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Exact solution of the linear-stability problem for the onset of convection in binary fluid mixtures
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We solve the linearized problem for the onset of convection in binary fluid mixtures in a layer of
infinite lateral extent for rigid-rigid, no-flux boundary conditions exactly. We present detailed data
for the critical Rayleigh number and for the neutral frequency as a function of the separation ratio
for the two experimentally most relevant systems: for ethanol-water and He- He mixtures. For
both the oscillatory and the stationary onset we compare our results with those obtained for simple
trial functions. The influence of the effect of rigid-rigid, no-flux boundary conditions on the loca-
tion of the codimension-2 point is examined.

INTRODUCTION ized stability analysis when applied to experimental re-
sults.

Stimulated by earlier theoretical work on the onset of
convection in binary fluid mixtures, ' several groups
started to investigate this problem experimentally. '

Some of the experimental results, especially those on the
behavior close to the intersection between the stationary
and the oscillatory onset in a porous medium' were in
agreement with the theoretical predictions. ' Other ob-
servations such as finite-amplitude propagating waves at
onset' ' have not been predicted theoretically. Naturally
the question arises how these unexpected phenomena can
be explained theoretically. Scanning the theoretical ap-
proaches one finds out easily that all nonlinear calcula-
tions reported so far were based on the use of unphysical
free slip, impervious boundary conditions. In addition, it
appears that even the linearized stability problem on the
oscillatory branch has not been solved exactly for the case
of physically realistic rigid-rigid, no-flux boundary condi-
tions.

In the present paper we solve exactly the linearized sta-
bility problem for a layer of laterally infinite extent for
the otherwise physically realistic rigid-rigid, no-flux boun-
dary conditions, both on the stationary and on the oscilla-
tory branch. We present detailed results of our numerical
calculations for the two practically most important and
experimentally studied cases: ethanol-water mixtures at
room temperatures and He- He mixtures at low tempera-
tures. We give detailed plots for the critical Rayleigh
number and the neutral frequency at onset as a function
of the separation ratio and we discuss the behavior of the
critical wave vector. We investigate the shift in the loca-
tion of the codimension-2 (CT) point for rigid-rigid, no-
flux boundary conditions as compared to the free-free, im-
pervious ones. We compare all our exact results with
those obtained from various types of test functions using
the Galerkin method. ' The paper is organized as follows.
In the following section we describe the problem and we
sketch the procedure used to solve it; in Sec. III we
present the results and in Sec. IV we give the conclusions
including the discussion of the limitations of the linear-

II. THE LINEARIZED BOUNDARY
VALUE PROBLEM

In the present work we focus on a laterally infinite layer
of a binary mixture of miscible fluids and the physically
realistic rigid-rigid (stick), no-flux boundary conditions.
The solution for the rigid-rigid, no-flux boundary condi-
tions we will refer to as exact, in contrast to the solution
for the physically unrealistic free-free (slip), impervious
boundary conditions. The stability problem with rigid-
rigid boundary conditions for simple fluids was solved
many years ago (cf., e.g. , Chandrasekhar' ). One obtains
R, = 1707.8 for the critical Rayleigh number and
k, =3.117 for the critical wave number. For binary mix-
tures the exact problem for the stationary bifurcation was
solved by Gutkowicz-Krusin et ai. Various authors have
also used expansions in trigonometric functions, the
method of Galerkin, or variational principles to obtain ap-
proximate solutions both on the stationary and oscillatory
branch. While the Galerkin method has been proven to
yield results converging to the exact solution for self-
adjoint operators (i.e., for the stationary bifurcation), no
such proof exists for non-self-adjoint operators (i.e., for
the oscillatory bifurcation). Therefore it was not clear
how the results obtained by this method for the onset of
the oscillatory convection compared to the exact solution.
In this paper we present the exact solution for the oscilla-
tory branch and compare it with results obtained from the
Galerkin method using two types of simple trial func-
tions. We find that the trial functions (z ——„) for the
vertical velocity field and for the mass flux, and z —

4

for the temperature (z being the direction perpendicular to
the fluid layer) are a good approximation to the exact
solution and can be used as a reliable estimate for both the
critical Rayleigh number and the neutral frequency.

We consider a laterally infinite layer of a binary fluid
mixture between two plates in an external temperature
gradient. The equations linearized around the heat con-
duction state (in dimensionless units) describing this sys-
tem are, in generalized Boussinesq approximation, '
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S(a, /P —a)w =a,[(1+@)O+q q],
(a, —b, )O=Rw,

(a, —w~)~= —~o,
where the scaled variables m, 0, and g=c —0 are the z
component of the velocity field, the temperature, and the
mass flux, respectively, c being the concentration of one
component of the mixture. R =f3~gl AT/vs is the Ray-
leigh number corresponding to the temperature difference
b, T, 4= —kr132/TP~ is the separation ratio, g is the grav-
itational constant, l is the height of the fluid layer,
f3~ ———p '(ap/a T)p, is the thermal expansion coeffi-
cient, /3z

———p '(ap/ac)t T, v is the kinematic viscosity, K

is the thermodiffusivity, and kT is the thermodiffusion
ratio. P =v/K is the Prandtl number and W =D/~ is the
Lewis number, D being the diffusion coefficient.
~=a„'+ay+0 A2 —0 +'By and we assumed that the
positive z axis points in the direction of the temperature
gradient. The time is scaled with l /~, velocity with ~/l,
temperature with vl~/P~gl, and concentration with

v~kT/T/3, —gl, and we shall choose units of length such
that l =1.

We impose the following physically important rigid-
rigid, no-flux boundary conditions:

(ice+ 5,; )(ico+Wb, ;)
m3; —— cosh(q; /2),

RA;

(ice+ 6; )(ice+ WA; )q;
~4; —— sinh(q; /2),

2Rb, ;
(5)

where b, ; =k —q; and i =1, . . . , 4. For co~0, Eq. (4)
has four different solutions for q; ~ It has been previously
shown that in the case of a stationary bifurcation one of
the roots (say, q4) is equal to k, which yields b.~=O.
Therefore, special attention is required in taking the limit
co~0 in m24 in Eq. (5). The correction to q4 due to small
co can be calculated from Eq. (4) yielding

q4 ic ice ——— +O(co ) .~++
X+XP+%

(6)

In order to avoid singularities in the limit co~O and
it turns out to be convenient to choose

g; =1(i = 1, . . . , 4) in Eq. (3). In this case, the elements
m;~ of ~ have the following form:

m „=q;sinh(q;/2),

1CO+ ~~i
m 2;

—— cosh(q;/2),

N =0 LU=O=B g=O at z=+— (2) Using Eq. (6), one finds that

The even

w(t, x,z)

9(t, x,z)

g(t, x,z)

solution of Eqs. (1) will in general have a form

0

4
= g e '+'"'" g 0, 2;cosh(q;z)+c. c.

k i=1 p
gl

m~~~ — cosh(k/2) as co~0,
1+%

in agreement with previous results for the stationary bi-
furcation.

III ~ RESULTS AND DISCUSSION
where x is the location in the plane perpendicular to the

temperature gradient and q; are the roots of the polyno-
rnial:

2 (cr /P A)(o.—Wb, )(cr ——5 )

+ k'R [(1+P)(o —WA) —4 b, ]=0, (4)

with 6=—k —q . It is clear from inspection of Eq. (4)
that for stationary convection the critical values for R
and k depend only on 4(1+ I/W) and not on 4 and W
separately. It is easily checked that the even solutions
give the lowest value for the Rayleigh number R, so con-
sequently we can discard the odd solutions in Eq. (3),
since the two sets separate. Inserting solutions (3) into the
boundary conditions (2) one finds a set of four algebraic
equations for the amplitudes 3; (i =1, . . . , 4). The coef-
ficients of these amplitudes form a matrix ..Z8 and the sol-
vability condition requires that det. 88=0. This condition
together with Eq. (4) forms a set of two implicit equations
for R, k, o., and q;. For given values of 4, W, and P the
value of R must be minimized with respect to o. and k.
We shall consider two cases: o. =O and o.=ice. The first
case corresponds to the stationary bifurcation and was
solved previously. The second case corresponds to the os-
cillatory bifurcation. To determine the solution in this
case we minimize with respect to co for fixed k and repeat
this procedure for a grid of k values in order to reach the
minimum value for R.

Equation (4), together with the condition deM//=0, was
solved numerically for R, co, and k as a function of 4 for
two choices of the Lewis and Prandtl numbers. Namely,
for W =0.02, P = 17 (corresponding to ethanol-water
mixtures at room temperature) and for W =0.04,
P =0.75 (a typical value for He- He mixtures). The
values of R for the oscillatory bifurcation are shown in
Figs. 1(a) and 1(b). In these figures the lowest curve
represents the exact solution. The two other curves were
obtained by performing the stability analysis using the
Galerkin method with two sets of trial functions (z ——,

'
)

and cos (vrz) for the vertical velocity w and for the mass
flux, and z ——, and cos(trz) for the temperature, respec-2

tively. Clearly the trial functions (z ——, ) and z
yields a better approximation. It deviates from the exact
solution by at most 3%%uo. We note that the calculations on
the oscillatory branch done previously (see Refs. 1 and 3)
used trigonometric functions as trial functions. The exact
values of R for both, ethanol-water and He- He mixtures,
for the stationary bifurcation are shown in Fig. 1(c). For
both choices of W and P the values of cu following from
the trial functions are nearly identical to the exact solu-
tion for small co, and have slightly lower values (no more
than 3%) for large co [see Figs. 2(a) and 2(b)]. For both
choices of W and P the values of the wave vector k for
the oscillatory bifurcation are close to ~ and vary little as
a function of V. For room-temperature mixtures
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FIG. 2. Neutral frequency a as a function of the separation
ratio + for (a) ethanol-water mixtures, (b) He- He mixtures. In
both cases the highest curve corresponds to the exact solution.
The two lower curves are obtained using the test functions quot-
ed in the text. The latter two curves nearly coincide.
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FIG. 1. Rayleigh number R as a function of separation ratio
(a) The oscillatory branch for ethanol-water mixtures. The

lowest curve corresponds to the exact solution. The curve in the

center is obtained using the trial function (z —
4 ) for the verti-

cal velocity m, and the highest curve using the trial function
cos (~z) for w. (b) The oscillatory branch for He- He mixtures.
Here the curves from the lowest to the highest have the same
meaning as in (a). (c) Exact results for the stationary branch.
The upper curve corresponds to He- He mixtures, the lower one
to ethanol-water mixtures.

(M=0.02 and P =17) k varies from 3.12, for 4 close to
zero, to 3.13, for += —0.5. The trial function gives the
range 3.12—3.14 in the case of (z ——,

'
) and 3.11—3.13 if

cos (rrz) is used. For the helium mixtures (M=0.04 and
P =0.75), k varies from 3.15 to 3.22 for the same range
of 4, while the trial functions yield values from 3.10 to
3.26 for (z ——, ) and from 3.08 to 3.24 for cos (rrz).
These small variations in k are unlikely to be of practical
importance in a finite container because the vertical boun-
daries have dominating influence on imposing a value for
the wave vector. For practical purposes it can be there-
fore assumed that on the oscillatory branch k=~. On the
stationary branch k decreases sharply with increasing 4
and reaches zero at 4=+, . The value of +, depends on
the Lewis number. We found that for M=0.02 (room-
temperature mixtures), 4, =0.2, and for M=0.04 (heli-
um mixtures), 4, =0.09. The plot of k as a function of 4
for both mixtures is shown in Fig. 3.

From the previous discussion we conclude that the trial
function (z ——,

'
) for w and g, and z —

~ for 0, are a
good approximation to the exact solution for the oscillato-
ry bifurcation. In particular, it can be used for quick and
reliable estimates of R and m for various binary mixtures.
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dary conditions. Even though the shift in VCT is substan-
tial in absolute terms it is much smaller than the present
experimental resolution in %. Therefore it is not expected
to be detected experimentally in the near future.

IV. CONCLUSIONS
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FICx. 3. The critical wave vector on the stationary branch.
The diamonds correspond to ethanol-water mixtures and the
crosses to He- He mixtures.
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The relevant expressions can be easily obtained from Eqs.
(1):

R(k)=
~~R 131 R

6+R6R
co (k)= y+RyR

(8)

where

a=0. 1P 'b&,

p= 12.6(W/P)b i+(1/P)b, b2+O. lb3,

y = 126(W/P)b, b~+ 12.6 Yb )b3+b2b3

k ( 1 +4 )

5= 126Mb ) b2b3,

6g: ping b[k ( 1 + P)W ~4o k P(k /28+ 3 )

bi ——(k /126+2/21), bp ——(1+k /10),

b3 ——(4+4k /21+k /126) .

The condition of minimum R determines the value of
the wave vector k in Eq. (8).

It has been found for both choices of W and P that
co -+ for small co, similar to the case of free-free, imper-
vious boundary conditions. A careful extrapolation of
this result to co =0 yields the value of + at the
codimension-2 point. In both cases we found that
4~T & 0, but it is shifted towards 'P =0 as compared to the
free-free case. For M=0.02 and P =17 the exact solu-
tion yields 4 = —l. 5 X 10 (RCT ——1726.9 and

kcT ——3.12), while VCT ———4. 15 X 10 for free-free
boundary conditions. For W =0.04 and P =0.75 we
found 4'CT ——9.0X 10 (RCT ——1771.2 and kcT ——3.15),
as compared with 4'cT ———3.40X 10 for free-free boun-

In the present paper we have calculated exactly for a la-
terally infinite layer of a binary fluid mixture the critical
temperature difference and the critical frequency as a
function of the separation ratio for various practically im-
portant values of the Prandtl and Lewis number. We find
that on the oscillatory branch the critical transverse wave
vector at onset is nearly independent of the separation ra-
tio and that the system tends to form circular rolls. This
is in strong contrast to the results for the stationary
branch for which one expects above a critical value for the
separation ratio (4, =0.20 for He- He mixtures and
+, =0.09 for ethanol-water mixtures) one big roll to ap-
pear and to fill the whole container. This prediction
seems to be in accord with very recent experimental obser-
vations' which indeed show one big roll at onset. We
have also investigated to what extent the exact critical
Rayleigh number and critical frequency can be approxi-
mated by simple test functions and we find that, taking
for the velocity field the profile (z ——,

' ), we can easily
obtain an accuracy of better than 3%. In addition, we
have evaluated the shift in the location of the
codimension-2 point and we have found this shift to be
too small to be detected experimentally given the present
experimental resolution in the determination of the
separation ratio. It is important to note, however, that the
codimension-2 value always appears at slightly negative
values of O.

We would like to add a word of caution here, however.
The values for the critical Rayleigh number and the fre-
quency can only be expected to be practically relevant if
the transition to the first convective pattern is continu-
ous' (second-order-type nonequilibrium phase transition)
or very weakly first order' (small hysteresis). The present
analysis is not applicable if the transition to the convec-
tive structure observed is strongly first order' and associ-
ated with a large hysteresis as it is the case, e.g. , for
ethanol-water mixtures for 4'= —0.5.

Note added in proof. After submitting this paper for
publication, we received a copy of a report by S. J. Linz
and M. Lucke (unpublished) reporting a jump in wave
number and in frequency at the codimension-2 point using
an eight-mode truncation of the basic equations.

From our anlaysis it follows that there is no jump in
the wave vector nor frequency at the codimension-2 point
in the exact solution. On the contrary, taking as an exam-
ple normal fluid He- He mixtures with M=0.04 and
P =0.75 we obtain for the test functions proportional to
sin (vrZ) and (Z ——, )2 for the vertical velocity field the
following result. At the codimension-2 point we get a
jump in wave vector of 1.42%%uo for sin (~Z) and 0.31% for
(Z ——,

' ), respectively. For the frequency we obtain
0.045 in the former and 0.03 in the latter case. As has
been discussed above the test functions (Z ——,

'
) yield a

better approximation to the exact solution and we find,
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correspondingly, that the jumps in the wave vector and
frequency are smaller.

To demonstrate that there is no jump in wave number
and in frequency in the exact solution at the
codimension-2 point we have repeated the exact calcula-
tions reported in the main part of the paper with higher
accuracy. We find no jump, neither in the wave vector
nor in the frequency. For the case of He- He mixtures
we find at the codimension-2 point

Therefore we conclude that the exact solutions both for
the free-free, impervious case and the rigid-rigid, no-flux
boundary conditions give a codimension-2 point of the
same type. On the other hand it seems clear from the
above results that any finite truncation of the basic equa-
tions will give a jump in k and cu.
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