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A representation of the kinetic-energy functional as the product of a homogeneous-gas function-
al and a Pade approximation in the density gradient is developed and shown to describe accurately
the kinetic energy of atomic systems.

The exact kinetic-energy functional of the electron density remains unknown, but limiting forms in the case of slowly
varying densities can be derived via the gradient expansion' and local wave-vector analysis. In the former, the ex-
pansion
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in terms of the spin-up and spin-down electron densities is used. The first four terms are
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n symbolizes either pt or p~. When n varies too quickly,
the integrated series in T2~ does not converge. For atoms,
T6 is infinite. Considerable work has been directed toward
eliminating this divergence by such global modifications as
truncation of the series in T2, multiplication by %-
dependent coefficients, ' or variation of the integrated
terms. "'

Recently, local modifications of the series have been
proposed by Pearson and Gordon, ' based upon an
asymptotic-series approach, and by Plumer and Stott
(after Meyer, Wang, and Young ) based upon a second-
order perturbation theory plus dominant-wave-vt:ctor
analysis. ' Both approaches- involve changing the contri-
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bution of ~2 at each value of n. Since the convergence of
the gradient expansion depends explicitly on local ratios
such as

~
Vn

~ /n, such local modification schemes are likely
to be successful at producing an accurate, though approxi-
mate, functional. The present article is a contribution to
this goal.

We wish to rewrite the series in ~2 as a Pade approxi-
mation of the general form

r(n ) = rQ(n )P~ st(r2(n )lro(n )),
where
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Since the expansion in Eq. (Sa) is truncated at quadratic
terms in

~ Vn!, we retain terms up to y in A, , yielding

1+0.95 zz/zp

1 —0.05 Zz/Zp
(6)

which is exactly of the form in Eq. (4) with % =1 =M,
ap = 1 =b p, a ~

=0.95, and b ~
= —0.05. For very small

zz/zp, this Pade form duplicates the gradient expansion
truncated at m =1, as required.

For a rough idea of the behavior for larger values of
zz/zp we consider the gradient expansion for a locally ex'-

ponential density variation,

n =A exp[a(x+y+z)] .
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The important feature is the extremely large negative
coefficient in the i6 term, indicating that

P~py(x ) ~ 1+x +czx +c3x + ' ' '
x~o (9)

will not be adequately represented by any truncation at the
quadratic term. The exact magnitude of the coefficients
may vary [e.g. , replacement of

~!
V'n/n! by [Vn/n! ' in

Eqs. (2c) and (2d) yields different values], but it is ap-
parent that the cubic term will be negative and of consid-
erable importance locally.

The final information used in determining the Pade
form is the fact that
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for one-electron atoms and two-electron Hartree-Fock
atoms. As emphasized by Acharya, Bartolloti, Sears, and
Parr, s this form is central to the proper description of
atomic kinetic energies, especially in the tail of the wave
functions for the valence-electrons. Since this is the region

Justifications for this form and the first few coefficients
are obtained from a few areas. First, consider the
perturbation-theory functional in the dominant-wave-
vector approximation ' '

z(n) =zp(n)+—X [!Vn['
8 n

where zz/zp» 1, we enforce the limit

P~ ~(x) ~ 9x (lob)

The power series coefficients in Eq. (9) are then
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The values of the parameters bz, b3, az, and a3 can be
determined by fitting the kinetic-energy functional global-
ly to known total kinetic energies. We have used Hartree-
Fock electron's densities and kinetic energies for He, Ne,
Ar, and Kr only to determine the values'6 shown in Table
I. It is apparent that our expectations were correct about
the power-series coefficients resulting from the Pade- fit.
[The Hartree-Fock values are not reproduced exactly even
for these atoms in Table II because the constraints b3 & 0,
and nonvanishing of the denominator in Eq. (11) restrict
the possible parameter values. ]

We calculated the kinetic energies for a variety of other
atoms (not used in the fit) in Table II, using the proper
spin-density functional and not the unpolarized one used
by Murphy and Wang ~'1 and others. '7 [The results for Tp
are corrected values to Ref. 3, with the differences being
especially large for N (—0.9) and Mn (—2.85) with three
and five unpaired spins, respectively. ] The Pade values are
a considerable improvement over the gradient-expansion
results whether truncated at T2 or T4 and are as good as
the asymptotic-series truncation values for the few cases
where the latter are available. The accuracy of the Pade
values is especially impressive across the (first row)
transition-metal series.

Finally, we show the function P43(x) in Fig. 1, along
with the Weizacker, zeroth-, and second-order gradient
expansions (i.e., 9x, 1, and 1+x, respectively). In this
display, Eq. (5) or any Pade form Pz ~ in x (e.g. , y

' in
Ref. 6) would always lie above the 1+x line and approach
9x from above. In general, this would overestimate global
kinetic energies since even the piecewise form 1+x for
O~x ~ —,' and 9x for x~ —,' yields values of 3.62707,
137.157, 530.032, and 2735.40 for He, Ne, Ar, and Kr,
respectively.

TABLE I. Pade-approximation parameters. '

0
1

2
3
4

a;

1

0.95000
14.281 11

—19.579 62
26.647 77

1
—0.05000

9.99802
2.960 85

~ ~ ~

cg

1

1.00000
4.33309

—32.321 85
b

'a2, a3, b2, b3 determined by least-squares fitting to Hartree-
Fock values for He, Ne, Ar, Kr. Results shown in Table II.
Not calculated.

Equations (6), (9), and (10) require at the minimum
% =4 and M =3, yielding the explicit form

1+0.95x+azx +a3x +9b3x
I'43 x

1 —0.05x +b 2x +b3x
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TABLE II. A comparison of atomic kinetic energies (hartrees) from Hartree-Pock densities.

Atom

H

Exact'

0.500000 0.458 96

T2

0.055 556 0.51452
0.5300
0.5116

(+2.9o)
(+6.oo)
(+2.32)s

To+ T2 (% error) Pade (% error)

0.51562 (+3.12)

He

Li

Be

0
F

2.861 68

14.5730

24.5291

37.6886

54.4009

74.8094

99.4093

128.547

2.560 54

6.70062

13.1286

22.0720

34.0144

49.4771

67.8965

90.4598

117.761

0.317969

0.804425

1.51800

2.450 81

3.58440

4.908 15

6.46078

8.183 19

10.0683

2.878 50
2.9631
2.8740

7.505 04

14.6466
14.990
14.730

24.5228

37.5988

54.3852

74.3573

98.6429

127.829
129.78
128.39

(+0.59)
(+3 54)e
(+0 43)

(+o.97)

(+o.si)
(+2.86)'
(+1.o8)'

(—o.o3)

(—o.24)

(—o.o3)

(—o.6o)

(—o.77)

(—o.s6)
(+0.96)'
(—o.12)'

2.87639 (+O.S1)

7.44941 (+O.22)

14.4223 (—1.03)

24.2089 (—1.31)

37.2533 (—1.15)

54.0643 (—0.62)

74.162S (—0.86)

98.6959 (—0.72)

128.221 (—0.25)

Mg

161.859

199.614

148.809

184.017

12.2837

14.7324 198.749
201.49
199.70

(—o.43)
(+o.94)'
(+o.os)'

161.093 (—0.47) 161.718 (—0.09)

199.578 {—0.02)

Al

Cl

Ar

241.877

288.854

459.482

526.817

223.443

267.315

426.865

490.017

17.4245

20.3434

30.4560

34.2721 524.289
530.43
526.34

(—o.48)
(+o.69)
(—o.o9)'

240.868 (—0.42)

287.6S9 (—O.41)

457.321 (—0.47)

242.008

289.139

460.117

527.617

(+o.os)

(+o.io)
(+o.14)

(+0.15)

Sc

Cr

Fe

Co

Ni

Zn

599.164

676.758

759.735

848.405

942.884

1043.31

1149.87

1262.44

1381.41

1506.87

1638.95

1777.85

2752.05

557.735

630.259

707.714

790.634

879.246

973.752

1074.47

1179.74

1291.32

1409.44

1534.31

1666.23

2591.77

38.3603

42.6855

47.2218

51.9509

56.9338

62.0959

67.4666

73.1039

78.9550

84.9290

91.2072

97.6249

141.897

596.096 (—0.51)

672.945
680.86

(—o.s6)
(+o.s4)

1035.85

1141.94

1252.85

1370.28

1494.37

1625.52

1763.86
1780.11

2733.66
2757.10

(—o.72)

(—o.68)

(—o.76)

(—0.81)

(—o.83)

{—o.82)

(—o.79)
(+0.13)'

(—o.67)
(+0.18)'

754.936 (—0.63)

842.585 (—0.69)

936.180 (—0.71)

600.001 (+0.14)

677.300 (+0.08)

1042.86

1149.70

1261.45

1379.75

1504.75

1636.77

1776.03

2751.51

(—o.o4)

(—o.o1)

(—0.08)

(—o.12)

(—o.14)

(-o.13)

(—0.10)

(—o.o2)

759.917 (+O.P2)

848.227 (—0.02)

942.509 (—O.P4)

'Exact results from Ref. 15.
bPade result from Eqs. (3) and (11) with the coefficients in
Table I.
'Tg+ T2+ T4 results of Ref. 13.

~Local truncation value from Ref. 13.
'Tg+T2+T4 results of Ref. 2. These used a spin-unpolarized
kinetic-energy functional, which is the same as the spin-polarized
functional for closed-shell atoms.
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Our fundamental conclusion is that the kinetic-energy
functional becomes larger than the second-order gradient
expansion as l Vn l /n t increases from zero, then must be-
come smaller than this expansion, and finally must become
larger as l Vn )/n+~ increases without bound. It never be-
comes negative though. This behavior provides a stringent
test of any general kinetic-energy functional. From a
practical viewpoint, the approximate representation of
r(n) in terms of a Pade function provides an accurate
kinetic-energy functional with the proper behavior in the
tail of atomic wave functions [in contrast to the series
truncation' which approaches's rn(n)l. This is important
for the treatment of chemically interesting effects.

FIG. 1. Pade function in Eq. (11). ( ) and various other
functions 9x( . . ), 1+x(---), and 1(-—).
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