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Solutions of the close-coupling equations are obtained for sodium in a four-state approximation
(35,3p,4s,3d) at energies of 22.1, 54, and 150 eV. Generalized oscillator strengths (GOS) deduced
from the resulting differential cross sections for the 3s-3p transition are plotted as a function of

momentum transfer squared (K?2).

The resulting GOS do not tend to the exact value of the optical

oscillator strength as K2 goes to 0, thus violating Lassettre’s hypothesis. While Lassettre’s theorem
is not satisfied exactly, the concepts underlying this hypothesis are still useful at sufficiently high

energies.

I. INTRODUCTION

The generalized oscillator strength (GOS) is a useful
tool for studying the behavior of electron-atom excitation
cross sections at small momentum transfer. The initial
idea of expressing the differential cross section for excita-
tion in terms of the GOS was first put forward by Bethe.'
However, this concept remained essentially dormant until
its revival by Lassettre’ when it was exploited to deter-
mine optical oscillator strengths for atomic transitions.
Since then, the usefulness of the GOS has been demon-
strated in a number of applications. Two of the more not-
able applications have been the normalization of relative
differential cross section data and the measurement of
photoabsorption and photoionization cross sections® for
atoms and molecules. The Bethe-Born expression for the
GOS is

gf}(Kz)=}<—fl<fle’K"li>!', (1)

which can be related to the first Born differential cross
section by
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The concept of the GOS is not confined to just the first
Born approximation (FBA). When one has a differential
cross section obtained by some other means (e.g., experi-
mental data or a close-coupling calculation) one can invert
Eq. (2) and define the apparent GOS by
A 2 Eifki 2 do

gif(K9)= 2k K TR (3)
In the above equations, k; and ks are the electron mo-
menta before and after collision, K is the momentum
transfer vector, and E; is the excitation energy of the
transition. The usefulness of the GOS lies in the fact that
as the energy of the incident electron increases, the limit-
ing value of the GOS (for inelastic collisions) as the
momentum transfer goes to zero is just the optical oscilla-
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tor strength (OOS). This result has often been utilized to
put relative cross sections on an absolute scale.*~® The
conditions for the applicability of the GOS limit theorem
were generalized by Lassettre et al.” who deduced that the
GOS converges to the OOS as K2—0 regardless of energy
and irrespective of the applicability of the first Born ap-
proximation.

The validity of Lassettre’s theorem has recently been
questioned by Bonham and Goruganthu® and by Msezane
and Henry.’~!'!' Bonham and Goruganthu® demonstrated
that the validity of the limit theorem depends on how the
extrapolation from the minimum K (~E /2k;) to K=0is
performed. It was shown that Lassettre’s theorem corre-
sponds to an off-the-energy-shell extrapolation to K2=0.
The on-the-energy-shell extrapolation was shown to yield
a small correction to the Lassettre’s theorem result. The
limiting behavior of the GOS at small K values has also
been studied by Huo.!? The evidence of Msezane and
Henry was of a calculational nature. After converting the
differential cross sections that resulted from multistate
close-coupling calculations into GOS, Msezane and Henry
found that the apparent GOS for the resonance transitions
in Mg™*, Zn™, and Cu did not converge to the optical os-
cillator strength as K? 0. On the contrary, the GOS
seemed to reach a maxima at some particular value of K2
and would afterward decrease as K° tended to zero. This
effect was most noticeable at the highest energies. In this
paper we intend to look at the limiting behavior of the
GOS for the resonance transition (3s-3p) in sodium in or-
der to determine how accurately Lassettre’s theorem is
obeyed for this particular transition. Furthermore, we
will investigate whether the maxima at small but nonzero
K? in the GOS reported by Msezane and Henry also
occurs for the resonance transition in sodium.

II. RESULTS

We have chosen to study the sodium system since the
differential cross sections were already in existence from a
previous study'® of electron-impact processes in sodium.
Some experimental GOS results also exist.*!* We do not
show a detailed comparison with experiment in this paper
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since the experimental data are put on an absolute scale by
assuming the validity of Lassettre’s theorem and the er-
rors in the individual data points are too large for any de-
finite conclusions to be drawn. The small excitation ener-
gy for the 3s-3p transition makes it particularly suitable
for probing the GOS at very small values of momentum
transfer. Details of the four-state (3s,3p,45,3d) calcula-
tions are as follows. The on-shell T-matrix elements are
obtained by solving the set of coupled Lippmann-
Schwinger (LS) equations using (24-point) Gaussian quad-
ratures to discretize the kernel in momentum space. The
coupled LS equations are solved for total angular momen-
tum (J) between O and 24. The contribution of exchange
interactions to the kernel is included for J=0 to 16. At
high energies and small angles a very large number of par-
tial waves contribute to the differential cross section.
Consequently, great care should be taken with the calcula-
tion of the partial-wave T-matrix elements, and also with
the calculations that produce the differential cross section.
Since the differences between the full solution of the cou-
pled equations and the unitarized Born approximation
(UBA) are very small for J > 24, the UBA is used to com-
pute the T-matrix elements for J between 25 and 80.
Rather than computing the three-dimensional 7T-matrix
element using the partial-wave sum directly, the (symbol-
ic) form

T=V+3(T—V) @)
!

is used. In the above expression 7; and V; are the
partial-wave 7- and V-matrix elements, respectively, and
T and V are the three-dimensional forms. The advantage
of this formulation is that any numerical inaccuracies in-
herent in computing the partial-wave sum are minimized
and that using the three-dimensional V-matrix (i.e., first
Born) element enables an infinite number of partial waves
to be included. The differential cross section is computed
by squaring the 7 matrix and including the appropriate
angular momentum and kinematic factors. Differential
cross sections of the 3s-3p transitions were obtained at en-
ergies of 22.1, 54.4, and 150 eV. The numerical accuracy
of these differential cross sections is about 1% or 2%.

The GOS resulting from the close-coupling (CC) dif-
ferential cross sections are shown in Fig. 1. Also shown
in Fig. 1 is the GOS that is predicted by the FBA which
goes to the optical oscillator strength K2=0. At the
smallest values of momentum transfer the GOS derived
from the CC calculations do not tend toward the exact
value of the OOS. Instead, they approach a limit which is
slightly smaller than the OOS. At the highest energy (150
eV), the minimum value of momentum transfer squared
(~10~* a.u.) was extremely small, and for all practical
purposes may be regarded as the physical realization of
the limit. Even here, there is a small deviation from the
OOS. However, in one respect these curves indicate that
the concepts underlying the GOS are still quite useful.
While Lassettre’s theorem may not be satisfied exactly,
the deviations of the apparent GOS extrapolated to K2=0
from the OOS are quite small for E > 54.4 eV.

In this respect our calculations are consistent with the
conclusions of Bonham and Goruganthu.” The compar-
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ison with the work of Msezane and Henry®~'! is not near-
ly so clear cut. In one respect our results are consistent
with the calculations of Msezane and Henry, we find that
Lassettre’s generalization is not valid. However, in anoth-
er respect our calculations are not consistent with those of
Msezane and Henry, i.e., we find no evidence of a maxima
in the GOS at a small (nonzero) value of the momentum
transfer. While this does not invalidate their results, since
their calculations were for different systems, it demon-
strates that the irregularities in the GOS curves for dipole
transitions produced by Msezane and Henry are not
universal features that occur for all atomic and ionic sys-
tems. However, of the calculations carried out by
Msezane and Henry,”~!! only one!® was on an uncharged
species. While one might expect the small-angle behavior
(for inelastic transitions) of differential cross sections for
charged targets to be similar to those for neutrals, there
are very few rigorous analytic results for inelastic transi-
tions in a Coulomb field and so even a comparison of the
Born and Coulomb-Born cross sections would be quite
valuable as a guide to whether the Coulomb boundary
conditions induce any unique effects in the differential
cross sections.

GOS

| ! | ] |
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FIG. 1. Comparison of apparent GOS obtained from Eq. (3)
using differential cross sections coming from four-state close-
coupling calculations at energies at 22.1, 54.4, and 150 eV. Also
shown is the GOS obtained using the Bethe-Born expression (la-
beled FBA). The value of the OOS in the Hartree-Fock (length)
approximation is denoted by the arrow.
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