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Density-functional theory for time-dependent systems
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The time-dependent density-functional theory of Runge and Gross [Phys. Rev. Lett. 52, 997
(1984)] is reexamined with regard to its limitations, and the criticisms raised by Xu and Rajago-
pal [Phys. Rev. A 31, 2682 (1985)] are addressed, within the imposition of natural boundary con-
ditions of vanishing density and potential at infinity. Also, for a single-particle system character-
ized by an arbitrary time-dependent potential, the uniqueness of the density-to-potential mapping
is established explicitly for both bound and scattering states.

Density-functional theory (DFT)' for stationary sys-
tems is well established as a conceptually simple and prac-
tically useful tool " in various branches of physics and
chemistry. For time-dependent (TD) problems, however,
the development has been rather slow and time-dependent
density-functional theory (TDDFT) had been restricted to
small TD perturbations around a fixed static potential, s s

or to oscillating TD potentials. ' An extension to include
arbitrary time dependence has been provided only recently
by Runge and Gross (RG),9 who proved that the mapping
between the density p(r, t) and the TD potential v(r, t) is
unique. A TD Kohn-Sham-type prescription was also
suggested9 for the calculation of p(r, t) and the current
density j(r,t). This work has been further broadened
through the construction' of a Levy-type functional" for
the TD density and also an extension to TD ensembles. '

In a recent work, Xu and Rajagopal (XR)' have, how-
ever, criticized the TD density-functional formalism of RG
by attempting to cite counterexamples to disprove the va-
lidity of the RG result. They have concluded that only the
mapping v (r, t ) j(r, t ) is invertible and it is the current
density j(r,t) which plays the main role in TDDFT, as
does the charge density p in the stationary case. Although
XR have discussed a number of interesting points, some of
their conclusions about the limitation of the RG work re-
quire modification. The purpose of the present work is to
reply to the criticisms raised by XR while simultaneously
pointing out the limitations of the RG formalism —thus
presenting a more transparent view of the current status of
time-dependent density-functional theory.

We first review the basic aspects of the proof RG used
to establish the invertibility of the mapping v (r, t )

(Bp/8t )+V j =0 (2)

For the two densities p(r, t) and p'(r, t ) corresponding to
j(r, t ) and j'(r, t ), Eqs. (1) and (2) lead to the result

(r)/r)t )"+'[p(r,t ) —p'(r, t )] ~.

= —V [p(r, tp)VP(r, tp)l, (3)
where

y(r, to) = [(r)/r)t )"[v (r, t ) —v'(r, t ) 1 ~, -,j . (4)

In order to prove that the right-hand side (rhs) of Eq.
(3) is different from zero, RG consider the integral

p(r, t ). In the first part of their proof, they derive the
relation

(i it/itt )"+' [j(r, t ) —j'(r, t )] ~, -,,
=i p(r, t p) V [(ir)/r)t )"[v (r, t ) v'(r, t )] ~, -—,J, (1)

where j(r,t) and j'(r, t) are the current densities corre-
sponding to the two external potentials v (r, t ) and v'(r, t ),
which are identical at t =tq, and k is the smallest integer
such that the kth time derivative of the quantity
[v (r, t ) —v'(r, t )] evaluated at an initial time t =to is dif-
ferent from zero. [Here it is assumed that the Taylor ex-
pansions of v(r, t ) and v'(r, t ) around the value at t =tp
exist. l Clearly, the left-hand side (lhs) of Eq. (1) is
nonzero and hence j(r,t) and j'(r, t) will differ infini-
tesimally later than to. This proves the uniqueness of the
mapping v (r, t ) j(r, t ) (Theorem I of XR).

For the second part of the proof, RG utilize the con-
tinuity equation

dr&(r, tp)V' [p(r, tp)V&(r, tp)] = — drp(r, tp) ~
VP(r, tp) ( + —,' (~dS. [p(r, tp)[VP (r,tp)]j, (s)

and show that the lhs of Eq. (5) is nonvanishing since the
first term on the rhs is nonzero for positive p unless p is
constant, and the second term involves a vanishing surface
integral. (It may be noted that this argument has a close
resemblence to that used in the well-known Dirichlet prin-
ciple. '4) Then they claim that V [pVQ]mO and hence p

and p' will differ again infinitesimally after t =to.
On the other hand, XR reexpress the rhs of Eq. (3) as

V [p(r, tp)VP(r, tp) l =Vp(r, tp) VP(r, tp)

+p(r, tp) V'y(r, tp), (6)
and argue that it can vanish, for example, if p(r, tp) is a
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harmonic function (Vzg 0) and is chosen such that
VP(r, to) is perpendicular to V'p(r, to). They, therefore,
claim that the conclusion of RG regarding the uniqueness
of the mapping p(r, t ) u (r, t ) is incorrect.

It is, however, of interest, to see if such a function does
really exist. For a special case of spherical symmetry of
the unperturbed system, e.g., atoms with spherically sym-
metric p(r, to), the only solution is p =const [since
V'p VP=(Bp/jr)(8&/jr) =0 implies (8&/Br) =0 and
therefore V & =0 implies L P =0 leading to a constant P].
For the general three-dimensional case, too, it might not
be possible to have a solution not violating the conditions
required in the RG proof.

The condition under which the proof of RG is valid is a
positive density p(r, to) vanishing at infinity. The restric-
tion on P is that V/2 should not increase faster than the
decay of p at r ~ (i.e., pVP 0 at r ~). The
counterexample &=A exp(A, r) provided by XR, however,
for a density p —e ""does not belong to this category and
is to be excluded from the RG systems. As has been point-
ed out by XR, it is a limitation of the RG formalism that a
condition on p(r, to) alone is not sufficient for the RG
proof.

The condition of vanishing density at the boundary is
not met by a homogeneous electron gas and therefore the
RG result is not valid as has been pointed out by XR.
However, if the TD potentials are restricted so that p~ 0
at r ~, the surface integral of Eq. (5) still vanishes and
the RG proof holds good. XR argue that for a homogene-
ous electron gas Vp =0 and a harmonic function generally
exists, i.e., V2& =0, thus indicating that the rhs of Eq. (3)
can vanish. However, the only solution satisfying Vzp =0
and also & =0 as r ~ ~ is the trivial one / =0 every-
where. 's Therefore, the mapping p(r, t) u(r, t) remains
valid for homogeneous electron gas if the TD potentials
are the ones vanishing at large distances, which most of
the physical potentials satisfy.

Although the presence of point singularities in p does
not invalidate' the conclusion V [pV&]mO from the
nonzero integral JdrPV [pVP] of Eq. (5), the Taylor ex-
pansion itself imposes restrictions on the nature of the po-
tentials. Since none of the coefficients of the Taylor ex-
pansion are allowed to be infinite at any point, the RG for-
malism remains valid for "arbitrary" time dependence
provided the time evolution does not alter the potential
"drastically, " i.e., the positions of the singularities of the
original potential u (r, to) are not altered or no new singu-
larities are introduced. This limitation, however, excludes
from TDDFT many important problems, e.g., molecular
vibrations or chemical reactions, collisions, etc. , where the
movement of the nuclei are encountered.

Apart from reconsidering the proof of Runge and
Gross, Xu and Rajagopal' also present a new approach
to investigate the uniqueness of the mapping among
v(r, t ), p(r, t ), and j (r, t ). They attempt an explicit con-
struction of the potential from the current or charge densi-
ties using the equations of quantum hydrodynamics for a
single particle. The TD Schrodinger equation for the
latter can be reformulated, with the help of the polar form
of the wave function, i.e.,

y(r, t ) =R (r, t ) exp[iS(r, t )/h],

pVzX+Vp VX+(Bp/Bt) =0, (IO)

where X=S/m. For a particular density, if Xr and Xz are
two solutions of this equation, one obtains

p'7 co+Vp V'co=0, (II)
where to = (Xr —Xz). For a given boundary condition on X,
this elliptical equation has only the trivial solution' co =0.
Also, the corresponding Neumann problem has a simple
unique solution for given boundary conditions on the ex-

into the continuity equation (2): (Bp/8t)+V j=0, and
the Euler equation of motion

m (8/Bt )(j/p) + (m/2) V'(j/p) = —V'U (r, t ) —V' v (r, t ),
(7)

where p=Rz, j =(pV'S/m ), and the quantum potential U
is given by

U = (n—'/2m)(V'~)/~ .

The pair of equations (2) and (7) provide a scheme for ob-
taining p(r, t) and j(r,t) for an external potential v(r, t).

Assume now that the two current densities jr and j2,
corresponding to two external potentials v ~ (r, t ) and
v2(r, t ), are identical, i.e., j& =jz. Equation (2) then clear-
ly suggests that pr (r, t ) =p2(r, t ) if the unperturbed prob-
lem corresponding to ur(r, to) =u2(r, to) is assumed to have
been solved, i.e., p~(r, to) =pz(r, to) and jr(r, to) jz(r, to)
are known. Equation (7) then predicts that
V(vp —vr) =0, implying the result (vz —vr) =c(t), a
function dependent on time alone. The uniqueness of the
mapping j(r,t ) u (r, t ) is thereby proved.

Consider, on the other hand, the case pr(r, t) =p2(r, t),
for which the continuity Eq. (2) gives V' (j& —j2) =0, i.e.,

j&(r,t) =j2(r, t)+VXA(r, t), where A(r, t) is an arbitrary
vector. The two apparently different current densities j~
and jz are claimed to yield, from Eq. (7), two potentials v r

and v2 differing by more than a simple TD function—demonstrating thereby the nonuniqueness of the map-
ping p(r, t ) v (r, t ).

However, the divergencelessness of (j&
—jz) is equiv-

alent to the condition V' [(p/m )V(Sz —Sr )] =0 or
V (pVa) =0, which is not possible unless a is a constant
(or merely a TD function) as can be shown by extending
the arguments of RG [Eq. (5)], for the usual boundary
conditions of p 0 at r ~ ~ and a current density vanish-
ing at the boundary. The difference between the two po-
tentials in this case is given by

vz(r, t ) u)(r, t )—
= —(I/2m)[(V'a) +2Va VSr] —(Ba/Bt) . (9)

A divergenceless (jt —j2) may not be possible if a(r, t )
does not increase faster as r ~ implying, thereby, a
similar increase in (vz —v~). This case is, however, ex-
cluded from RG considerations and, therefore, such a
current-density difference is not permitted.

A more elegant demonstration of the uniqueness of the
mapping p(r, t ) v (r, t ) can be given from the same pair
of equations (2) and (7). Let the continuity equation (2)
be rewritten as
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terior normal derivative of the form (d co/dn ) =const. If co

is a solution, then the maximum principle implies that it
assumes its maximum or minimum at points of the boun-
dary. At these points, as has been shown by Courant and
Hilbert, ' (dtv/dn) is positive or negative, respectively,
unless ca is identically constant. But (dco/dn) is a con-
stant at the boundary and hence it follows's that in fact
tv-const. Therefore, Xt and Xz can differ only by an addi-
tive constant implying VX~ =V'X2. In real physical situa-
tions, p, j, and VX vanish (for bound states) or assume
constant values (for scattering states) at the boundary, i.e.,
at infinity, and therefore the velocity field VX and hence
the current density j(r,t ) is uniquely determined from Eq.
(10) for a given density p(r, t ). Equation (7) then clearly
yields a unique solution for v(r, t). Therefore, the ex-
istence of different current densities jt, jz, etc. , satisfying
V (jt —j2) =0 is ruled out in view of the definition of
current density as j=pV'X and also by the fact that the
current density j and the velocity field V'X vanish or attain
constant values at infinity.

Therefore, the RG proof of TDDFT regarding a unique
invertibility of the mappings v (r, t ) p(r, t ) and
v (r, t ) j(r,t ) hold good and the criticisms of XR do not
stand provided the TD potentials are such that they are

well behaved at large distances, e.g. , they do not increase
faster than the fall off of the density. In other words, the
TD potentials are required to vanish at the boundary.

Thus, an explicit unique construction of v (r, t ) is possi-
ble for a single particle system from either the current den-
sity or the charge density with the imposition of suitable
boundary conditions on these quantities —which is possible
for physical situations. An analogous demonstration for a
many-electron system, although of much interest, is not
yet available.

In general, the wave function is complex and two real
quantities p(r, t) and j(r,t) are needed for a complete
specification of the system. Nevertheless, anyone of them
is sufficient, as has been demonstrated here, to determine
the other within the restrictions already discussed, if both
are known at an initial time t =to. The conclusion, there-
fore, is that the RG work provides a valid generalization of
the TDDFT to "arbitrary" TD potentials which are re-
quired to satisfy suitable boundary conditions and also for
which the Taylor expansion in time coordinate is permissi-
ble. %'e have further demonstrated that the mapping
p(r, t) v(r, t) is unique even for any arbitrary time
dependence, at least for a single particle system for both
bound and scattering states.
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