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The spontaneous formation and evolution of stationary cellular interfaces arising in directional
solidification of a binary alloy are discussed in terms of bifurcation theory. Algebraic bifurcation
equations for the amplitudes of the cells are derived from the nonlinear equations of motion with
the interface velocity as a control parameter. It is shown that the form of these bifurcation equa-
tions is determined by the system’s symmetry and by nonflux boundary conditions imposed at the
sidewalls. The generic transitions from planar to cellular interfaces and between cellular interfaces
of different wavelengths are determined and the effects of variations of system parameters on the bi-
furcation diagrams are analyzed. A variety of new phenomena, such as various types of hysteresis
and cellular island formation, secondary bifurcations describing beats and mode jumping among in-
terfacial cells, and tertiary Hopf bifurcations to standing waves, is discovered, which one can expect
to find in solidification experiments on purely topological grounds.

I. INTRODUCTION

The formation and evolution of spatio-temporal struc-
tures is the result of sudden qualitative changes, known as
bifurcations. These occur in a nonlinear system if an
externally controllable parameter passes through critical
values so that a balance existing between competing
system-immanent effects breaks down. As a consequence,
an initially quiescent system becomes unstable and, in a
sequence of bifurcations, restabilizes successively in ever
more complex space- and time-dependent configurations.
Thereby, an important role is played by geometrical con-
straints, for example, the dimension and shape of the
underlying system, inherent symmetries and boundary
conditions, which restrict the kinds of possible bifurca-
tions. Within a particular symmetry constraint, the bifur-
cations occur in certain definite and classifiable ways.
However, the behavior of a particular system is eventually
determined by the underlying physics. The classifiability
is a consequence of the fact that physical systems which
allow reproducible experiments are structurally stable, i.e.,
that they are insensitive to small perturbations. In such
systems an unstable event, i.e., a bifurcation, appears as a
singular element within a stable process. This fact ex-
plains the qualitative similarity among the instabilities
that lead to convective patterns in fluids,' cellular flame
fronts,? and crystal growth,3 chemical pattems,4 and so
forth.’

This paper deals with the problem of stationary cellular
patterns formed by the interface between the solid and the
liquid phase of a binary alloy in directional solidifica-
tion.®3 The objective is to carry out a fully nonlinear
analysis of the problem by determining the generic transi-
tions from flat to cellular interfaces and between cellular
interfaces of different wavelengths. The one-sided solidi-
fication model®? is used as a paradigm. The main princi-
ple is to deal with the solutions of algebraic bifurcation
equations for the amplitudes of bifurcating modes rather
than with the equations of motion themselves. The latter
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have been studied by Mullins and Sekerka,” Wollkind and
Segel,® Langer and Turski,® Langer,” and others,'®!! while
numerical simulations of interface profiles have been per-
formed by Kerszberg,'> McFadden and Coriell,'* and by
Ungar and Brown.'* Introductions to both the experi-
mental and theoretical sides of the subject and further
references can be found in articles by Langer,” Trivedi and
Somboonsuk,!® Glicksman,!® and Heslot and Libchaber.!”
What is needed at this point is an analytical and largely
model-independent approach to the problem of cellular in-
terface formation which starts from first principles and
reveals the basic phenomena which one can expect to find
in solidification experiments. An appropriate framework
for this is provided by the theory of imperfect bifurca-
tions.!®1° This theory allows us to determine and to
categorize all possible instabilities and bifurcations to
stable stationary patterns that can occur in solidifying sys-
tems when a distinguished external control parameter
varies. The formalism developed below accounts also for
symmetry constraints and material parameter variations.
We begin, in Sec. II, by summarizing the basic equa-
tions which describe the one-sided, nonlinear model of
directional solidification with the interface velocity con-
sidered as the externally controllable parameter. These
equations are supplemented by nonflux (Neumann) boun-
dary conditions at the sidewalls of the solidifying materi-
al. Using a general multimode approach, we derive bifur-
cation equations for cellular interfaces for the case in
which one or two modes become unstable at critical values
of the interface velocity. The form of these equations is
essentially determined by the reflection symmetry of the
equations of motion and by the boundary conditions.
After a discussion of the associated linearized system we
describe, in Sec. IIT A, the basic concepts and results of
imperfect bifurcation theory and outline the geometrical
reasoning that leads to a description of interface transi-
tions in terms of bifurcation diagrams. The principal con-
tents of our results are contained in Secs. IIIB and IIIC
and are expressed by a set of perturbed bifurcation dia-
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grams for the amplitudes of bifurcating cellular interfaces
as functions of the interface velocity and of system pa-
rameters. Among the interesting phenomena we find pri-
mary bifurcations of a single mode exhibiting bistable and
mushroom hysteresis and the appearance of islands not
connected with the stationary state. This means that for
certain parameter values there exist stable cellular inter-
faces without any instability of the plane interface being
present. The simultaneous instability of two different
modes leads to primary bifurcations representing single-
mode solutions and to secondary bifurcations describing
mixed-mode solutions which connect the single-mode
branches. The mixed-mode solutions correspond to inter-
faces representing spatial beats of, and mode jumping be-
tween, two different wavelengths. In addition, tertiary bi-
furcations on the mixed-mode branches are found, i.e.,
Hopf-bifurcations to standing waves. In Sec. IV, we sum-
marize our results and discuss some implications for fur-
ther research.

II. DIRECTIONAL SOLIDIFICATION
WITH NONFLUX BOUNDARY CONDITIONS

In this section we summarize the basic equations
describing the one-sided model of directional soldifica-
tion>® subjected to nonflux boundary conditions. Then,
using a general multimode approach, a reduction to am-
plitude equations for stationary cellular interfaces is car-
ried out'? and a linear stability analysis is performed.

A. The solidification model

Consider a long, thin sample of a dilute binary alloy of
width L lying in the (£,7) plane which is drawn, at con-
stant velocity V, through a fixed temperature gradient G
established by stationary hot and cold contacts at 4 and B
(Fig. 1). The temperatures are chosen so that the sample
is molten at 4 and solid at B with the solid-liquid inter-
face visible in between. We assume that diffusion of the
solute on the solid side of the interface is negligible (one-
sided model), that the latent heat, which is released at the
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FIG. 1. Schematic representation of the directional solidifica-
tion system.
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interface, is small, and that convection in the liquid can be
neglected.>” This implies that the solidification process is
primarily governed by the solute transport in the liquid
towards or away from the interface whose position is at
n=s(§,t). At low interface velocity ¥V, the external
thermal conditions impose a planar solidification front
s=0. With increasing V, solute diffusion tends to desta-
bilize the planar front: If the solid bulges, the concentra-
tion gradient is increased in front of the bulge and the
solute current is enhanced so that the growth of the bulge
is favored and the interface becomes unstable. This desta-
bilizing effect of the concentration gradient is counterbal-
anced by the stabilizing effects of the surface tension and
the temperature gradient. The resulting interplay between
kinetic and capillary effects produces the complex pat-
terns that we see in the advancing front as ¥V increases,
viz., planar interface, spatially periodic cellular states,
and, finally, dendrites.

In the frame of reference moving in the 7 direction at
the interface velocity, the diffusion of the suitably nor-
malized solute concentration w(§,7,t) is determined by
the equation®

(2.1

for 0£<b, n=s(§,t). Here the subscripts indicate par-
tial differentiation and v is the dimensionless interface
velocity. Equation (2.1) is to be solved inside the liquid
with the Gibbs-Thomson boundary condition on the inter-
face n=s(§,t)

Wee + Wy +0Wy, —w; =0

w=—s—%2"(s) , (2.2)
and the Rankine-Hugoniot condition which relates the
speed of diffusion to that of the interface, viz.,

SiHv 4wy —sewe=0, n=s(§,1). (2.3)

In Eq. (2.2),
H(s)=—sge/(1+5F)*?

is the curvature of the interface at n=s(&,7), and u >0 is
a variable depending on the various physical parameters
involved,

u=m2%(1—k )/(ToI'GK,),

where ¢, is the solute concentration at infinity, T, the
melting temperature of the planar interface, I' the capil-
lary length, /7 the slope of the liquidus line, and «  is the
segregation coefficient. In deriving (2.2) and (2.3) we have
assumed that the concentration jump at the interface is
constant and that the liquidus line in the phase diagram is
linear.’

At the sidewalls of the sample we impose the boundary
conditions for the concentration field

we=0 for £=0, £=b (2.4)
and for 7— o0 we have
w(&, + o0,t)=—1. (2.5)

The physically necessary nonflux (Neumann) boundary
conditions (2.4) are often disregarded in solidification
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models,>1° although, as we shall see, they are of consider-

able importance for the cellular bifurcation problem.
Furthermore, we assume that the interface moves slowly
in comparison to the speed of solute diffusion. This cor-

responds to a “quasistationary approximation,”? in which
(2.1) is replaced by
Weg + Wy +0Ww, =0 . (2.6)

In virtue of (2.2), the system to be solved is highly non-
linear. The planar interface solution of (2.2)—(2.6) is
given by

wo(&,,)=exp( —vn)—1, s(£1)=0.

B. Bifurcation equations

In this section we derive equations of motion for the in-
terfacial displacement s(&,¢z) and by using the Lyapunov-
Schmidt method which consists here simply of an applica-
tion of the implicit function theorem, the infinite-
dimensional problem of steady-state cellular bifurcation is
reduced to a small number of algebraic equations. These
contain all the information about the bifurcation behavior
near the onset of instability. Differentiating (2.3) with
respect to & yields, together with (2.4), at n=s(§,¢),
£=0,b, the equation

s§(w,,,, —W§§)=O . 2.7)

Since wy, —wg =v’#0 for the planar interface solution
wy, we obtain near the onset of instability

s¢=0 (2.8)
at the sidewalls £=0,b. In virtue of (2.8), s can be
represented by a cosine series

+ oo

s(E,)=3 enl(ticos(mVukyf), (2.9)

m=0

where ¢€,, ER and
ko=m/(bVu )=(m/LNT,T/G)"*>0

is the fundamental wave number, depending on the width
L of the sample [the factor V'u in (2.9) has been intro-
duced to simplify the analysis]. Since the g, vary with
time, so do s and w. Hence w is a functional of the am-
plitudes ¢,,, w=w(&,n,t,&) with e=(gg,€,€,,. .. ), which
can be expanded into a formal Taylor series around the
planar interface £=0,'%20

w= i > Dfw|.— e /u! (2.10)

n=0|p|=n

with multi-indices p. By determining the Taylor coeffi-
cients of (2.10) with (2.6), (2.2), and (2.5), and substituting
the resulting formal Taylor series (2.10) into equation
(2.3), we obtain an equation of motion for the interface s
in the form of an infinite system of first-order evolution
equations for the ()2
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o (i)
si——z 2 ail’izy'~'*[j8‘ili£‘izl'“E\ij{ ’
J=lipig . .o, i€z
lléizé"'sij
Sip=i
k
(2.11a)
ie.,
éizai£i+Mi(€), i:O,l,Z,... (2.11b)

where a; =a,"” and M, describe the nonlinear effects and
the a;" (Sec. I1 C) are real.

(n)

The coefficients a,; ,,, . n, (cf. the Appendix), which

depend on v and on the system parameters u and kg, can
be calculated to any desired order using computer algebra-
ic symbolic manipulation systems.?’ The trivial solution
€=0 of (2.11) describes the planar interface. It is stable if
a; <0 for all i which is the case for sufficiently small v
(Sec. IIIC). As v increases and passes through a critical
value v, some of the eigenvalues a; of the linearized sys-
tem (2.11) go through zero from negative values. Then
the planar interface loses stability and bifurcation to cellu-
lar steady-state interfaces takes place in virtue of the non-
linear terms M; in (2.11). We confine ourselves to station-
ary solutions of (2.11), €;=0. Suppose that for v=u,,
a,=0 is the first eigenvalue going through zero, and
a; <0 for i#n. Then the nth equation in (2.11) has a
vanishing linear part, i.e., it is degenerate. According to
the implicit function theorem, the nondegenerate equation
system (2.11) with is~n can be solved uniquely with
respect to the g;, is4n, i.e., g =¢;(g,). Substituting this
expression into the degenerate equation with i =n yields a
single algebraic equation for the stationary amplitude ¢,,:

B(g,,v):= M,(e(g,))=0 (2.12a)

with B(0,v.)=0 and 90B(0,v.)/9e,=0. In virtue of the
symmetry of the equations of motion (2.1)—(2.3) with
respect to reflections at the axis £=b /2 and the nonflux
boundary conditions (2.4), B is an odd function of ¢,, i.e.,
B(—¢,,v)=—Bl(g,,v), so that (2.12a) takes the form

B(x,v)=xh(x?v)=0 (2.12b)

with x =g,, where h(x2v) is a smooth function with
h(0,v.)=0. If n is odd, (2.12b) simply is a result of the
reflection symmetry of the equations of motion. For n
even, however, the special form of B is a nontrivial conse-
quence of the nonflux boundary conditions.?! ~2* We do
not give a proof here but confine ourselves to a simple
plausibilty argument. Since the equations of motion
(2.1)—(2.3) are invariant under a reflection at the axis
&=b/2, then with s(&,t), s(b—§,t) also represents an in-
terface. Suppose now that s in (2.9) consists only of a sin-
gle mode s =g,cos(nV'u ko). If n is odd, then

s(b—&,t)=¢,cos[nVuky(b—E)]
=—¢g,cos(nVukof)=—s(&,t)

is also an interface pertaining to a solution of (2.1)—(2.5).
Consequently, together with €,, —¢, is also a solution of
(2.12a). If n is even, we note that at £=5b /2 the interface
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s =g,cos(nVu kof) also satisfies the condition s¢=0. In
this case we can consider the interface in the intervals
[0,6/2] and [b/2,b]. If n/2 is odd, we can apply the
above argument to each of the intervals [0,b/2] and
[b/2,b] with the result that —¢, is a solution of (2.12a).
If, on the other hand, n /2 is even, we divide the interval
[0,b] into [0,b/4],...,[3b/4,b] and consider s in each
of these intervals, and so forth. Hence, if ¢, is a solution
of B=0, —¢, is also a solution. By explicit calculation
(cf. the Appendix) one can show that all even derivatives
of B with respect to x vanish at x =0, whence (2.12b) fol-
lows.

As we shall see in the Sec. II C, it is possible that, for
v =v,, two neighboring eigenvalues a, and a, | can van-
ish simultaneously. Then, the system (2.11) possesses two
degenerate equations, viz., the equations with i=n and
i=n+1. Solving the remaining nondegenerate equation
system (2.11), is~n, n+1, for g, and €,,; to yield
€; =¢;(€,,€, ;1) and substituting these expressions into the
two degenerate equations with i =n, n + 1, gives two cou-
pled equations:

B(l)(eny€n+l’v)=0 ’
2) (2.13a)
B (En’5n+l7v)=0v

with B7(0,0,v,)=0 and

3B"(0,0,v,)/3¢, =3B'*(0,0,v,) /3¢, ;. 1=0 .

It has been shown by Dangelmayr and Armbruster?>?

that any bifurcation problem of the type (2.13a) for two
coupled stationary modes with nonflux boundary condi-
tions possesses the form

BW(x,y,v)=xa(x%y?v)+x"y"b(x%y%v)=0,

BP(x,y,v)=yec(x%y2v)+x"+y"~ld(x2y%v) (2.13b)

=:0,

where x=¢g,, y=¢,,, n21, and a,b,c,d are smooth
functions. The bifurcation behavior depends on the wave
numbers n of the two unstable modes. The functions
B,B'Y B? depend also on the system parameters u,kq
which will be taken into account in Sec. III.

C. Linear stability analysis

According to (2.11), the planar interface loses stability
as v increases if one or more eigenvalues a; of the linear-

ized system €;=a;g;=0 go through zero from negative
values. We have

a,=(w—1—n2k2) %+ - 2 (2.14)

) 1/2
v 272
—+un‘ky

from which we obtain v, by setting a,, =0 and solving for
v. Thus, considering nkg as a continuous variable k for a
moment, instability at v=uv, sets in if, for a given u, the
surface
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E—+uk2

k =(v—1—k?
alk,v,u)=( ) n

v
2+
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in (k,v,a) space intersects the (k,v) plane. Such intersec-
tion occurs in a convex contour C(u) when u 227 (Fig. 2)
and the mode cos(mVu ko£) becomes unstable if the line
k =mk, parallel to the v axis intersects C(u). Then, if
the interface velocity v increases, the mode pertaining to
the lowest value of v at the intersection points is the first
one that becomes unstable. We call this the critical mode.
From Fig. 2 one infers that the system restabilizes for a
sufficiently high velocity. Because we are only interested
in the onset of instability, we have to consider only the
lower part of the contour C(u).

If u increases, the contour C(u) expands so that criti-
cality of a mode depends on the values of both k; and u.
We show that the (kq,u) plane can be divided into disjoint
regions R,, n=1,2,3,..., such that for any choice of
(kg,u) within R,, precisely the nth mode is critical (Fig.
3). Suppose (kg,u) is located in R,. Then the nth mode
is critical. If we now vary (kg,u) and cross the boundary
of R,, the mode number n ceases to be critical and there
are two ways for this to happen: (a) If nko=k_ (or k)
where

k% = (2u—27F[uu —27)]'"} /27

and k; are the abscissas of the left and right vertical
tangents to C(u) (Fig. 2), and k( is decreased (or in-
creased), then a, does not vanish and the (n + 1)-th mode
becomes critical (or no critical mode is present) [Fig. 4(a)];
(b) If two modes n and n +1 are simultaneously critical
[Fig. 4(b)], a decrease or increase of kg results in a situa-
tion where only the (n +1)-th or the nth mode, respec-
tively, is critical. Since C(u) is convex, at most two
neighboring modes can simultaneously be critical. The
condition nko=kz yields curves W, in the (kq,u) plane
which are given by

u=27(14+n%k3)?/(4n2k3). (2.15)

Eliminating v from a, =a, =0 yields a set of curves Z,
in the (kg,u) plane (Fig. 5). The curves W, and Z, inter-
sect in various points. The reason for this is that these
curves describe bifurcation phenomena at destabilization

a<0

b . —

>k

k

X

- +

FIG. 2. Critical values of the interface velocity v as a func-
tion of the rescaled wave number k.
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FIG. 3. Division of the (kq,u) plane indicating the critical
modes. For (kg,u) lying in region R,, n €N, the mode number
n becomes unstable first for increasing interface velocity v and
thus determines the wavelength of the emerging cellular inter-
face.

and at restabilization. For example, for fixed u we have
two different values of ko, for which two neighboring
eigenvalues a, and a,; vanish simultaneously for some
v. But for one of these values of k, the vanishing of the
eigenvalues occurs at restabilization and not at destabili-
zation and, therefore, is not relevant for the onset of insta-
bility. Since C(u) is inclined to the right, the smaller kg
value belongs to destabilization. With similar arguments
one can sort out those parts of the curves W, and Z,, E,
and D,, respectively, which are meaningful for the onset
of instability, and finally obtain Fig. 3. Here
P,=(k;,u,) is a point of contact of the curves W, and
Z, (cf. the Appendix). E, is the part of W, with
ko=k}, and D, is the part of Z, with ko <k, . Hence, if
(ko,u) lies in R, or on E, the nth mode is critical; if
(kg,u) lies on D, the nth and (n + 1)-th modes are simul-
taneously critical. Outside the union of all R, the planar
interface remains stable for all v.

III. NONLINEAR BIFURCATION ANALYSIS

In this section we present a fully nonlinear analysis of
the bifurcation equations (2.12) and (2.13) near the onset
of instability. We use the theory of imperfect bifurca-

v

nk, (nellk, X nk, (nelk,

(a) (b)

FIG. 4. Borderline cases for the change in being the critical
mode between modes number n and n +1. (a) nko=k_, (b)
double-zero eigenvalue.

k

Ua

FIG. 5. Curves W, and Z, resulting from the conditions
nko=k+ and a,=a,,, at v=uv,, respectively. Parts of these
curves constitute the boundaries of the regions R, in Fig. 3.

tions'®!® to determine and to classify the generic bifurca-
tion processes that can occur in the solidification model
and analyze the effects of imperfections and parameter
variations on the bifurcation diagrams. In order to make
the exposition self-contained, we summarize first the basic
concepts and results of imperfect bifurcation theory and
then apply them to the problem of cellular interface bifur-
cations.

A. Imperfect bifurcation theory

A general “bifurcation problem”'®?* g consists of find-

ing the solutions x =x(A) of a system of equations
g(x,A)=0 (3.1)

with g(0,0)=g,(0,00=0, where g=(g,,82,...,8,) is a
smooth function, x =(x,x,,...,x,) are state variables,
and A is a distinguished bifurcation parameter represent-
ing the control variable in a physical experiment. It is as-
sumed that (3.1) is the equation system for the amplitudes
x of the solution of a given nonlinear evolution equation,
obtained by a Lyapunov-Schmidt reduction. The point
(x,A)=(0,0) is a bifurcation point or a singularity of g,
and the solutions (x,A) of (3.1) constitute the bifurcation
diagram. In the solidification problem, the bifurcation
equations (3.1) are identical with (2.12) in the single-mode
case with x;=x=¢,, g=B, and with (2.13) in the
double-mode case with x,=¢g,, x,=¢,,|, & =B,
g,=B"?, respectively, and A=v —v, in both cases.

Two functions g(x,A) and g'(x,A) are called equivalent
or “qualitatively similar” if there exist smooth local

coordinate changes x—X(x,A) and A—A(A) with
detX,(0,0)0 and A,(0) >0 so that
g(x,A)=T(x,A)g'(X(x,A),A(A)), (3.2)

where T is a square matrix with det7(0,0)>0. Since A
may not depend on x, the control parameter A influences
x, but not conversely. Since 7T is invertible, two
equivalent bifurcation problems possess qualitatively the
same solution set. The effects of perturbations in a sys-
tem are incorporated into the bifurcation problem (3.1) by
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the unfolding of g. A k-parameter function G(x,A,a),
with G(x,A,0)=g(x,A) is called an unfolding of g
with  unfolding or imperfection parameters «a
=(ay,ay, . . . ,ay). If for any sufficiently small perturba-
tion ep(x,A,€) there exists an a so that the perturbed bi-
furcation problem g-+¢ep is equivalent [in the sense of
(3.2)] to G(x,A,a) and if k is the minimum number of
unfolding parameters needed to describe the perturbation,
then G(x,A,a) is called a stable or universal unfolding of
g, and k is called the codimension of g. The codimension
is a measure for the degree of complexity of the bifurca-
tion problem. We have the following theorem:!'®! If g
has finite codimension, then there exists a polynomial
g'=N(x,A), called a normal form, which is equivalent to
g, and a universal unfolding G'=F(x,A,a) of N which is
also a polynomial. (Here the new variables X and A are
denoted again by x and A.) By varying a in F(x,A,a)=0
one obtains a finite number of qualitatively different, per-
turbed, or unfolded bifurcation diagrams. The a-
parameter space can be divided into a finite number of re-
gions such that for any two parameter values lying within
the same region the corresponding bifurcation problems
are equivalent and structurally stable. Crossing the boun-
daries separating these regions produces new qualitatively
different diagrams.

Changes in the stability properties of a solution x of
F=0 follow by considering x as equilibrium solution of
the system x =F(x,A,a). The signs of the real parts of
the eigenvalues of the Jacobian of F evaluated at x deter-
mine the stability properties of the bifurcating solution
branches of F=0. In order that bifurcation occurs in
(3.1) and g is equivalent to a normal form, g must satisfy
certain defining (or degeneracy) conditions which express
the vanishing of some of its first derivatives and certain
nondegeneracy conditions which relate to the nonvanish-
ing of some next higher derivatives. With these tech-
niques it is possible to classify bifurcation problems by
their codimension, i.e., to give a list of all possible bifurca-
tion diagrams.

The imperfect bifurcation theory outlined above can be
generalized to problems with symmetry.!®!° g is called to
be a bifurcation problem with symmetry group ' if gis I
covariant, i.e., if g(yx,A)=yg(x,A) for all yET. g and
g’ are T equivalent if (3.2) holds with the symmetry con-
ditions X(yx,A)=yX(x,A) and T(yx,A)=yT(x, )y~
The notions of I'-covariant unfolding, I" codimension,
etc., are defined in an analogous way.

The following example is instructive. Let x €ER and let
I'=Z(2) be the reflection group so that g(—x,A)
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= —g(x,A). Suppose that g satisfies the defining condi-
tion g,,=0 and the nondegeneracy condition
Z18xxxxx >0 at (x,A)=(0,0). Then the bifurcation prob-
lem g(x,A)=0 1is Z(2)-equivalent to the Z(2)-
codimension-1 normal-form problem g'=N=x°+Ax =0
with the Z(2)-universal unfolding F=x°+2ax 3+ Ax =0.
The solution set of F =0 consists of the qualitatively dif-
ferent bifurcation diagrams shown in Fig. 9 below for
various values of a. (In Fig. 9 only the solutions with
x 20 are shown.)

As has been mentioned at the end of Sec. IIB, the
B,BY depend on the system parameters u,k,. Therefore,
the left-hand sides of the defining and nondegeneracy con-
ditions [of the type g,(0,0)=0,g,1(0,0)=0,g,,(0,0)5<0]
are now functions of ky and u. Hence, for each normal
form there exists a set of points (kq.,u.) in the (kg,u)
plane for which these conditions are satisfied and for
which bifurcations can occur. Thus, a Z(2)-symmetry-
preserving perturbation of the system (there are others,
naturally) consists of a deviation of (kg,u) from (kg.,u.).
As we shall see in the following, such a perturbation can
be described by the unfolded normal forms of the bifurca-
tion problems through an identification of ko, —k, and
u. — u with unfolding parameters a.

B. Single-mode bifurcation

In this section we determine the qualitatively different
bifurcation diagrams which describe the various transi-
tions between planar and cellular interfaces if a single
mode becomes unstable at v=v,. In Sec. IIB we have
shown that the bifurcation equation (2.12a) has the form

B(x,v)=xh(x%v), h(0,0.)=0, (3.3)

where x =¢, is the amplitude of the mode and bifurcation
occurs at x =0 for A=v—v,=0. Reflection-symmetric
bifurcation problems of the form (3.3) have been classified
by Golubitsky and Langford*!® in the context of degen-
erate Hopf bifurcations. The derivatives of B at x =0,
v=v, which occur in the various defining and nondegen-
eracy conditions can be calculated explicitly as functions

of the coefficients a,(,,"l’,),,,z,___,m‘, i.e., as functions of the

system parameters ko and u (cf. the Appendix). In what
follows all derivatives of B are taken at x =0 and at
v=v, unless stated otherwise.

In the list of normal forms given in Ref. 25 there are
two defining conditions, viz., in the present case, B,, =0
and B,,,=0 at x=0, v=v,, whose validity determines
the type of the normal form describing the bifurcation.

TABLE I. Unfolded normal forms for single-mode bifurcations occurring in the solidification model

(2.1)—(2.5).

Unfolded normal form Location of (kg,u) Figure
(1) x3—Ax Below K, , n>1 7(a)
(2) x3+Ax Above K, , n<3 7(b)
(3) x3+(A*+a)x On E,, left of T,, nx1 8 (top)
@) x3—(A*+a)x On E,, right of T,, n<3 8 (bottom)
(5) x34+2ax3—Ax On K, n<3 9
(6) x°—2urx3+(A2—BA+a)x At T,, n<2 10
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Therefore, we determine first the set of parameters ( kq,u)
for which these conditions are satisfied: (a) We have
B,,=0da,/dv. a,=0 and B,,=0 give v.=3r and
u=27r*/[4(r —1)] where r:= 1+n%k}, describing the
curve W, of Fig. 5. (b) To analyze the second condition,
B, =0, we note that

B =6(a2a'™), —a"") na\) /ay, . (3.4)
Eliminating u from B,,, =0 and a, =0 yields the equa-
tion

vc3+12rvc2—r(20r2—5r+12)vc+2r3(4r+3):0 . (3.5)
From a, =0 one obtains
u=vlr/[(r—1(v.—r)?]. (3.6)

Eliminating v from (3.5) and (3.6) gives the curve K,, in
the (ko,u) plane (Fig. 6) which has a contact with W, at
the point T, =(k,,%) where

I?nz—lg<%+%x/13)sl.74s/n2 ,
n
f=22(52415/v13)=29.16 .

An argument similar to that used in Sec. I C shows that
only the branch K, of K, to the left of T, describes de-
stabilization of the planar interface while the right branch
corresponds to restabilization, and only for n =3 is K,
located inside the region R,. Furthermore, T, lies inside
R, only for n=1 and n=2. With these results we can
determine all bifurcation diagrams. The corresponding
normal forms are given in Table I. For (ky,u) in R, we
find the following.

(i) If (kg,u) lies neither on K, nor on E,, then B,,+0
and B,,.5£0. Hence, from Ref. 25 we obtain the normal
form (1) of Table I, viz., N=x3—Ax if By, By <0 and
N =x3+Ax if B,,B,. >0. It turns out that B,, is always
positive if (kq,u) is above E, and that B,,, is positive if
(ko,u) is above K, and negative below. Therefore, in re-
gions ¢ and « of Fig. 6 we encounter a subcritical bifurca-
tion, and in region # a supercritical one. These bifurca-
tions have Z(2) codimension-0 and are not altered by
small Z(2)-preserving perturbations. The corresponding
diagrams are shown in Fig. 7. The stability symbols “s”
and “u” mean stable and unstable and in virtue of the
Z(2) symmetry of the system only the branches with x 20

FIG. 6. Location of the curves K, in the (ko,u) plane. On
K, we have B, (0,v.)=0.

" / N
A S u S u
(a) (b)

FIG. 7. Bifurcation diagrams for the normal forms (a)
x3—Ax and (b) x>+ Ax. s means stable, u unstable.

are shown.

(ii) On the curve E,, excluding T,, we have B,, =0 and
B,,.#0. Then the corresponding normal form is deter-
mined by the signs of B, and B,,. Since
B,,, =d%,/dv*= — 5 for (kg,u) on E,, the bifurcations
are determined by the normal form (3) of Table I on the
part of E, to the left of T, (where By, <0) and by nor-
mal form (4) on the part to the right of T, (where
B,,.>0). These are Z(2)-codimension-1 bifurcations
with diagrams shown in Fig. 8. In particular, for (kg,u)
on E, the bifurcation behavior of the system is described
by Fig. 8 (top) (b) provided that (k¢,u) lies to the left of
T,. If the system is perturbed by a small Z(2)-
symmetry-preserving perturbation, it is described by the
universal unfolding of (3), viz., by the diagrams of Fig. 8
(top) (a) and (c). The most obvious symmetry-preserving
perturbations are deviations of (ko,u) from their values
taken on E,. As we have seen, (ko,u) lies on E, if
nko=k _ (or nko=k ) in Fig. 2. When we now shift k,
slightly to the left (or decrease u), then the nth mode does
not become unstable at all. This situation is described by
the bifurcation diagram shown in Fig. 8 (top) (c). Shifting
ko to the right has the effect that, with increasing v, the
nth mode restabilizes shortly after destabilization. This
gives Fig. 8 (top) (a). Thus, we see that perturbations
described by the unfolding parameter a can in fact be
identified with deviations of (kq,u) from the values taken
on the curve E,,.

(iii) The normal form which corresponds to a point

o< a=0 >0

(a) (b) {c)

X
T—))\
u u u u N S
5\ u /S S S S
a<( a=0 a>0
(a) (b) (c)

FIG. 8. (Top): diagrams for normal form (3) of Table I. (a)
a <0, (b) a=0, (c) a>0. Bottom: diagrams for normal form (4)
of Table I. (a) a <0, (b) a=0, (c) a>0.
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(kg,u) on K, , excluding T,, depends on the sign of
B, xxx- A numerical analysis shows that B,,,.. is nega-
tive on K, so that the bifurcation is described by the nor-
mal form (5) of Table I, viz., by N =x3—Ax with unfold-
ing F=x°42ax’—Ax. The bifurcation diagrams are
shown in Fig. 9. Here, for the first time a hysteresis bi-
furcation behavior occurs and, since it is a codimension-1
phenomenon, it should be frequently observable in solidi-
fication experiments.

(iv) For (kq,u) on the point T, the equations B,,=0
and B,,, =0 hold simultaneously and the associated non-
degeneracy conditions are By, 50, By #0, and ples£1,
where e=5gn(B,,, Byrxxx) and U=Byrx,/
(| ByywwBrxxxx | )17%. Since By, and By, are both nega-
tive at T,, we have e=+1 and a numerical calculation
yields = —0.2209 whence u’es£1. Therefore, the nor-
mal form describing the situation where (ko,u ) lies on the
point T, is N=x>—2uix3+A%x with universal unfold-
ing F=x>—2ulx’+(A>—BA+a)x and unfolding para-
meters a and 3. The bifurcation diagrams derived from
F =0 are shown in Fig. 10 for various ranges of values of
a and B. In addition to hysteresis, there appear new bi-
furcation phenomena, viz., the mushroom bifurcation
[Fig. 10(d)] and the formation of an island [Fig. 10(e)],
i.e., of a stable cellular interface which is not connected to
the planar interface and which occurs without any ap-
parent instability present in the planar solidification front.
Such stable islands are also familiar from bifurcation phe-
nomena in chemical reactions and optical bistability.?®
Here we can again identify the unfolding parameters with
deviations of (kg,u) from T,. If (kg,u) lies in region £ of
Fig. 6 near T,, the system undergoes a supercritical bifur-
cation since B,,, is negative there and restabilizes thereaf-
ter subcritically since B,, <O at restabilization, a result
described by Fig. 10(b). If (ky,u) crosses the curve K,
from region £ to region ¢, bifurcation at destabilization
changes from supercritical to subcritical, cf. Fig. 10(c).
When (kg,u) is moved from region ¢ to region , the bi-
furcation at restabilization changes from subcritical to su-
percritical and thus produces the mushroom diagram of
Fig. 10(d). Passing from region « to region e, the primary
bifurcations disappear, i.e., the mushroom’s head discon-
nects from its basis and we are left with the island of Fig.
10(e). When (kg,u) crosses E, from region £ to region /,
the primary bifurcations disappear too, so that in region /
we are left with the diagram of Fig. 10(f). Within the
framework of the one-sided solidification model these are
all the single-mode bifurcations that can occur.

a<( a>0

(a) (b) (c)

FIG. 9. Diagrams for normal form (5) of Table I. (a) a <O,
(b) =0, (c) a>0.
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(b) (c)

(a)

(d) (e) (f)

FIG. 10. Diagrams for normal form (6) of Table I. (a)
a=pB=0, (b)—(f) all qualitatively different diagrams for various
values a540, B540.

C. Two-mode interactions

The objective of this section is to discuss the simultane-
ous bifurcation and subsequent interaction of two critical
modes when the planar interface loses stability. Accord-
ing to Sec. IIC this occurs for two neighboring modes
€ncos(Vu nkof) and €, , cos[Vu (n + 1)ko€] when (ko,u)
is located on the curve D, in Fig. 3. A classification up
to codimension-2 and an unfolding theory of bifurcation
equations with such double-zero eigenvalues and nonflux
boundary conditions has been developed by Armbruster
and Dangelmayr.?>?3 In the present case of two neighbor-
ing critical modes their bifurcation equations take the
form

BV(x,p,v)=xa(x%y%v)+x"y"b(x%y%v)=0,
(3.7)
BP(x,y,0)=yc(x%ytv)+x" Ty~ 1d(x2,p%v)

=O’

where x =¢,, y=¢, ., and a,b,c,d are smooth functions
and n21. From (3.7) it follows that the bifurcation
behavior depends on the wave numbers #n and (n +1) of
the two unstable modes.

The solutions of (3.7) can be divided into different
branches. The trivial solution x =y =0 describes always
the planar interface. In the case n =1, a pure-mode solu-
tion S, with amplitude y follows from x=0 and ¢=0
while a mixed-mode solution S,, with amplitudes
x£0,y#0 is given by the solution of a 4+yb =0 and
yc+x%d =0. In the case n>2 we have the pure-mode
solution S, with amplitude x from y =0 and a =0, the
pure-mode branch S, follows from x =0 and ¢ =0, and
the mixed-mode solution S,, is given by a +x""'y"b =0
and c+x"*'y"~2d=0. In both cases the S, and S,
branches bifurcate from the planar interface (x =y =0),
i.e., at a primary bifurcation point. The S,, branches bi-
furcate in general at secondary bifurcation points, i.e., off
the trivial solution, and connect the pure-mode branches,
cf. Figs. 14—16 below. The mixed modes give rise to spa-
tial beats and to mode jumping. Obviously, each pure-
mode bifurcation individually has a Z(2) symmetry be-
cause for x =0 or y =0 the second terms in (3.7) both
vanish. Thus the generic primary bifurcation is the pitch-
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fork. However, the branches S,, do not possess a
Z(2)X Z(2) symmetry in virtue of the terms b and d, be-
cause one of the second terms in (3.7) is even in x and y
and the other is odd.

The normal forms and diagrams describing the two-
mode bifurcations of the solidifying interface are derived
in essentially the same way as in Sec. III B. The deriva-
tives of B'Y and B'? at x =y =0,v =v, needed for the de-
fining and nondegeneracy conditions are calculated as in
the case of single-mode criticality. The conditions which
have to be satisfied must again be divided into two classes,
viz.,, n =1 and n 22 in Eq. (3.7).

(1) In the case n =1, there are five codimension-2 nor-
mal forms?? with defining conditions

(1 (n
B,, =0, B,, =0,

B;2)=0, B,;'=0, By'=0

(3.8)

(taken at x=p=0,0=v,). We have B!l=0a,/d3v=0,
which leads, together with a; =0, to the curve E, that in-
tersects D, at the point P, of Fig. 3. Furthermore, we
have B\)'=a'!} , which, together with (3.6), yields

B!, =[3v2k3(1+4k§)1/[2(v. —1—4k3)?] ,

a quantity which is always positive. Bx}z is given by the

right-hand side of Eq. (3.4) with n replaced by 2. Hence
By}%y) =0 leads to the curve K; and to the equation (3.5)
with r replaced by 1 + 4k, Substituting for v, its value
on D, (cf. the Appendix) gives a cubic equation for k3
whose zeros are off the curve D. Therefore, B}f} >0 on
D(l. By similar arguments one finds that B{?’>0 and
B!? <0 on D, and B,(al,,f <0 at P,. Consequently, among
the five codimension-2 normal forms listed in Ref. 22,
only the one with B,EJ,) =0 occurs in the present case and
the bifurcation for (ky,u)=P, is described by the unfold-
ed normal form

—x(y+A*4a+Br)=0,

(3.9)
x24+y(y*41)=0,

with unfolding parameters a and 3.

The solutions of (3.9) are bifurcation diagrams in
(A,x,y) space. In Fig. 11 projections onto the (A,y) plane
of the topologically distinct bifurcation diagrams for vari-
ous a and B are shown. The pure-mode solution S, is
given by x =0,y2= —A, S,, is the mixed-mode solution
with x=£0, y+#£0. It possesses a branch with x >0 and
one with x <0. The (+,—) signs on the solution
branches are those of the real parts of the eigenvalues of
the Jacobian of (3.9) and indicate the stability of the
branches, [(—, —) means stable, all others unstable]. Fig-
ure 11(b) shows a mixed-mode solution branch which bi-
furcates supercritically from the planar interface with sta-
bility symbol (—,—) and connects S, subcritically with
(+,+). This implies that at the point TB a tertiary bi-
furcation occurs, which is here a Hopf bifurcation to
time-periodic solutions (a pair of complex eigenvalues
crosses the imaginary axis). This bifurcation describes a
standing wave with a spatial modulation of the mode
cos(Vu ko) by the mode cos(2V'u ko&). We observe that
every bifurcation is locally of pitchfork type.
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++ ++

(c) (d)

FIG. 11. Diagrams for the unfolded normal form (3.9) for
(ko,u)=P; and n=1. The solutions are projected onto the
(A,y) plane. The (+,—) signs indicate stability, where (—, —)
means stable, all others unstable. (a)—(d) show the four qualita-
tively different diagrams for various values of the unfolding pa-
rameters o and 3. In (b) we have at the point TB a tertiary bi-
furcation to time-periodic states.

In analogy to the case of single-mode bifurcation, the
four types of bifurcation, shown in Fig. 11, can be ob-
tained by varying (kq,u) around the point P;. If (kq,u)
is on D near P, the two modes become simultaneously
unstable and, as v increases beyond v, the first mode re-
stabilizes shortly thereafter [Fig. 12(b)]. If k, is slightly
decreased, so that (kg,u) moves into region « of Fig.
12(a), the second mode becomes unstable first and this is
followed by an instability of the first mode which restabi-
lizes thereafter [Fig. 12(c)]. Since the diagrams of Fig. 11
are characterized uniquely by the sequence of primary bi-
furcations of S, and §,,, we arrive at the diagram of Fig.
11(a). By similar arguments we establish correspondences
between the regions 4, ¢, and & of Fig. 12(a) and the dia-
grams (b), (c), and (d) in Fig. 11, respectively. If (kq,u) is
located on D, excluding P, the bifurcation is described
by a codimension-1 normal form and by the diagrams of
Fig. 13.

(2) In the case n 22 there are seven codimension-2 nor-
mal forms?? with defining conditions

(1) (1) (2) (2)
Bl..=0, BY=0, B2)=0, BY=0,

(3.10)

and three additional conditions involving some vanishing
determinants with mixed derivatives with respect to x and
y. An analysis similar to that for the case n =1 shows
that only the condition B),’=0 can be satisfied for (kg,u)
at the point P, in Fig. 3. Therefore, we infer from Ref.
22 that at P, the unfolded normal form is
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X p-=----

o 2k,
(b) (c)

FIG. 12. (a) The curves W, and Z, near the point P, in the
(ko,u) plane. (b) Situation in the (k,v) plane corresponding to
(ko,u) lying on the curve D;. (c) Situation corresponding to
(ko,u ) lying in region « of (a).

x(_x2__y2_}\'2+,u'1xn—-lyn+a)=o , (3 11)
ylex +ey?+A+px"tly" 24 B)=0, '

with unfolding parameters ¢ and 8. Here e=+1 and
i <0 for n =2, u; 0 for n=3 and e=—1 for n 23, and
k is defined by

(2) (1) (1) p(2)
K::Bxxy leyy I / l BxxxByyy

with the derivatives taken at x =y =0,v=v,. The u; are
modal unfolding parameters which are characterized by
the fact that they parametrize the largest family of pertur-
bations of N such that no two perturbations in this family
are equivalent. The bifurcation diagrams described by
(3.11) are shown in Figs. 14, 15, and 16 for the cases
n =2, n=3, and n 24, respectively. Again, there is the
familiar correspondence between the perturbed diagrams
and the (ko,u) values varying around P,. The pure-mode
solutions S, with y =0 and S, with x =0 bifurcate at pri-

++

(a) (b)

FIG. 13. Diagrams for n =1 and (ky,u ) lying on D,.

(c) ' (d)

FIG. 14. Qualitatively different diagrams of the unfolded
normal form (3.11) for n =2 and (ko,u)=P,.

mary bifurcation points from the planar interface
x =y =0. §, bifurcates subcritically for » =2 and super-
critically for n 23. For certain values of a and S there
exists a mixed-mode solution S,, with x40 and ys40.
For n =2 and n =3 the secondary bifurcations of S, and
S,, respectively, become transcritical due to the u; terms
in (3.11) and S,, develops limit points. The mixed-mode
branches S,, always connect the pure-mode solutions S,
and S,. This implies that after a spatial modulation by
the beating of the two modes the solidifying system jumps
from a cellular interface with wave number nk, to anoth-
er cellular interface with wave number (n + 1)k, through
the mixed-mode branch S,,. This phenomenon is known
as mode jumping and is analogous to that observed, e.g.,
in the buckling of a rectangular plate in the plastic regime
when subject to a compressive load.?’
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FIG. 15. Same as Fig. 14 for n =3 and (kq,u )=P;.
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FIG. 16. Same as Fig. 14 for n 24 and (ko,u)=P,.

IV. CONCLUSION

Several interesting physical consequences for cellular
interface bifurcations in a solidifying material can be
drawn which are in principle experimentally testable and
add new insight to the phenomenology of directional soli-
dification. First, we have condensed all the information
that is available from Egs. (2.2)—(2.6) on the bifurcation
to and between stationary cellular interfaces into two uni-
fying equations (3.3) and (3.7) for single-mode and
double-mode instabilities. Then, using the method of nor-
mal forms, the different bifurcation diagrams, which
govern the solidification process near instability threshold
have been determined. The way in which the system bi-
furcates depends on the values of kg and u which are
known functions of the sample’s width, the applied tem-
perature gradient, and of material parameters involved.
Thus, different material compositions of the alloy may
lead to different types of bifurcations. On the other hand,
it is always possible to drive the system into the neighbor-
hood of a desired type of bifurcation. In the case of a
single-mode bifurcation, stationary and stable cellular in-
terfaces occur, whose spatial periodicity is determined by
the wave number of the critical mode. In particular, there
exist bistable and mushroom hysteretic effects and islands.
The latter can be reached experimentally by fluctuations
that push the system into the island’s stability basin. The
simultaneous bifurcation of two different modes gives rise
to steady-state mode interactions. Here the bifurcation
behavior depends sensitively on the wave numbers. The
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bifurcation diagrams exhibit primary bifurcation to pure-
mode solutions and secondary bifurcations to mixed-mode
solutions which connect the pure-mode branches. The
pure-mode solutions correspond to interfaces with a wave-
length given by one of the unstable modes. The mixed-
mode branches represent interfaces given by spatial beats
of the two wavelengths of the two unstable modes. Furth-
ermore, in some instances, one encounters tertiary bifurca-
tions on the mixed-mode branch which are here Hopf bi-
furcations to standing waves.

Within the framework of the model equations
(2.1)—(2.5) the bifurcation diagrams presented in this pa-
per exhaust all phenomena that can be obtained by a local
analysis near the onset of instability. We wish to em-
phasize, however, that the forms of the bifurcation equa-
tions (3.3) for a single unstable mode and of (3.7) for two
neighboring unstable modes are generally valid for any
solidification system in two dimensions with nonflux
boundary conditions at the sidewalls. Consequently, from
a topological point of view, the bifurcations realized by
such a solidification system must be members of the
hierarchy of bifurcation diagrams discussed in Refs. 25
and 22. The special diagrams that we obtained in this pa-
per are due to the special degeneracies imposed by the
form of the equations (2.1)—(2.5). If the model is altered
but the nonflux boundary conditions and the reflection
symmetry are kept [the structure of (2.12b) and (2.13b)
then remains], one can expect to obtain more diagrams or
other types of diagrams. In particular, it appears that the
solidification system considered by Ungar and Brown,'*
where the temperature gradient is used as a bifurcation
parameter and a less rigid approximation of the concen-
tration jump at the interface is assumed, may give rise to
new types of bifurcations than those found here. It would
be of considerable interest to compare these diagrams with
the numerical results of these authors. The next steps
ought then to consist of an analysis of three dimensional
systems and, of course, to submit the phenomena
described above to an experimental test.
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APPENDIX

In this appendix we calculate explicitly the most impor-
tant expressions used above.

(1) We first give the expression for the coefficients
a”, in Eq. (2.11a). We have

,,,,, "'m

a = F,,(r,r 7 )Q(n)
Tty Py u(rl,rz, )rm) m\T 172> »im
m—1 1 2
_ TR b )
n=0a€P, (N, )(n;,ny,..., Ry ) EAN o men—
m
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X(_l)m—nal_____l____

+ - +r, ), (Al
pulrg,. .. n

where

m
> ri=n, Py(N,,

i=1

For £€P, (N

)={MCN,, | IM|=7}, N,={1,2,3,...,m}.

m) we set = (21,22, R ,Z,,) with Z,-EA and ZI<ZZ< .

ﬂZ)ﬂ)lﬂESﬂ} ’

<l
M/ = {(r(nz)l,r(”z,z, [ ,r(

where S, is the group of permutations of n elements. Furthermore, we have

p(ri,ra, .y ry)= II [J(rirra, o sry) |1
rER(r_,r_,...,r-)
a‘ ”2 a.’,
The quantities entering (A1) are defined by
R(ri,ry, oo ry)=1{ri,ry, ..., ry} (attention: r;=r; foristj— |#| <7,
J(riry,ra, .o r)={iEN |r=r},
5 172
Q(m)= % £ Y rumkg|
Folm)=1,F(m)=v—1—m?%} ,
F,(ri,ra, ... ,1p)=—(—=v)" z > F (rzray P —O(rs 41z 4 +rz )7
1=1a€F,(N,,) " ! 2 7
Nom—1)
_%[1+(_1)m+l]u(m—l)/2k6"+1(r1+r2+... +rm)rlr2...rm m!(m n
m—1 |2(m—1)/2
2

In particular we obtain a
a2 =F,(2n)Q(2n)—* ,
a5 =F,(2n)Q(n)Q(2n)

M=F(n)Q(n

—F(2n)Q%(2n)+2un*k§[F1(n)+F(2n)]—v2Q(n)++v* ,

a,(,z,:')——Fl(n)Q(n)Q(2n)—F1(n)Q2(n)—unzkoFl(n)———sz(2n)+7v ,
a"™, o =F(m)QXn)Q(2n)—F(n)Q(n)Q*2n)+un’k§F (n)Q(n)
+2vF1(n)Q2<n>+%un“koQ(n)—zszl(n)Q( )+ 3v2QU2n) — +v2Q(n)Q(2n) —unk Iv* — 1v2Q(n) + +v* .

I

(2) The derivatives of B in (2.12) needed for the defin-
ing and nondegeneracy conditions can be obtained expli-
citly in the following way: Suppose that the nth mode is
critical. Let x =g, and let (2.11) be represented in the
vector form

Fle)=F O FVF?  )=0,
€=(€p,E[,Ep, - - -) -
Let G (x)={(gp(x),€1(x),e5(x),...) be the solution of

Z(G(x))=0, (A2)

where
& (0) (1) [(2) (n—1
F=FO FVF2D Fn-D ol oy

which exists by virtue of the implicit function theorem.
Then we can write
B(x,v)=F"™(G(x)) . (A3)

By differentiation it follows that

B, =3 F'G,
i
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where subscripts denote partial differentiation. At x =0

we have G(0)=(0,0, . . .), and therefore obtain at x =0
F(E:’=a,,, F‘s:‘)=0 for is#n ,

which follows from the form of (2.11). From (A2) it fol-

lows that
(i) ()
EFE:- G,)'=0
J
and, therefore, a;G\”"=0. For i=n we obtain G

'"E-S‘ =x, G"=1. For i#n we have ;0 and thus
G{”=0. With these results we finally obtain B, =a, at
x=0. Differentiating (A3) further yields

=3 Fiee, Gx'G'G™

i,j,m

+3ZFRGIGL+ T FIGL, (A4)
i, i

F(E:') is nonzero at ¢=0 only for i=n, but G,(cﬂ =0.

Hence the last series in (A4) vanishes. From (A2) we ob-

tain

(n_ 2n+1)(m
By, = 2(01 An+1 @ _(n4+1),n,n+1—

(2) __ (1) (2n+1) (n+1) 2n+1) (n+1) (1)
Bx.xy—z(a 02n+1 a—nnn+1_02n+1 a; a—nn+l

2n+1) _(n)

(4) The intersection points P,
a,=a, =0 it follows with 4 =n?, B=

Az(v—1— Az u=v3(1+4z) ,
Bz(v—1—Bz)Yu=v31+Bz),

(n+1)

and for the curve W, we have
u=27(1+Az)*/(44z) .

Solving these three equations for u and z yields
ky*=2{B—A—[A(A+3B)]'"*}|/[B(B—54)],
uy=27{—4A4°>—114°B—24B*+B>+(

It is then easily seen that

lim k}*=0,

n— oo

lim u,; =27.

n—co

From (A7) and (A8) we obtain the critical value v, of v, viz.,

=(14Az)(1+Bz)+[AzBz(1+ Az)(1+Bz)]'/? .

(1)
Q41 @ _1,n+19 —nn+1—
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2F(E;’EMG;J'>G;'")+2F‘E']',’Gg;’:o, i#n . (A5)
Jjm J

In virtue of G’=0 for j+n and F‘E§)=0 for is£j, we are
left with

F(l G(l i:l)£ (A6)

From (2.11) we infer that F [E‘:en is different from zero at
£=0only or i =0 or i =2n and with (A1) we obtain

FO, =—24a% ,=0.

nn —n,n
Thus it follows from (A6) that

Gl = —2a\% /a5, GY)=0 for j#£2n .
Substituting this into (A4) finally yields Eq. (3.4). By fur-
ther differentiating the above equations, the derivatives of
B at x =0 can be calculated to any desired order.

(3) The above calculations can be generalized to the case
of two critical modes in a straightforward but tedious

manner. For n =2 we obtain

(1 () 2 +1) (1) _(2n+1)

ai"a™, v pana i /@ Ve m ),
allgn+l)  gentn (1) 2n+1)
a—n 2n+lann+l )/((11 aZn+i .

=(k,;,u,;) of the curves W, and Z, are calculated in the following way. From
2 and z=k} that

(A7)
(A8)

—44%—54AB+B?)[A(A+3B)]'/?} /[8AB(B—54)] .
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