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Bose-Einstein condensation in an external potential
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We present theoretical results for the critical temperature for Bose-Einstein condensation, conden-
sate fraction, and heat capacity of a gas of Bose particles that are confined by a generic power-law
potential trap. All three of these quantities are found to vary markedly with the shape of the poten-
tial. Both the ideal and the weakly interacting Bose gas are considered.

I. INTRODUCTION

For almost a decade there has been sustained experi-
mental interest in observing Bose-Einstein condensation
(BEC) in an atomic gas. Until recently the only candidate
was spin-polarized atomic hydrogen. (A general review of
spin-polarized hydrogen research is presented in Ref. 1.)
However, with the development of techniques to trap
atoms and cool them to the submillikelvin regime by laser
light, other systems such as lithium and sodium have
become possible candidates for study.

For an ideal Bose gas of N particles, with mass M con-
fined in a rigid container of volume V, BEC occurs at the
temperature

h2 1 N
Tc

2~kM 2.612 V

2/3

However, if the atoms are confined by a spatially varying
potential rather than rigid walls, T, can be significantly
altered. In general, as the mean energy decreases, the ef-
fective volume available to the system also decreases, in-
creasing T, . The coupling between energy and space fun-
damentally alters the nature of the Bose-Einstein conden-
sation. ' These effects must be understood in order to in-
terpret proposed experiments on atoms in traps. Further-
more, they offer the possibility of new strategies for
achieving BEC.

To understand BEC in the proposed atom-trapping ex-
periments, and to evaluate the merits of proposed trap
geometries, a general treatment is needed for BEC in an
arbitrary potential. That is the goal of this paper. Section
II presents the general formalism for describing BEC in
an arbitrary potential including expressions for the critical
temperature, condensate fraction, and specific heat. Sec-
tion III applies the procedure to a generic power-law po-
tential and gives results for a number of potential configu-
rations. The weakly interacting Bose gas in an external
potential is analyzed in Sec. IV. Application and discus-
sion of the results are presented in Sec. V.

II. IDEAL BOSE GAS
IN AN EXTERNAL POTENTIAL

We consider N particles of an ideal Bose gas distributed
over various quantum states of arbitrary potential. The

occupation number n, of particles in an energy level c
with degeneracy g, is

C —pn, =g, exp

where p is the chemical potential, k is Boltmann's con-
stant, and T the temperature. The ground-state energy is
taken to be zero.

For the potentials to be considered here, the energy lev-
el spacing is such that kT »c;+l —E;. Consequently, the
system can be described by a continuum of states plus the
discrete ground state, which must be explicitly retained.
Multiplying Eq. (2) by the density of states p(c, ) and in-

tegrating over E, one obtains the relation between p and
N.

The density of states can be found by a generalization
of the familiar calculation for the free gas. The volume
in phase space between the surfaces of energy c and c+d c
is proportional to the number of states in that energy in-
terval. However, the external potential U(r) constrains
the space available to the gas. The density of states is

where V*(E) is the available space for particles with ener-

The total number of particles of a boson gas is implicit-
ly related to the chemical potential p by

N =NO+ n,p E dc . (4)

F(T)= J En,p(E)de .

The heat capacity C ( T) =BF. ( T)/B T can be shown to be

Np, the number of particles in the ground state, is expli-
citly retained because p(0) =0. The integral in Eq. (4) has
a maximum value for p=O. (The integral diverges for
p, &0.) The critical temperature T, can be found from
Eq. (4) by taking No=0 and p=O. The total energy of
the system is
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C(T)= f (n )' '(T)+
gc

Q exp dc,C —p
kT

(6)

where p'(T)=r)p/dT. C(T) is analogous to Cz in that it
includes work done against the potential as the energy of
the gas is increased. However, for obvious reasons the
volume and pressure are not useful thermodynamic vari-
ables.

To evaluate E(T) an explicit expression for p(T) is
needed. This can be obtained by writing Eq. (4) as

N =No+ g exp(jp/kT) f p(E)exp( js/kT—)de,
j=1

and considering the leading terms of the series. (g, has
been taken as unity. ) However, if we are interested in
values of C(T) close to T, where @=0, only p'(T,+)

III. BOSE-EINSTEIN CONDENSATION
IN A POWER-LAW POTENTIAL

We shall apply the
power-law potential

p

U(r)=E& — +s2

results of Sec. II to a generic

I q

+83y z
b c

(8)

After some manipulation, the density of states, Eq. (3),
can be shown to be given by

277(2M )

A

abc
P(E) =

c pc E'",n, c"F(p, l, q)
1 2 3

where g = 1/p + 1/1 + 1/q + —,
' and F(p, I, q) is defined by

needs to be evaluated. [p'(T, )=0]. From Eq. (6) it is
evident that if p (T,+)&0 the heat capacity will exhibit a
discontinuity at T, . Appendix A presents more details on
the calculation of p'(T) and p"(T)=r) p/r)T

1 1 1

F(p I q)(1+P)1/2+1 /q+ I/ld~( 1 ~l)1 /q+ I /2d~(1Xq) /2d~
—] —1

(10)

The critical temperature is obtained by incorporating this
result in Eq. (4). The result is

T =
C

]/p 1/1 1/q
E, ) C2 E3

27r(2M)'/ abc kj+'F(p, l, q)Q(q)

1/(g+ 1)

where Q(g) = f I 9"/[exp(9) —1]IdH.
This result can be applied to a rigid box by letting

( p, l, q) ~ oc . In this case F ( oo, co, co ) = 8 and Q ( rI ) be-
comes the well-known g3/2(0) Bose function that has the
value (V ~/2)2. 612. The quantity abc = V/8, where V is
the volume of the system. The expression for the critical

temperature becomes identical to Eq. (I), as expected.
Equation (11) describes how the critical temperature de-

pends on the potential's strength and the power law, pro-
viding a criterion for optimizing the potential within the
constraint of the cooling process. By combining Eqs. (4)
and (11) the ground-state population fraction for T & T,
can be obtained. The result is

= 1 —( T/T, )"+' (12)

Values for T„Xo/1V and heat capacity for a number of
potential configurations are shown in Table I.

TABLE I. Critical temperature, ground-state population, heat capacity, and discontinuity in C(T) for several cases of three-
dimensional 3(D) confinement. ( V represents volume and S, area). In the first two cases where the potential is one dimensional, rigid
walls are assumed in the other direction. For the harmonic oscillator, the result agrees with previous calculation (Ref. 7).

Potential

c3(z/a), z )0
U(z)=

i ()

2/5
h N

1.4Sk' (2aM)' '
2/5

Np/N (T(T, )

5/2
T

C(T, )/Nk

6.88

b, C(T, )/Nk

3.35

U(z) = c.3(z/Q)

1/2
3h3N

v'&&k 2~4M 3n
C3

Q
2
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2/3
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3/2
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Nh'

1.202m k (2M)

1/3
E1

Q

1/2 3
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1/3
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IV. WEAKLY INTERACTING BOSE GAS
IN AN EXTERNAL POTENTIAL

Because the noninteracting Bose gas can lead to un-
physical results, we now consider the effect of two-
particle interactions using the mean-field approximation.
Representing the interaction energy per particle by a term
proportional to the local density n (r), the Hamiltonian
for a particle in this gas becomes

H(p, r) = + U(r)+yn (r),
2M

(13)

As Table I illustrates, the deeper the potential well (i.e.,
the larger the value of the strength e), the higher the value
of T, . The "confinement power" of the potential, defined
as 21+1= N—'T, (dNoldT)r r, can be seen to dePend

on the shape of the potential well but not on its strength.
The heat capacity can be calculated from Eq. (5). Re-

sults are given in Table I. Depending on the exponents
p, l, q of the potential, the system may or may not display
a discontinuity in C(T) or its derivatives. If 2) & 1, C(T)
is discontinuous at T, . If g & 1, C(T) is continuous at
T„but BC(T)lr)T is discontinuous. Note that in general
C(T) is larger for a power-law potential than for a rigid
wall container. This is because increasing the energy of
the gas requires work against the confining potential.

where y is the interaction constant. At low temperatures,
where only s-wave scattering is important, y depends on a
single parameter, the scattering length a. For the one-
parameter interparticle potential V(r& —r2) = Voli(r~ —r2),
it can be shown that Vo ——4nA a /M. In the self-
consistent field approximation E (0)/N = —, Von (r), so
that y=2vrh u/M.

In a semiclassical approximation the density of the gas
is given by (see Appendix B)

n (r) = g exp[ j [p —U(r)]/kT] Ij
A

q

(14)

where A=filed'2rrMkT is the thermal de Broglie wave-
length. At very low temperatures where p-0 the major
contribution to n(r) comes from the term j= l. In this
case n (r)-exp[ —U(r) IkT]/A, and Eq. (13) becomes

H(r, p) =p /2M+ U(r)+ exp[ —U(r)/kT] .
A

The particle moves in an effective potential

U ff(r)= U(r)+(y/A )exp[ —U(r)/kT]

(15)

The density of states is given by Eq. (3) with U(r) re-
placed by U, rf(r). Because the gas is weakly interacting,
p(c) can be expanded in powers of y. Retaining the first
term yields

2~(2M) /
& y exp[ —U(r) lkT]

p s v'e —U(r +
h ~ ~E~ 2A 3/c —U(r)

(16)

To estimate the effect of the atomic interactions, we
shall consider the case of a cylindrical potential,

N =Np+D, (T)"+'+D2y(T)'q+'/

where

(21)

U( r) =e, (plb) +e3(z/a) (17)

where r =p +z . However, the following results can be
easily extended to a general power-law potential. After
some straightforward algebra, the density of states is
found to be

4 2(2M) 3/2 b 2a

3 2/m 1/qh c) cg

and

D2 = G(q, m)k '/ (2~M)

The condensate fraction is

F, (q, m)h

1 3 & q' 2/m 1 /q
(22)

(23)

r

y G
& (q, m )e" 'exp( —e lk T)

X Ft(q, m)e" +
2A

No Z=1-
N &o

q+ 3/2

-yA '
z 0 (24)

(18)

[
F (q m)= f x(1 —x )' dx

1
q)2/m+1/ d—1

1

G~(q, m)= f 0/(I —0 )'/ dO

1
q )

2/m —1/2d
—1

Incorporating this result in Eq. (4) eventually gives

(19)

where g = 1/q +2/m + —, , and G
&

and F] are defined by

where in the present case,

T, = [[h /4' (2M) / ](Nlab )

X [e& e3 q/k "+'F~(q, m)Q(2))]] '/'"+'~ . (25)

T, is the critical temperature for y =0;
& =(D2/D~ )(T, )' . The critical temperature T, is
found from Eq. (24) with No=0. T, is larger or smaller
than T, , according to whether the scattering length is
negative or positive. As a numerical example, consider
N =2.0&&10' polarized hydrogen atoms in a rigid con-
tainer of about 1 cm . Taking q, m~ ap, a =b =0.5 cm,
a=0.72 A, ' then from Eq. (24), b, T, =T, T, —
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=1.5~10 K. This corresponds to a correction of 5%
in the value of T, . (This result agrees with previous cal-
culations for a rigid box. ) For a potential that has larger
confinement power than a rigid container, the coefficient
A in Eq. (24) and g assume larger values.

The heat capacity is also sensitive to the interaction
term in p(e) [Eq. (18)]. Evaluating Eq. (6) in the vicinity
of T, reveals that for g) 2 there is a discontinuity in
C(T), and that for g(2, C(T) is continuous but
BC(T)/dT is discontinuous.

V. DISCUSSION

Intuitively one expects Bose condensation to begin
when the density of particles is approximately A, i.e.,
one particle per cubic de Broglie wavelength. In fact, Eq.
(14) reveals that the density at the onset of BEC is

n, =2.612A, irrespective of the nature of the trapping
potential. [This follows from evaluating Eq. (14) with
U(0)=0, p=0). This critical density is well known for
the particle in a box; we point out that it is universal.
Note, however, that this density occurs only at the
minimum of the potential: The chief effect of the trap is
merely to concentrate the particles to the density at which
BEC commences.

In spite of the universal onset density of BEC in dif-
ferent traps, there are significant differences in the
behavior of the condensate fraction at temperatures below
T„and in the possible discontinuity in the heat capacity.
In addition, a strongly confining potential can greatly fa-
cilitate experimental efforts to achieve BEC. If the num-
ber of trapped particles is limited, such a potential can al-
low BEC to occur at a much higher critical temperature.
If the minimum temperature is limited, a strongly confin-
ing potential reduces the number of trapped particles re-
quired for BEC. If collisional mechanisms are important,
it may be easier to reach BEC in a stronger confining po-
tential, simply because the fraction of the volume of the
system that is at the critical density is small.

To illustrate these results, we shall apply them to an
isotropic harmonic" potential given by U(r) = , Mco r . —
The critical temperature, Eq. (11), can be written as
kT, =0.941AcoN' . If the atoms in this trap have an
average energy of 3kT/2, then the effective volume they
occupy is V=(4'/3)r, where r is found from
U(r) =3kT/2. To compare the transition temperature in

the trap with that for a rigid box of the same volume, we
can rewrite the expression for T, as (kT, )

r

=0.175(h /M )(N/V)=2. 1(kT, )b,„. Thus, the critical
temperature is approximately two times larger than for a
rigid container of the same effective volume.

The effect of interparticle interactions in the harmonic
trap can be evaluated using the method of Sec. IV, Eqs.
(19) and (20) yield Fi ——m. /8 and Gl ——m/2. Equation (24)
can then be written in the form
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APPENDIX A: EVALUATION OF p' AND p"
NEAR T,

For a closed system, the total number of particles given
in Eq. (4) is constant. Therefore BN/r}T =0. For T & T„
No ——0 so from Eqs. (2)—(4) considering g, = 1, we obtain

exp[(s —p ) /kT] -+(s —p)
I T'

I exp[(c.—p)/kT] —1 I

' p(e)dc=0 .

(A 1)

For T = T„and @=0, (Al) yields

j cp(e)(n, ) exp[e/kT]dc
+l(T+) 0

f p( e)(n, ) exp[a/kT]ds

From Eq. (6) it can be shown that

b, C(T, )=C(T, ) —C(T+)

ep(e) dc
4kT, " sinh (s/2kT, )

(A2)

(A3)

To obtain b, C(T, ) we make use of the values for p'(T+)
given in Eq. (A2).

If hC(T, ) =0 we look for discontinuity in (B)C/dT)z- .
C

In this case Eq. (6) yields

tio a/A, . The critical temperature is decreased, or in-

creased according to whether a) 0 or a (0, respectively.
If the potential becomes more shallow, the numerical fac-
tor of the correction term decreases. In the limit of a rig-
id box, the numerical factor is unity.

A cylindrical magnetic quadrupole trap, with dipole ax-
ial confining magnets, has been proposed for spin-
polarized hydrogen by Hess' . In the configuration
designed for use at lower temperature, the trap is
described by U(r) =si(z/a) +sq(p/b) with si ——s2

=2~10 erg and a =5 cm, b =1.3 cm. Following the
procedure of Sec. III, we obtain for N = 10' atoms,
T, =7.5 && 10 K. The heat capacity has the value
C(T, )=18.48Nk and it has a discontinuity
b, C ( T, ) = 13.53Nk. The ground-state population varies
as 1 —( T/T, ) . The interaction correction to T, is negli-
gible.

%p

N

2 7/2
—4 (26)

where A, =h/(2~MkT, )' is the thermal wavelength at
T, . As expected, the correction is proportional to the ra-

ac'aT =;=
k

ac ac
aT T=T; aT T=T,.
P(Tc ) ep—(e)

o dC.
4kT, 0 sinh (s/2kTc )

(A4)
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where p "(T, ) can be calculated by taking the derivative with respect to temperature of Eq. (Al). The result is

p "(T,+)=-
kT, f cosh(E/2kT, )d E

e p(E)
sinh (e/2kT, )

p(E)
sinh (e/2kT, )

Ep(c. )d c
sinh (e/2kT, )

f, cosh(E/2kT, )d E
Ep(e)

sinh (c,/2kT, )

'2
p(e)de

sinh (e/2kT, )
(A5)

APPENDIX B: CALCULATION OF THE DENSITY n (p, r) =
I exp[(p /2M + U(r) —p)/kT] —1 ) (B3)

The density of particles of a Bose gas in an external po-
tential is given by

n(r)=gn,
~
+,

~

(Bl)

dN= n, d pd r.
h

It is convenient to write

(B2)

where 4, is the wave function of the state of the potential
U(r) having energy E. However, for most potentials Eq.
(Bl) is difficult to evaluate. A useful approximation can
be obtained without using (Bl). Equation (3) assumes the
semiclassical approximation

The density of particles with momentum between p and

p +dp, at position r, is

dN 1

dV
n(p, r)d p .

The total density is found by integrating (B4) with the re-
sult

dN 4~
h' n(p, r)p dp .

By making a change of variable Eq. (B5) becomes

n (r) = f x ' Iexp[x + U(r)/kT+p/kT] —1I 'dx,
o

3 g e '[U(r)/kT p/kT] f —exp —x(t+1)— p/kT x' —dx,
0 kT

where we have used the series 1/(1 —y) =g," oy' (for y ( 1). The integral can be carried out with the result

QO 1n(r)= g exp[t[p —U(r)]/kTI
A t'"

This result, found by using Eq. (Bl) for a harmonic oscillator, has been used previously' in calculations of BEC.

(B6)

(B7)
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