the medium and is known to
lead to optical bistability. All nonenergy conserving
terms have been dropped and we consider only a single
mode of the electromagnetic field. Heisenberg's equation
for a reads

E (+)ei(cot —g)+E ( —)e —i(cot —q )

r. r, ( + ) i(a)t —g —n. /2) & ( —) —i(cot —g —n. /2)E2 =E e +E e

a = — [a,H]= —i(c—o+Ka a )a . (9)

where g is an arbitrary phase. If E '+ ' and E ' ' satisfy
the commutation relations

Since a a can be shown to be a constant of the motion,
Eq. (9) has the simple solution

[E(+)E(—)] C (2) a(t) = exp [ it [co+EN(0)—] ) a(0), (10)

where C is an ordinary number, then

[Et,E2]=2iC

so that E] and E2 are the conjugate in and out of phase
quadratures of the field. The variances of second order
obey the uncertainty relation

where N(0)=a (0)a(0).
Now the variances we wish to calculate may be ex-

pressed directly in terms of the expectation values of the
field and its powers. We consider only the E] quadrature.
Thus the even-order moments of E, are (to sixth order)

&(&E )'&&(&E )'& (4) ( 1 la)

where AE=E —&E&. For a coherent state
&(b,E, 2) &

= C so that the equality holds in Eq. (4). If
some phase tp, & (b,E, ) & & C, then the E

&
quadrature is

&(~E )'&=&E'& —4&E'&&E &+6&E'&&E'& —3&E &',
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((&E~ ) ) = (E ~ ) 6—(E ', ) (E, ) +15(E,) (E, )

—20(E, ) (E, )'+15(E ', ) (E, )'—5 (E, )' .

(1 lc)

(a~(a e' )'(e "a) ~a)

=(a*)(a) exp [l(l —1)—m (m —1)]
2

For squeezing to the respective orders we must have

((~E, )'&&I, ((~E, )'&&3, ((~E, )'&&».

Xexp(
~
a

~ I exp[ —ir(m —l)] —I] ),
(12)

With the initial state a coherent state
~

a ), we calculate
(EP) m =1, . . . , 6. We are required to calculate terms
of the form

where a and a stand for the operators at t =0 and
r =Et. With n = a

~

and using Eqs. (7), (10), and (12),
we obtain

(E~ ) =2 Re[ac '+exp[n (e "—1)]I,
(E &) = 1+2n +2 Re[a e "+"'exp[n (e "—1)]I,
(E

&
) =2 ReIane " ++'e px[n (e "—1)]+3ae '+( I+ne ")exp[n (e ' —1)]I,

(E &) =3+ 12n +6n +2ReI n e ' '+ ~'exp[n (e "—1)]+(4n e "+6ne ")e '&exp[n (e "—1)]),
(E ~) =2Re[an e " '+' ~'exp[n(e "—1)]+(10ane "+5an e ")e '+exp[n(e "—1)]

+ (15a+30ane "+10an e ")e '+exp[n (e "—1)]I,
and finally

(E ~) =15+90n+90n +20n +2Re[n e ' ++' 'exp[n(e "—1)]

(13)

(14)

(15)

(16)

(17)

+(45ne "+15n e "+60n e ")e 2™exp[n(e '—1)]

+(15n e "+6n e ' ")e '~exp[n (e "—1)]I . (18)

In our calculations the phase of a is chosen so that o.'is
real ~

Due to the complicated nature of Eqs. (13)—(18) it is
convenient to write out the variance only for the second
order

((AE, ) ) =1+2n [1—exp[2n (cosr —1)]I

q2
———0.9778.
Now for the fourth- and sixth-order variances it is obvi-

ous that expanding in terms of n~ is extremely laborious.
Instead we resorted to calculating Eqs. (11b) and (1 lc) us-
ing Eqs. (13)—(16) with double precision on a Cyber 720.
The results are displayed in Figs. 2 and 3. We note that

+2n ReIe '+e "exp[n(e "—1)]

—e '~exp[2n (e "—1)]I . (19) 4.

For the phase y=0 this coincides with the results of Ta-
nas. For crystal of a few centimeters ~ is typically on the
order of 10 ~ As shown by Tanas with ~=10, the
second-order variance is squeezed for the average number
of photons n of the order of 10 . This can be obtained
from the direct numerical evaluation of Eq. (19) using
high precision computation. On the other hand, for
n —10, r-10 one may expand Eq. (19) as a function
of nv. to obtain

A

UJ
CI

V

2

((AE~) )=1+2n 1 —cos(2nr)] —2nrsin(2nr) . (20)

In any case the squeezing obtained can be quite high as
shown in Fig. 1. %'e obtain a first minimum at n~=0. 59
and a second deeper minimum at n~=3. 29. The q factor
at these minima are, respectively, q 2 ———0.6600 and
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FIG. 1. The second-order variance.
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FIG. 2. The fourth-order variance. FIG. 3. The sixth-order variance.

(bE )~. ~ )+(+r!2"

(21)

For the fourth- and sixth-order squeezing it is required
that, respectively,

(:(bE,)':)+6(:(bE ):)«, (22)

t the same locations as for second order.minima occur a e
- = —0.9667,At n~=0. 59 we obtain q4 ———0.884 and q6=-

= 3 29 we have q4
———0.9995 andwhile at n~= . we

= —0.9999. Evidently the fractional squeezing in-q6=—
with the order of the variance.creases wi

hi her-orderFinally we wish to point out that the ig
f h h rmonic oscillator is not intrinsic,

n order toi.e. dominated by the second-order variance. In ord' '2

be written in termssee this the even-order variances may be wri en
of the normally ordered variances as

(:(bE,):) + 15(:(b,Ei )":)+45(:(bE,):)(0, (23)

We are grateful to James Togeas for performing some
of the numerical calculations on t e Cy ere C ber 720.

where:((: bE ):)= ((bE ) ) —1. The squeezing is called

intrinsic i:
&

. is'f ( (bE ):) is not negative beyond cV =2 but
h N =2 term of the series in Eqs. 2 an

dominates. However, for the case at hand, using t e nu-
1 ib) and (1 lc) we findmerical results obtained from Eq. an

: bE ):) andthat at the point of high squeezing:
&

.. a

(:(bE, )":) are indeed negative indicating that the higher-
order squeezing is not intrinsic.

In summary then we have shown in this paper that a

monic oscillator is capable of producing higher-order
squeezing an t a ed h t the degree to which the squeezing
occurs increases with order.
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