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We show that ordinary coherent light, interacting with a nonabsorbing nonlinear medium
modeled as an anharmonic oscillator, is highly squeezed, at least up to the sixth order.

Recently Hong and Mandel! have introduced the notion
of higher-order squeezing of quantized electromagnetic
fields as a generalization of the much-discussed second-
order squeezing.? By higher-order squeezing one means
that the Nth-order moments of the fields may take on
values less than their coherent-state values. Since the
squeezing effect is uniquely nonclassical only for even
moments, one may be restricted to calculate only mo-
ments for which N =2n. In Ref. 1 it was shown that a
number of systems exhibit higher-order squeezing; in
some cases the degree of higher-order squeezing is even
greater than in second order. Systems discussed in Ref. 1
are degenerate parametric down conversion, harmonic
generation, and resonance fluorescence. Kozierowski® has
recently shown that higher-order squeezing is obtainable
in kth harmonic generation. In this paper we show that
coherent light interacting with a nonabsorbing nonlinear
medium modeled as an anharmonic oscillator becomes
highly squeezed at least to sixth order. Previously, Tanas*
has shown that second-order squeezing is produced by
this system. Milburn® has also discussed, among other
things, the second-order squeezing for this system. We
show here that the fractional squeezing increases with or-
der.

The higher-order squeezing is defined in the following
way.! We let E’l and Ez stand for the Hermitian quadra-
tures of the field such that

El=E(+)ei(mt—¢)+E(—)e—i(wt—(p) ,

(1
~ -~ . N .
E2=E(+)el((0t——(pfﬂ/2)+E(7)8—1(0)[7(]7777/2) ,

where ¢ is an arbitrary phase. If £ *) and E '~ satisfy
the commutation relations

[E(-H,E(_)]:C, )
where C is an ordinary number, then
[E,,E,]=2iC 3)

so that E‘l and Ez are the conjugate in and out of phase
quadratures of the field. The variances of second order
obey the uncertainty relation

(AE)?)((AE)?) >C?, 4)

where AE=FE—(E). For a coherent state
((AE,,)*)=C so that the equality holds in Eq. (4). If
some phase @, ((AE,)?) <C, then the E, quadrature is
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squeezed to second order. Now, according to Ref. 1 the
E | quadrature is squeezed to the Nth order (N even) if

((AE Y)Y < (N —1)nCh 2 (5)

for some angle @. The degree to which the state is
squeezed to the Nth order is conveniently given by

((AE)Y) —(N — eV 72 ”

= (N —1nch”2 ' )

qy is negative for Nth-order squeezing and |gy | has a
maximum value of 1. In our calculations we write

E | (n)=a(t)e!' 914 Yp)e —itor—e)
EZ(Z):a(t)ei(wt—¢—ﬂ/2)+a +(t)ei(wt_¢)_ﬂ/2) ’

so that C =1.
Now, for the system of interest here the Hamiltonian is

H=#owa'a+1Kka%a?, (8)

where K is the anharmonicity parameter related to the
third-order susceptibility of the medium and is known to
lead to optical bistability.® All nonenergy conserving
terms have been dropped and we consider only a single
mode of the electromagnetic field. Heisenberg’s equation
for a reads

£ [N . Ata A
G=——la,H]=—~ilw+Ka Ya)a . 9)
Since @ '@ can be shown to be a constant of the motion,

Eq. (9) has the simple solution
a(t)=exp{ —it[w+KN(0)]}4(0) , (10)

where N(0)=a '(0)a(0).
Now the variances we wish to calculate may be ex-
pressed directly in terms of the expectation values of the

field and its powers. We consider only the E 1 quadrature.
Thus the even-order moments of E are (to sixth order)

((AE)})Y=(E?)—(E,)?, (11a)

(AE )Y =(ED —a(ED(E ) +6(ED(ED) —3(E, )%,
(11b)
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(AE ) =(ES$)—6(E)(E,) +15(E(E,)?
—20(ED(E ¥+ 15(E(E, ) —5(E,)°.
(11c)

For squeezing to the respective orders we must have
((AED?) <1, ((AE)*) <3, ((AE)®)<15.

With the initial state a coherent state | a), we calculate

(a|(@ e ™)i(e=i™Ngym | o)
—(a*)a)™exp %[l(l—l)—m(m—l)]

xexp( | a|*{exp[ —it(m —1)]—1}) ,

(12)

+

where @ and @' stand for the operators at t =0 and

(E T) m=1,...,6. We are required to calculate terms  7=Kz. With n = |a|? and using Egs. (7), (10), and (12),
of the form we obtain
(E,)=2Re{ae “%exp[n(e~"—1)]}, 13
(E}y=1+2n+2 Refa’e ~"¥lexp[n(e ~47—1)]} , (14)
(E3)=2Refane 3 "+Pexp[n (e =3 —1)]+3ae ~'*(1+ne “Mexp[n(e 'T—1)]}, (15)
1
(E%Y=3+12n +6n2+2Refne " "+*expln (e ~47—1)]+ (4ne ~37 4+ 6ne ~'")e ~2%exp[n (e ~2%7—1 1}, (16)
(E3)=2Re{ane "t '%exp[n(e 5" —1)]+(10ane =3+ Sane ~%")e ~*%exp[n (e ~37—1)]
+(150+30ane ~'"4+10an’e ~47)e ~fexp[n (e "\"—1)]} , 17
and finally
(E$)Y=15+90n+90n2+20n>+2 Refne ¢+ 157expn (e 67— 1)]
+(45ne "4 15n3% ~3 74 60n2e ~37)e ~H%exp[n (e ~¥7—1)]
+(15n% ~%7 4 6n3e ~10T)e —Heexp[n(e ~HT—1)]} . (18)

In our calculations the phase of a is chosen so that « is
real.

Due to the complicated nature of Eqs. (13)—(18) it is
convenient to write out the variance only for the second
order

(AE)?)=142n {1—exp[2n (cosT—1)]}
+2n Refe "% %e ~Texp[n (e "%"—1)]
—e " 2%exp[2n(e " I"—1)]} . (19)

For the phase ¢ =0 this coincides with the results of Ta-
nas.* For crystal of a few centimeters 7 is typically on the
order of 10~% As shown by Tanas* with 7=10"%, the
second-order variance is squeezed for the average number
of photons n of the order of 10°. This can be obtained
from the direct numerical evaluation of Eq. (19) using
high precision computation. On the other hand, for
n~10°% 7~10~° one may expand Eq. (19) as a function
of nr to obtain’

((AEl)2>21 +2n%?[1—cos(2n7)]—2n7sin(2n7) . (20)

In any case the squeezing obtained can be quite high as
shown in Fig. 1. We obtain a first minimum at n7=0.59
and a second deeper minimum at n7=3.29. The g factor
at these minima are, respectively, ¢,= —0.6600 and

I

g,=—0.9778.

Now for the fourth- and sixth-order variances it is obvi-
ous that expanding in terms of n7 is extremely laborious.
Instead we resorted to calculating Egs. (11b) and (11c¢) us-
ing Egs. (13)—(16) with double precision on a Cyber 720.
The results are displayed in Figs. 2 and 3. We note that

<(aE)>
w

FIG. 1. The second-order variance.
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FIG. 2. The fourth-order variance.

minima occur at the same locations as for second order.
At n7=0.59 we obtain g4=—0.884 and g,= —0.9667,
while at n7=3.29 we have ¢;=-—0.9995 and
ge=—0.9999. Evidently the fractional squeezing in-
creases with the order of the variance.

Finally we wish to point out that the higher-order
squeezing from the anharmonic oscillator is not intrinsic,
i.e., dominated by the second-order variance. In order to
see this the even-order variances may be written in terms
of the normally ordered variances as

N

~ 2
((AE)N) =

N

2r

(2r)!
ri2"

((AE )N =2y (N — 1)

r=0
(21)

For the fourth- and sixth-order squeezing it is required
that, respectively,

((AED%) +6(«(AE)):) <0, (22)
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FIG. 3. The sixth-order variance.

((AE %) +15CGIAE Y)Y +45(:(AE | )*) <0, (23)

where (:(AE;)%:)=((AE,)?)—1. The squeezing is called
intrinsic if (:(AE,)™:) is not negative beyond N =2 but
that the N =2 term of the series in Egs. (22) and (23)
dominates. However, for the case at hand, using the nu-
merical results obtained from Eq. (11b) and (11¢) we find
that at the point of high squeezing (:(AE,)*) and
(:(AE,)®:) are indeed negative indicating that the higher-
order squeezing is not intrinsic.

In summary then we have shown in this paper that a
nonabsorbing nonlinear medium modeled as an anhar-
monic oscillator is capable of producing higher-order
squeezing and that the degree to which the squeezing
occurs increases with order.

We are grateful to James Togeas for performing some
of the numerical calculations on the Cyber 720.
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