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We discuss the existence and properties of strange nonchaotic attractors for the damped pendu-
lum equation with two-frequency quasiperiodic forcing. In particular we present evidence that the
equation does indeed exhibit strange nonchaotic attractors and that these attractors are typical [in
the sense that they exist on a (Cantor) set of positive Lebesgue measure in parameter space]. We
also show that the strange nonchaotic attractors have distinctive frequency power spectral charac-
teristics which may make them observable in experiments involving physical nonlinear phenomena
which can be modeled by the damped-forced-pendulum equation (e.g., Josephson junctions and slid-
ing charge-density waves). Finally the transition to chaotic behavior is illustrated.

I. INTRODUCTION

Theoretical and experimental studies of periodically
forced nonlinear systems have been of interest from a
number of points of view. A prominent example of such
a system is the equation

d*6 do | .

’;t—z—l—VI—I—SlnG:f(t), (1)
where the forcing f () is periodic in time, for example,

ft)=K +Vcos(wt) . (2)

Equation (1) applies to a number of physical situations
and, for this reason, it has received much attention. These
situations include forced damped pendula, the Stewart-
McCumber model of the current-driven Josephson junc-
tion! and a simple phenomenological model of sliding
charge-density waves.? Past work on Egs. (1) and (2) has
demonstrated a wealth of characteristic nonlinear dynami-
cal phenomena: strange attractors, period doubling cas-
cades, mode locking, quasiperiodicity, crises, intermitten-
cy, fractal basin boundaries, etc. Indeed, Egs. (1) and (2)
are perhaps the most extensively investigated differential
system for exhibiting low-dimensionality chaotic dynam-
ics.

Equations (1) and (2) represent a periodically forced
system. It is natural to ask what happens when the forc-
ing f (1) is quasiperiodic, rather than periodic; for exam-
ple,

f(t)=K + V[cos(wt)+cos(w,t)] , (3)

where w; and w, are incommensurate. That is, what new
characteristic phenomena can be expected in quasiperiodi-
cally forced systems? This question is particularly apt,
since, from the experimental point of view, using quasi-
periodic rather than periodic forcing generally does not
result in a major increase in the cost or complexity of an
experiment. Indeed, some experiments using quasiperiod-
ic forcing have already been done.»* In Ref. 3 the authors
consider the transition from quasiperiodicity to chaos in
an electronic Josephson-junction simulator driven by two
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independent ac sources. In Ref. 4 the authors report that
on experiments in an electron-hole plasma in germanium
excited by two-frequency quasiperiodic external perturba-
tions they observed stable three-frequency quasiperiodic
states and transitions between three-frequency quasi-
periodicity, two-frequency mode locking, and chaos.

Besides these two experimental works the above ques-
tion has been addressed in Refs. 5—9. In Ref. 5 the au-
thors consider the various routes to chaos in a quasi-
periodically forced system governed by a two-dimensional
map. In Ref. 6 the author discussed three-frequency
quasiperiodic motion and its transition to two-frequency
quasiperiodic motion and chaos in a quasiperiodically
force system described by a two-dimensional map (similar
to that of Ref. 5). In Refs. 7—9, the authors examine the
characteristics of strange nonchaotic attractors for quasi-
periodically forced systems governed, respectively, by
two-dimensional maps’ and first-order ordinary differen-
tial equations.®® This subject is also our main concern in
this paper. Here the word strange refers to the geometri-
cal structure of the attractor: A strange attractor is an at-
tractor which is neither a finite set of points, a closed
curve (like a limit cycle), a smooth (or piecewise smooth)
surface (for example, a torus), or a volume bounded by a
piecewise smooth closed surface. The word chaotic refers
to the dynamics of orbits on the attractor: A chaotic at-
tractor is one for which typical nearby orbits diverge ex-
ponentially with time (i.e., at least one Lyapunov exponent
is positive). By a strange nonchaotic attractor we there-
fore mean an attractor which is geometrically strange, but
for which typical orbits have nonpositive Lyapunov ex-
ponents. The two main results of Refs. 7—9 are the fol-
lowing.

(i) Strange nonchaotic attractors appear to be typical in
quasiperiodically forced systems. That is, if we consider
that the system is characterized by some parameter, then
there is a set of positive measure in the parameter space
for which strange nonchaotic attractors occur. To put it
differently, if one picks a single parameter value at ran-
dom, then the probability of this parameter value yielding
a strange nonchaotic attractor is not zero. This typicality
is unlike the situation occurring for other more familiar
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dynamical systems, that are not quasiperiodically forced,
for which strange nonchaotic attractors do occur, but they
do so only on a set of zero measure in the parameters.
(For example, the quadratic map x, ,;=C —x, exhibits a
strange nonchaotic attractor precisely at the values of C
where there is an accumulation of an infinite number of
period doublings.) The fact that strange nonchaotic at-
tractors are typical in quasiperiodically forced systems
makes them easier to find and motivates further investiga-
tion to discover their observable properties [cf. point (ii),
below].

(ii) The strange nonchaotic attractors in quasiperiodi-
cally forced systems exhibit a characteristic signature in
their frequency power spectrum that might allow them to
be experimentally distinguished from other types of at-
tractors in such systems.

The results of Refs. 7—9 were for specific models, and
it is not clear to what extent results (i) and (ii) above apply
to the quasiperiodically forced pendulum, Egs. (1) and (3).
It is precisely the aim of the present paper to numerically
investigate the existence and properties of strange non-
chaotic attractors for the quasiperiodically forced damped
pendulum. Specifically, we are primarily interested in the
question of typicality (parameter space measure) and in
elucidating possible power spectral signatures of these at-
tractors.

By rescaling the independent variable ¢ and letting
¢=0+m/2, Eq. (1) can be written in the form

1__91 L 9% oso—
P dt cosp=[ (1), (4)

where p is a new parameter. This is the form of the pen-
dulum equation that we will use in our subsequent work.
In the strong damping limit, p — o, Eq. (4) reduces to

%‘;ﬁ—cos¢=f<t) , (5)

which, with f(¢) given by Eq. (3), was studied in Refs. 8
and 9 and shown to have strange nonchaotic attractors on
a Cantor set of positive measure in the parameters K and
V[cf. Eq. (3)].

The analysis of Refs. 8 and 9 makes use of a correspon-
dence of Egs. (5) and (3) with the Schrédinger equation
with quasiperiodic potential. No such analogy exists for
Eqgs. (4) and (3). Nevertheless, our numerical results
strongly suggest that the typicality and spectrum results
of Ref. 8 and 9 also hold for Egs. (4) and (3) for p not too
small. This is the main result of this paper. For suffi-
ciently small values of p, Egs. (4) and (3) exhibit a transi-
tion to chaos.

II. CHARACTERIZATION OF THE ATTRACTORS

Before starting with the presentation and discussion of
the numerical results we introduce in this section the main
quantities used to characterize the attractors, namely, the
Lyapunov characteristic exponent, the winding number,
the surface of section plot, and the frequency spectrum.

The Lyapunov characteristic exponent A for an orbit
¢(1) of Eq. (4) is defined by

. 1 d(T)
= —_— > 6

A=fim d(0) (62
where d(t)=[vX(t)+v %(#)]'/? and v(¢) denotes the solu-
tion of the linearized equation

1d%  dv

—=— 4= +vsing(1)=0 (6b)

p dt?  dt ¢

Actually, since (6b) is second order, there are two
Lyapunov exponents [i.e., two possible results for the limit
(6a) depending on the choice of initial conditions for v
and v]. The largest one is obtained for almost any initial
condition and this is the one we calculate and denote A
hereafter. The other exponent, A’, is related to A by
A+ A'+p =0 (see Sec. IV).

The winding number W for an orbit ¢(¢) of Eq. (4) is
defined by
W — lim (T)—¢(0)

T— o

The surface of section plot is obtained by strobing the
solution ¢(¢) of Eq. (4) at times

2
ty="—n+ty,
(25)

where # is an integer, and plotting
¢, =¢(¢,) (mod27) ,

versus
0, =w;t, (mod2m) .

Alternative surface of section plots can be obtained by
plotting ¢, =d(z,) versus 6, and ¢, versus ¢,,.

The frequency spectrum was obtained by calculating, us-
ing a fast Fourier-transform algorithm, the discrete
Fourier transform of the sequence f{s,}r=of "

n=h,p(d,), where p(d)=cosd and h,
——[l—cos 27n/M)]; the multlplxcatlon by h, is a
smoothing technique corresponding to the so-called
method of leakage reduction.'%!!

III. NUMERICAL RESULTS

The differential system (4), (3), and (6) was integrated
by using a fourth-order Runge-Kutta method with 32
time steps per period of the cosw,t driver. The number of
driver periods N was taken between 2 10° and 2 10°,
depending on the circumstances. For the fast-Fourier-
transform (FFT) algorithm, M =2'® points were used.

In all numerical experiments we have taken
wy=+5(V5—1), w,=1. In most of the experiments the
parameter p was fixed at the value p =3.0. The only ex-
ceptions are the results of Sec. IIIE below where this
choice of p is discussed and a transition to chaos that
occurs for sufficiently small p is illustrated.

A. Lyapunov exponent and winding number

Figure 1 shows a diagram of the K-V plane, giving re-
gions where A is negative (hatched) or zero (blank). The
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FIG. 1. Diagram of the K-V plane showing regions where
A <0 (hatched) or A=0 (blank) (p =3.0). The criterion for
negative Lyapunov exponent is A< —10"% A grid of 201
values of K by 66 values of ¥V was used; the integration was tak-
en over a variable number of driver periods going from
N =210 for most cases up to N =32 10° for the more slow-
ly converging ones.

criterion for negative Lyapunov exponent used in this fig-
ure is A < —10~*. The diagram exhibits a structure simi-
lar to the Arnold tongues of the circle map (see, for exam-
ple, Ref. 12, p. 111).
Figure 2 shows curves of A and W as functions of K at
a fixed value of V. The curve of W versus K is apparent-
ly a “devil’s staircase”: a continuous nondecreasing curve
with a dense set of open intervals on which W is constant
and given by
W=Lto+2o,, ™
n n
where [,m,n are integers, and between these intervals
there is a Cantor set on which W increases with K. For
small K in Fig. 2, A is apparently negative on both the
Cantor set and the intervals, while for large K, A is ap-
parently zero on the Cantor set and negative on the inter-
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FIG. 2. Curves of the Lyapunov exponent (A) and the wind-
ing number ( W) vs K at ¥ =0.55 (p =3.0, N =10%.
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FIG. 3. Diagram of the K-V plane showing the most impor-
tant resonances identified by the triplet (n,/,m) [cf. Eq. (7)]
(p=3.0).

vals. The regions where Eq. (7) holds appear in Fig. 1 as
the narrow tongues emerging at small V.

Figure 3 is another diagram of the K-V plane showing
the position of the most prominent plateaus of constant
winding number identified by the triplets (n,/,m). It is
clear that the n > 1 plateaus occupy a very small portion
of the parameter space.

In Fig. 4 we have plotted curves giving the K width of
several plateaus as a function of V. Note the scale for the
n =2 plateau in Fig. 4 has been multiplied by a factor of
5. This plateau is actually the widest of the n > 1 pla-
teaus. The figure shows that the width of the plateaus in-
creases from zero to a maximum value, then decrease to
practically zero and then increases again [at least from the
evidence of the (1,0,1) plateau].
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FIG. 4. Curves giving the K width of several resonances as a
function of V [note that the width of the (2,3,1) resonance has
been multiplied by a factor 5] (p =3.0).
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B. Surface of section plots plots with qualitatively different characteristics—see
Table I.
The three distinct combinations of winding numbers In case A the three frequencies W, w;, and w, are in-

[either satisfying Eq. (7) or not] and Lyapunov exponents commensurate, and the system will exhibit three-
(either negative or zero) give rise to surface of section frequency quasiperiodic behavior. A typical orbit gen-
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FIG. 5. Surface of section plot of (a),(b) a three-frequency quasiperiodic attractor (K =1.77, ¥ =0.55, N =10%, (c),(d) a two-
frequency quasiperiodic attractor (K =1.34, ¥V =0.55, N =10%, (e),() a strange nonchaotic attractor (K =1.33, ¥V =0.55,
N =2X10% (p =3.0). The corresponding Lyapunov exponents are 0.0, —0.2392, and —0.0717, respectively.
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TABLE 1. Characteristics of attractors.

Case Winding number Lyapunov exponent Type of attractor Figure
A W;b%wl + —';La)z A=0 Three-frequency quasiperiodic 5(a),5(b)
B = %wl + %wz A <O Two-frequency quasiperiodic 5(c),5(d)
C W;é%a), + %wz A<O Strange nonchaotic 5(e),5(f)

erates a smooth density of points densely filling the sur-
face of section (6,¢). This is illustrated in Fig. 5(a). In
Fig. 5(b) we have also plotted the corresponding surface of
section (¢,d).

In case B the frequency W is rationally related to w,
and w, and the system will exhibit two-frequency quasi-
periodic behavior. The attracting orbit in the surface of
section (6,¢) lies on a smooth multivalued curve. If one
takes in Eq. (7) /,n and m,n to be relatively prime in-
tegers, then n gives the multiplicity of the curve in the
surface of section. An example of a two-frequency quasi-
periodic attractor is given in Fig. 5(c) (note that in this
case [(n,/,m)=(1,0,1), to which corresponds W =1]. In
Fig. 5(d) we have plotted the corresponding section in the

plane (4,¢).

In case C the attractor is geometrically strange: It sat-
isfies a functional relationship ¢ =F(0) but the function F
is discontinuous everywhere. This can be verified in the
following way: (i) To verify the existence of the relation-
ship ¢ =F(0) we initialize a large number of points at a
single initial 6 value but with different initial (¢,¢) values
and find that after a large number N of w, periods, all or-
bits are attracted to a single pair (dy,dy); (i) that
¢=F(0) cannot be a continuous curve follows if the
winding number W is irrationally related to w,,w,; (iii) fi-
nally, that ¢ =F(6) is discontinuous everywhere follows
from the fact that the map 6, , =60, +270,/w, (mod 27)
is ergodic. An example of a strange nonchaotic attractor
is given in Figs. 5(e) and 5(f).

We note that according to the Kaplan-Yorke formula
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FIG. 7. Spectral distributions of the attractors of Figs. 5(a)
and 5(b) (K =1.77), Figs. 5(c) and 5(d) (K =1.34), Figs. 5(¢)
and 5(f) (K =1.33).

relating Lyapunov numbers to the information dimen-
sion!*!* the information dimension of these strange non-
chaotic attractors is 1 (in the surface of section), since the
Lyapunov exponents are zero and negative. We conjec-
ture, however, that the box counting (capacity) dimen-
sion!* is greater than 1 for these attractors.
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C. Frequency spectral characteristics

In Figs. 6(a)—6(c) we have plotted the frequency spectra
of the orbits which correspond to the surface of section
plots of Fig. 5. The figures show the spectrum of the
two-frequency quasiperiodic attractor [Fig. 6(b)] is con-
centrated at a small discrete set of frequencies, while the
spectra of both the three-frequency quasiperiodic [Fig.
6(a)] and the strange nonchaotic attractor [Fig. 6(c)] have
a much richer harmonic content.

In order to obtain a more quantitative characterization
of the spectra of the attractors we introduce a spectral dis-
tribution N (o) defined as the number of spectral com-
ponents larger than some value 0. In Fig. 7 we have plot-
ted the spectral distributions for the three attractors of
Fig. 5. It is seen that the strange nonchaotic attractor ex-
hibits distinctive spectral characteristics from the other
two. The form of these curves seems to agree with some
analytical estimates obtained in Refs. 8 and 9 in the case
of Egs. (5) and (3) and according to which we should have
N(o)~o~% for strange nonchaotic attractors N (o)
~In(1/0) for two-frequency quasiperiodic attractors, and
N(0)~In*(1/0) for three-frequency quasiperiodic attrac-
tors. The approximately straight line in the log-log plot,
Fig. 5, indicating the power-law relationship, N(o)~0o~%,
affords an important characteristic signature by means of
which strange nonchaotic attractors might be dis-
tinguished in experimental situations.
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FIG. 8. Curves of A and W vs K at ¥ =0.55 for the following values of p: (a) 10.0, (b) 3.0, (c) 1.5, and (d) 0.5 (N =10%).
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D. Typicality of strange nonchaotic attractors

In the case of Egs. (5) and (3) a combination of analyti-
cal and numerical results indicates that the strange non-
chaotic attractors occur on a Cantor set of positive Lebes-
gue measure in parameter space. Is this measure still pos-
itive in the case of Eqs. (4) and (3) or is it zero? In order
to try to answer this question we have performed the fol-
lowing numerical experiment. With the parameters p,V
fixed at the values of Fig. 2 we have taken the set of K
values

K%=0.685+0.005(i —1), i=1,2,...,49

which lie between the widest plateaus W =0.0 and
W =w, (the points K =0.680 and 0.930 are already on
these plateaus, respectively) and for each of these value we
calculated the winding numbers of the orbits with param-

eters
K”)—A, K(i), K(i)+A ,

by integrating Eqs. (4) and (3) over N = 10° driver periods.
When at least two of these three winding numbers are
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equal, we say that K is on a plateau, while if they are dif-
ferent, we say that K is on the Cantor set. By proceeding
in this way we found that 45 ~84% of points are on the
Cantor set. Repeating this study for other small A values
(A=4X107% 161077, 64X 10~°), we obtained identical
results. These results seem to indicate that the measure of
the Cantor set where the strange nonchaotic attractors
occur is also positive in the case of the pendulum equa-
tion. One observation is in order regarding what we mean
by equal and different winding numbers; we found that
the distinction between the two cases is always very sharp;
for points on the plateaus the difference between the
winding numbers is always less than 1078, while for
points on the Cantor set is always larger than 1075, (This
strongly suggests that we are not mistaking many closely
spaced narrow plateaus for a Cantor set of positive mea-
sure.)

E. Transition to chaos

In order to illustrate how the parameter p affects the
behavior of the solutions of Egs. (4) and (3) we have plot-
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FIG. 9. Surface of section plots of (a),(b) a two-frequency quasiperiodic attractor (K =0.79, ¥ =0.55, N =10°), (c),(d) a strange
chaotic attractor (K =0.80, V' =0.55, N =2x%10°) (p =0.5). The corresponding Lyapunov exponents are —0.0359 and + 0.0234.
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ted in Figs. 8(a)—8(d) curves of the Lyapunov exponent
(A) and the winding number ( W) as functions of K, with
V fixed, and for several decreasing values of p. Figure
8(a) (p =10.0) corresponds to strong damping; as in the
limit p— oo Eq. (4) reduces to Eq. (5), it is not surprising
that the curves shown in this figure are practically identi-
cal to those obtained for Eq. (5) (cf. Fig. 2 in Ref. 9). As
the parameter p is decreased the Lyapunov exponent for
small K first decreases, reaching a minimum value (for
the strange nonchaotic attractors) at approximately
p =3.0, and then increases again; Fig. 8(b) (p =3.0) and
Fig. 8(c) (p =1.5) show this evolution. For p sufficiently
small (less than approximately 1.0), A becomes positive,
indicating that Eqs. (4) and (3) exhibit chaotic behavior;
Fig. 8(d) (p =0.5) corresponds to the case where A has
approximately the largest value. This transition to chaos
is illustrated in Fig. 9 where we have plotted the surface
of section plots of a two-frequency quasiperiodic attractor
[Figs. 9(a) and 9(b)] and a strange chaotic attractor [Figs.
9(c) and 9(d)] for close values of K (p =0.5, V¥ fixed). Fi-
nally, in the limit p —0, A becomes zero everywhere.

The above description is mainly about the evolution
with p of the A versus K curve for small values of K, that
is, for values of K for which in the large-p limit strange
nonchaotic attractors are present; we have seen that as p
decreases below a certain value (p~1.0) these strange
nonchaotic attractors disappear in favor of strange chaot-
ic attractors. For large values of K, for which in the
large-p limit the system exhibits three-frequency quasi-
periodic behavior, the transition to chaos occurs for larger
values of p (somewhere between p =2.5 and 3.0). This re-
gion of positive Lyapunov exponent is barely visible in
Fig. 8(c), as the exponent is very small. In the case illus-
trate in this figure, Egs. (5) and (3) exhibit both strange
nonchaotic and strange chaotic attractors.

1IV. COMPARISON WITH PREVIOUS RESULTS

Our stroboscopic sampling of Egs. (4) and (3) at the
times t =t,=2mn /w,+ty defines a three-dimensional in-
vertible map,

(¢n+1’qb‘n+1):G(¢n’(;b.n’6n) s (Sa)
6n 1=(8,4+27/w;,) (mod 27) . (8b)

Formally setting p = «, Eq. (4) becomes Eq. (5), and the
corresponding invertible map is two dimensional,

¢n+l:g(¢n,0n) (mod 27) ’ (9a)
0, 1=(0,+27/w,) (mod27) . (9b)

Thus Egs. (9) define an invertible map on a two torus.
Our results of Ref. 9 showed that for the class of func-
tions g resulting from surface of sections of
d¢/dt =g(¢p,t) where the ¢t dependence of g is quasi-
periodic, Eqgs. (9) typically (in the sense discussed previ-
ously) had strange nonchaotic attractors. When we make
p finite, we add an additional phase space dimension,
namely, ¢. Our numerical results here show that for suf-
ficiently large p, the addition of the new dimension does
not qualitatively change the situation. That is, the results
are the same as would be expected for a map on a two
torus with the form of Eqgs. (9). Thus, although the phase
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space is four dimensional (¢,¢,0=w t, §=w,t), it is ap-
parently the case that there is an embedded three torus to
which all orbits are attracted, and on which (with some
suitable change of the ¢ coordinate) the dynamics is
described by an equation of the form d¢/dr =g(d,t). It
is on this torus that the quasiperiodic and strange non-
chaotic attractors of Figs. 5 lie. No chaos with positive
Lyapunov exponent is possible as long as this situation ap-
plies [it is ruled out for Egs. (9) with invertible g]. Our
transition to chaos (Sec. III E) means that the solutions
are no longer attracted to a smooth toroidal surface.
Presumably, what happens is that, as p is reduced, the
toroidal surface “fractures” in a way somewhat analo-
gous to what happens for two-dimensional circle maps at
criticality. (This, however, has not been investigated here.)
The main point is that the introduction of finite large p
does not immediately destroy the existence and typicality
of strange nonchaotic attractors. (In this respect the limit
p— o is nonsingular.) In fact, the critical value of p
found in Sec. II1 E was fairly small, p, =1.

In order to see why the torus might be preserved with
finite p we recall from Sec. II that there were two
Lyapunov exponents, A and A’ (we take A >A’) which
satisfy

A'=—(p+A). (10)

For p > p. both A and A’ are negative. Equation (10) fol-
lows if we view (4) as defining a time dependent [because
of f(1)] flow in (¢,4) space, d¢/dt=—p(d—cosd)
+f(1), d¢/dt =¢. Taking the divergence of this flow,
we obtain

9 9

LY 9¢
Equation (10) results, since this divergence is also the sum
of the Lyapunov exponents [ —(A+A’) is the exponential
rate at which areas in ($,¢) space, contract]. For large p
we expect and numerically find A to be close to its value
for the p = « case [Eq. (5)]. Thus from (10), large p im-
plies that A’ is a large negative number. We may view
— A’ as the exponential rate at which orbits in the three-
dimensional (¢,¢,0) phase space of Egs. (8) are attracted
to the torus. For large p this rate is very rapid, and thus
the torus would be expected to be rather stable and diffi-
cult to destroy. As p decreases — A’ becomes smaller;
eventually, at p =p,, the nonlinearity overpowers the con-
traction to the torus and destroys it.

Arguments similar to these lead us to believe that
strange nonchaotic attractors should be common and
occur typically for general two-frequency quasiperiodical-
ly forced nonlinear systems of arbitrarily high dimen-
sionality. Basically, what we require is that orbits be at-
tracted to a two torus on which the dynamics are
described by Egs. (9). Clearly this can happen for systems
of greater dimensionality than Egs. (3) and (4) (including
infinite dimensional systems).

d¢

dt

dé

dt =—f-

V. CONCLUSIONS

We have discussed the existence and properties of
strange nonchaotic attractors exhibited by the damped
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pendulum equation with two-frequency quasiperiodic
forcing, Egs. (4) and (3).

In particular, the pendulum equation apparently exhib-
its strange nonchaotic attractors and these attractors are
typical in the sense that they exist on a set (a Cantor set)
of positive Lebesgue measure in parameter space. Besides
these attractors the equation exhibits two-and three-
frequency quasiperiodic behavior, respectively, on a dense
set of intervals and on a Cantor set in parameter space.

In addition, the strange nonchaotic attractors apparent-
ly have distinctive spectral characteristics which may
make them observable in experiments involving physical
nonlinear phenomena which can be modeled by the
damped forced pendulum equation (e.g., Josephson junc-
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tions and sliding charge-density waves). We have also
verified, but not studied in any detail, that for sufficiently
small damping, the equation exhibits a transition to chaos.
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