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A theory is constructed for the nonequilibrium statistical mechanics of a many-particle system,
including effects of multiparticle correlations. The particular system studied is a dense monatomic
fluid, whose atoms interact by pairwise central forces. The nonequilibrium fluid possesses coupled
position and momentum correlations, of which the two-particle correlations are treated explicitly,
while three- and more-particle correlations are included in a mean-field approximation. A truncated
gradient expansion is applied, representing the condition that the one- and two-particle probability
densities vary by a relatively small amount under translation through a distance not larger than the
correlation length. New concepts which are used in the theoretical construction include the follow-

ing: a localized nonequilibrium potential of mean force; a nonequilibrium h function and the corre-
sponding h currents; and interaction integrals, which are the counterpart of Boltzmann's collision
integral, and which are based on effective two-particle interactions that conserve particle number,
momentum, and a statistically appropriate energy. The resulting theory consists of two coupled evo-

lution equations, one for the one-particle probability density, and one for the two-particle correlation
function. The evolution equations satisfy the continuum equations for conservation of particles, of
momentum, and of energy; the evolution equations also satisfy an h theorem, whose source function
is a Lyapunov functional, and whose equilibrium solution gives the correct equilibrium values for
the one-particle probability density and the two-particle correlation function. The simplified theory
that results from neglecting two-particle momentum correlations is also presented.

I. INTRODUCTION AND SUMMARY

At the present time, the most successful theory for
describing the statistical-mechanical evolution of a non-
equilibrium system is that due to Boltzmann. ' Boltzmann
constructed an irreversible evolution equation for the
one-particle ensemble-probability density; the irreversibili-
ty arises from the collision integral, which is a statistical
representation of two-particle scattering processes. The
Boltzmann equation applies to dilute gases in arbitrary
nonequilibrium states. Because it governs the approach to
equilibrium, as a special case, the Boltzmann equation
determines the transport coefficients in the irreversible-
thermodynamic regime, and it also determines the equili-
brium value of the one-particle momentum distribution.

The Boltzmann equation does not account for interpar-
ticle correlations, which are important in a dense system.
Much research has been devoted to the problem of extend-
ing Boltzmann's theory to dense gases and to liquids.
Perhaps the best-known theory is that of Enskog, which
dates from 1922, and which is discussed by Hirschfelder,
Curtiss, and Byrd, and by Chapman and Cowling.
Enskog applied the Boltzmann equation to a system of
hard spheres. He modified the collision integral to ac-
count for excluded volume, i.e., the fact that the sphere
diameter need not be small compared to the mean free
path, and in calculating momentum and energy fluxes, he
also included collisional transfer of flux. The Enskog
theory is developed for near-equilibrium situations, and it
gives the density dependence of viscosity and thermal con-
ductivity at a given temperature, in terms of properties of
the dilute-gas phase at the same temperature. The modi-

fied Enskog theory is a practical adaptation of the Enskog
theory, which expresses transport coefficients of real
fluids in terms of equation-of-state data for the fluid, to-

gether with transport coefficients of the dilute gas phase.
Hanley, McCarty, and Cohen have carried out extensive
comparisons of the Enskog and modified Enskog theories
with experiment for argon, oxygen, and parahydrogen.
For the shear viscosity and thermal conductivity, Hanley,
McCarty, and Cohen" found reasonable agreement be-

tween the modified Enskog theory and experiment, for
densities generally not exceeding twice the critical density.

A systematic procedure for extending the Boltzmann
equation to higher densities was presented by Bogoliubov
in 1946. The key to Bogoliubov's method is the so-called
functional assumption: he assumes that the multiparticle
probability densities, insofar as their time dependences are
concerned, are functionals only of the one-particle proba-
bility density. He then shows how to construct an evolu-
tion equation for the one-particle probability density, i.e.,
a generalized Boltzmann equation, as an expansion in
powers of the density. A detailed study of the Bogoliubov
theory in general, and of its approach to equilibrium in
particular, was reported by Cohen. In the first order in
density, which corresponds to three-particle collision
terms, the generalized Boltzmann equation yields correc-
tions to the Boltzmann results for shear viscosity and
thermal conductivity. However, in second order in densi-
ty, i.e., at the level of four-particle collisions, the Bogo-
liubov expressions for the multiparticle probability densi-
ties, as well as the corresponding contributions to the
transport coefficients, are all infinite. The origin of these
divergences is the increasing phase-space volume associat-
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ed with n-particle collisions, as n increases. As an alter-
nate method to obtain a density expansion of the general
nonequilibrium theory, Cohen ' developed a technique
based on a cluster expansion of the probability densities.
The same divergence problems also appear in this tech-
nique, and lead to the conclusion that the general theory is
not analytic in density. ' While the n-particle collision
analysis becomes complicated, some partial resummations
were achieved by Cohen. In a review article covering den-
sity expansions of transport coefficients, as obtained from
time-correlation functions in a moderately dense gas,
Ernst, Haines, and Dorfman also conclude that all densi-
ty expansions diverge, in particular that n-particle terms
do not exist for n & 4 in three dimensions.

A different approach to the nonequilibrium statistical
mechanics of many-particle systems was investigated by
Kirkwood. ' For the multiparticle probability densities,
which are ensemble averages, Kirkwood introduces a fur-
ther time average, over a coarse-graining time interval w.

He then constructs, as a series in ~, and to zeroth-order in
this series, a Langevin equation for the motion of a single
particle in the fluctuating force field due to its neighbor-
ing particles. When ~ is sufficiently long that this
coarse-grained force is uncorrelated in successive times t
and t +~, then the single particle exhibits Brownian
motion. With this condition on ~, and for near-
equilibrium situations (where temperature is defined),
Kirkwood constructs generalized Fokker-Planck equa-
tions for the hierarchy of coarse-grained multiparticle
probability densities. A significant modification of this
theory was constructed by Rice and Allnatt, and is
described in detail by Rice and Gray. " In the Rice-
Allnatt theory, the short-range repulsion between particles
is represented by a hard-sphere model; it is then assumed
that, in the coarse-graining time interval ~, there is one
rigid-core encounter between a pair of particles, followed
by erratic motion in the fluctuating force field of neigh-
bors, and that dynamical events occurring in successive ~
intervals are uncorrelated. The Rice-Allnatt equations ap-
ply to near-equilibrium situations, and they express the
evolution of the one-particle probability density and the
two-particle correlation function. A brief comparison of
the Rice-Allnatt theory with experiment is given by Han-
ley, McCarty, and Cohen.

In the present paper we report the results of an effort to
construct a new theory of nonequilibrium statistical
mechanics of a classical dense fluid. The guiding princi-
ple in this development has been to follow, insofar as pos-
sible, the logic of Boltzmann. Discussion of a few specif-
ic points will help clarify the relation of the present work
to those works mentioned above. First, in consideration
of time coarse graining so as to achieve Brownian motion,
we note that ~ must be long enough to lose correlations in
the one-particle mean force, but in order to obtain mean-
ingful evolution equations for the coarse-grained probabil-
ity densities, ~ must be short on the time scale of this evo-
lution. Conditions under which such a ~ exists for a dense
fluid poses a difficult problem; we will avoid this problem
by working with the ensemble probability densities, as
continuous functions of time, as did Boltzmann. Second,
with reference to hard-sphere models, it is remarkable

how well the generalized Enskog theory can account for
transport coefficients in dense systems. Ultimately, how-
ever, hard spheres cannot accurately represent the in-
teracting atoms in a dense fluid, and so we will consider a
system of particles interacting by pairwise central forces.
Externally applied forces are neglected for simplicity.
Third, we will not try to make a density expansion of the
theory, but will go immediately to the dense regime,
where a particle is in continuous interaction with a num-
ber of neighboring particles, and where the concepts of
collisions and mean free paths are not useful. Our picture
of a nonequilibrium dense fluid is based in turn upon our
picture of an equilibrium dense fluid, which was also
developed in conjunction with this work. In particular,
the entropy of an equilibrium dense fluid is expressed as
an expansion in irreducible multiparticle correlations, '

and neglecting terms beyond two-particle correlations pro-
duces an effective two-particle formulation of the free en-
ergy of an equilibrium fluid. For a nonequilibrium dense
fluid as well, we will construct an effective two-particle
theory, in which two-particle correlations are treated ex-
plicitly, and higher-order correlations appear only in a
mean-field approximation. Fourth, it is desirable to con-
struct a theory which is not limited to near-equilibrium
situations, but is valid for arbitrary nonequilibrium states.
This aim is achieved, up to one significant limitation: in
order to obtain a particle-interchange symmetry, which is
useful in constructing an h theorem, the entire theory is
subjected to a truncated gradient expansion, representing
the notion that, under translation through a distance of
order or less than the correlation length, there is only a
relatively small change in the one- and two-particle proba-
bility densities. This approximation is appropriate near
equilibrium, it might in fact be valid for a wide range of
situations, but it is probably not of universal validty. Fi-
nally, since the h theorem is an essential part of
Boltzmann's theory, ' we consider it essential that our
dense-fluid theory should also possess an h theorem.
While no h theorem has been proven for the above-
mentioned theories (see Refs. 2—11), Resibois' has con-
structed a modified Enskog equation (not related to the
modified Enskog theory ) which does support an h
theorem. The modified Enskog equation is based on a
hard-sphere correlation function which is different from
Enskog's original function, and the h theorem holds for
the total system with periodic boundary conditions. ' In
the present work, our desire to achieve a local h theorem,
in the spirit of Boltzmann's h theorem, has exerted a
strong influence on the theoretical development.

Sections II—V describe the present theoretical develop-
ment, wherein several new physical concepts are intro-
duced. First we construct the localized two-particle po-
tential of mean force which operates in a nonequilibrium
fluid. This allows us to extract, from the multiparticle
correlation hierarchy [the Bogoliubov-Born-Cxreen-
Kirkwood-Yvon (BBGKY) hierarchy], a system of equa-
tions based on effective two-particle interactions. A non-
equilibrium h function is constructed, including effects of
two-particle correlations, and the corresponding h
currents are also constructed. Interaction integrals are
then defined, based on effective two-particle interactions
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which conserve the number of particles, the momentum,
and the statistically appropriate energy, namely, the two-
particle energy whose potential is the potential of mean
force. The potential of mean force enters the evolution
equations only through the interaction integrals, and in
this role the potential of mean force is approximated by
neglecting its momentum dependence, and its angular
dependence. Finally, two-particle correlations which do
not contribute to the macroscopic equations for conserva-
tion of particles, of momentum, and of energy, are re-
moved from the BBCrKY equations, and these parts are
replaced by appropriate interaction integrals. The interac-
tion integrals account for irreversibility in the fluid evolu-
tion.

The one-particle probability density at position r,
momentum p, and time t is f' '(r, p, t). The two-particle
correlation function is g' '(rl, pl, rz, pz, t). A major source
of complication of the theory is the momentum depen-
dence of g' '. We are not able to eliminate this momen-
tum dependence, but by physical arguments we can reduce
it to the single vector p&+p2, as embodied in a reduced
correlation function y' '(rl, rz, p, +pz, t). The main result
of the present paper is a pair of coupled evolution equa-
tions for f(" and y' ', Eqs. (92) and (98). Each of these
equations contains four classes of terms: a time deriva-
tive, drift terms, force terms, and interaction integrals.
Upon appropriate averaging, the evolution equations yield
correct equations for conservation of particles, of linear
momentum, and of energy. With the aid of an auxiliary
integral condition, Eq. (105), the evolution equations also
yield an h theorem. Finally, at equilibrium, the evolution
equations lead to the correct values of the one-particle
probability density, and the two-particle correlation func-
tion. The reader will find an occasional mention of a
near-equilibrium property of the present theory; this
near-equilibrium expansion will be the subject of a forth-
coming paper. If we are willing to neglect the momentum
dependence of y( ', a much simplified theory results, and
this is presented in Sec. V E.

N is constant. At any time t the particle positions and
momenta are respectively r and p, and ~=1,2, . . . , N.
The Hamiltonian is A &,

N p
2

+2
j 2m

where m is the particle mass and p„z ——p(
~

r„—rz
~

), with
$„„=0. The system phase point moves in accordance
with Liouville's equation. Components of the total linear
and angular momentum are taken to be zero for conveni-
ence.

We now consider an ensemble of mechanical systems,
each one as described above, and specifically each one
having the same V, except that the ensemble contains a
distribution of particle numbers N. The phases of the
mechanical systems constitute a fine dust of points distri-
buted over phase space. The ensemble probability that
there is one particle in dr&dp&, one particle in dr2dpz,
etc. , and one particle in dr„dp„, at time t, is

f'"'(rl, pl, . . . , r„,p„,t)drldp, dr„dp„.
This probability has dimension 1, and represents indistin-
guishable particles. The corresponding probability density
is f'"'(rl, p„. . . , r„,p„,t) We w.ill use properties of the
f'"' for small n, since specific attention is limited to n & 3
in the present work. Hence the f'"' are evaluated in the
interior of the mechanical systems, and are independent of
surface effects; also the f'"' will depend on the mean par-
ticle number ¹ We assume the existence of a finite
correlation length /„ which is of the order of the range of
the two-particle potential P(

~

r
~

), and beyond which
particle-particle correlations vanish. Two particles are
"distant" when their separation is greater than I„and a
function of rl, rz is "local" if it vanishes for

~
rl —rz

~
~ 1, .

Our assumption of a finite I, implies that, when r„ is dis-
tant from r&, . . . , r„&, then

(n)f (rl P)~ rn~pn~t)

=f (r„,P„,t)f (r»P1, . . . , rn —)~pn —)~
(n —1)

II. A STUDY OF THE BBGKY EQUATIONS

A. Basic concepts

For n =2, it follows

f (rl Pl r2 P2 t) f (rl Pl t)f (r2 P2 t)

To clarify our basic concepts, it is helpful to first define
a mechanical system which represents a nonequilibrium
fluid. The system contains N like particles in a volume
V. The volume is a constant regular shape, e.g., a sphere
or a cube, and no particles flow across the surface, so that

is a local function.
Equations of motion for the probability densities are

constructed from the Liouville equation, and are called
the BBGKY hierarchy (see, e.g. , Kreuzer, ' McQuarrie, '

and Hansen and McDonald' ). The equation for f'"' is

a " p. a " a4.2. a
at „1 m ar & 1

ar ap„
(n)f (r),p». . . , rn~pn, t)

aA...+1 a („,)f (r»P1 ~ m+1~ Ptn+ 1, t)drn+1 dPn+ 1

K=1 K PK
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This hierarchy will be the starting point for our construc-
tion of the evolution equations for a nonequilibrium fluid.

A useful property of the probability densities is that
they vanish at the surface of V, since particles do not
cross the surface, and they vanish at infinite momenta, so
that physically meaningful momentum averages exist.
Hence for any function Q(rl, pl, t), such that f f'"'Q drl
and '"'

dp& exist,

f V, [f'"'(r„pl, . . . , r„,p„,t)Q(rl, p, , t)]drl ——0, (3)

Vp r~, p&, . . . , r„,p„,i r&, p&, t dp]:0 . 4

B. Nonequilibrium potential of mean force

It is convenient to factor f' '(rl, pl, rz, pz, t), thus de-
fining the two-particle correlation function
g' '(rl, pl, rz, pz, t), a conditional probability,

f (rl Pl r2 P2 t)(2)

=f"'(rl, Pl, t)f'"(rz, Pz, t)g"'(rl, Pl, rz, Pz, t) .

g' ' is symmetric in particles, is non-negative, and g' ' —1

is a local function. We next define K(rl, p„t) as the mean
force on a particle at r&, p&, t, given that there is a particle
atr~p~ t

f'"(rl, pl, t)«r„p„t)
r& —rz

xf"'(rl pl rz p2 t)dpzdrz

K(rl, pl, t) = —f f [V„e( irl —rzi )]f'"(rz.pz, t)

Xg (rl, Pl, rz, Pz, t)dPzdrz .

The BBGKY equation for n = 1 can then be written
T

f (rl, p„t)(&)

Bt m

+Vp f"'(rl, pl, t)K(rl, pl, t) =0 . (8)

A nonlocal two particle potential of mean force,
W' '(rl, pl, rz, pz, t), is defined by

[V,, R" '(rl, Pl, rz, Pz, t)]f' '(rl, Pl, rz, Pz, t)

= [V.,y(
l
rl —rz I

) lf"'(rl pl r2 p»t)

+ f f [V, p( ~rl —r3~ )]
Xf"'(r»pl r2 P2 r3 P3 t)dP3dr3

The interpretation of this equation is given that there
are particles at r&, p&, t and at rz, pz, t, then
—V, W' '(r„pl, rz, pz, t) is the mean force on the particle

1

at r&, p], t. When r& and rz are distant, then
p(

~
rl —rz

~
) =0, and the right side of (9) reduces to

—f'"(rl, pl, t)f'"(rz, pz, t)K(rl, pl, t) .

We can subtract this quantity from (9), to construct a lo-
cal potential of mean force. But there are other functions
which have the same distant limit as the above expression,
for example,

f (rl Pl r2 P2 t)K(rl Pl

We choose to subtract this last quantity from the right
side of (9), to define the local potential of mean force

(z)(rl pl, rz, pz t),

[V w (rl Pl r2 Pz t)lf (rl Pl r2 P2 t)

= [V,,4( I rl —r2
i )lf (rl pl r2 p2 t)

+ f f [V,,4'(
l
rl —r3

l )][f"(rl,pl rz pz r3 p3 t) —f"'(rz, p»t)g'"(rl pl, rz p»t)f'"(rl, pl r3 p»t)]«3dp3.

Hence V, w' '(rl, p, , rz, pz, t) is local, because the one-particle mean force K(rl, pl, t) has been subtracted out at large dis-

tances, and the energy zero is to be chosen so that w' '(rl, pl, rz, pz, t) is also local.
The BBGKY equation for n =2 can be expressed in terms of w' ', as follows:

+ .V, + .V, f (rl, pl, rz, pz, t) = Vp .
( [V, w (rl, pl, rz, pz, t) —K(rl, pl, t)]f (rl, pl, rz, pz, t) I

+Vp, I [Vr,w"'(r2 P2 rl Pl t) —«r2 P2 t)]f'"(rl Pl r2 P2 t) I

This equation has the appearance of a closed two-particle
equation, because the three-particle terms are hidden in
the local w' '(rl, p„rz, pz, t). We have thus taken the first
step toward construction of a local two-particle evolution
equation. Note when r& and rz are distant, only the K
terms remain on the right side, and (11) reduces to the
one-particle equation (8), applied to the product function
f'"(rl, Pl, t)f"'(rz, Pz, t).

C. The conservation equations

A key requirement for any system of evolution equa-
tions is that they must conserve mass, momentum, and
energy. These conservation laws are satisfied by the
BBCxKY equations, since the BBCxKY equations represent
classical Hamiltonian dynamics. This was shown in detail
for the case of two-particle central forces by Irving and
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E(r, t) =e("(r,t)+ e(z)(r, t), (14)

Kirkwood the same results in a different notation ap-
pear in Kreuzer. ' We begin by listing the one- and two-
particle contributions to the mechanical densities and
currents in the fluid.

Expressions for the particle density, the fluid velocity,
and the energy density are obvious at sight. The particle
density at r, t is p(r, t)

p(r, t)= f f'"(r,p, t)dp. (12)

The fluid velocity is v(r, t)

p(r, t)v(r, t) = f p f'"(r,p, t)dp . (13)
m

The center-of-mass energy per particle e(r, t) is the sum of
a one-particle term (kinetic energy) and a two-particle
term (potential energy),

p(r), t)e( '(r, , t)

P(r, t) =P'"(r, t)+P"'(r, t),
where P'" is a momentum-flux tensor,

(17)

[p —mv(r, t)][p—mv(r, t)] „(()
2m

(18)

Xf"'(r),p(, r„p„t)dp, dp, dr, .

Expressions for the pressure tensor P(r, t), and the ener-

gy current J(r, t), are not completely obvious; these are the
quantities which appear in the conservation laws, as con-
structed from the BBGKY equations, as Irving and Kirk-
wood' have shown. For the pressure,

p(r, t)e")(r, t) = f ' f ' "(r,p, t)d p,p —mv(r, t) (, )

2m
(15)

and P' ' is a two-particle —force tensor,

P' '(r, t)= ——,
' f dX f f f P'(

I
s

l

)f"'(r+(1—X)s,p), r —Xs,p„t)dp, dp, ds .
s

Here s arises from the substitution s=rz —r(, and (()'(
l
s

l
) is defined by

(19)

V,((( f
s

l
) = (()'(

l
s

l
) . (20)

Note both P"' and P' ' are symmetric. Also, for comparison with our previous work on lattice dynamics, ' ' and on
continuum mechanics, the pressure tensor is minus the stress tensor. The energy current contains a one-particle term
and two distinct two-particle terms,

J(r, t) =J'"(r,t)+J'"'(r, t)+J "'(r, t) .

J"' is the kinetic energy drift current,

(21)

(, ) [p —mv(r, t)] [p —mv(r, t)] (, )

m 2m

J' ' is a two-particle-work current,

1 ss [p(+ pz 2mv(r, t)]-
J' "(r,t)= ——,

' f dA, f f f P'(
l
s

l
) . f '(r+(1 —A, )s, p), r —ks, pz, t)dp)dpzds;

s m

(22)

(23)

and J' ") is the potential energy drift current,

[p( —m v(r), t)]J' '(r), t)= —,
' f f f 4(

l
r) —rz

l
)

Xf '(r), p(, rz, pz, t)dp) dpzdrz .

(24)

BBGKY equations (8) and (11) in the following way. In-
tegrate (8) over dp) to obtain the equation for conserva-
tion of particles,

(25)

Multiply (8) by p) /m and integrate over dp, to obtain the
equation for conservation of linear momentum,

The basis of continuum mechanics is the set of field
equations which express conservation of mass, momen-
tum, and energy at all times and locations within a con-
tinuous material. Prager ' has a fine monograph on the
subject; the example of fluids is treated by Landau and
Lifshitz; and dissipative plastic flow is treated by the au-
thor. The conservation laws are obtained from the,

m ' ' +V,.[P(r, t)+mp(r, t)v(r, t)v(r, t)]=0 .Bp(r, t)v(r, t)
Bt

(26)

Multiply (8) by (2m) '[p) —mv(r), t)]z and integrate over
dp, , multiply (11) by —,P(

l
r, —rz

l
) and integrate over
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dpi dp2dr2, and add these to get the equation for conser-
vation of energy,

r)p(r, t)e(r, t) +V, .[p(r, t)v(r, t)e(r, t)+ J(r, t)]
at

+ P(r, t):V,v(r, t) =0 . (27)

It is of interest to observe certain contributions in the
preceding calculations. The one-particle mean force K, in
Eq. (8), contributes nothing to particle conservation (since
forces do not change particle number), and it contributes
V, P(r, t) to momentum conservation. In energy conser-
vation, the term in K from (8) mixes with the left-side
contribution from (11) to produce V, .J' "(r,t}
+P' '(r, t):V,v(r, t). The right side of (11) contributes
nothing to the conservation laws.

D. Equilibrium limits

We consider global equilibrium, denoted by a sub-
script 0, in which the fluid properties are independent of
position and time. Dependences of the probability densi-
ties reduce to the following:

not vanish term by term, but reduces to

P1 P2 (2)

m ' m
Vr + Vr f0 (rl~pl~r2~P2)

=[V, wo" (
I rl r,

l
)] (V„—V, )fo"(rl, pl, r2, p2) .

(36)

The left side is composed of drift terms, and the right side
consists of two-particle mean-force terms. From (30) and
(35), it follows that the two sides of (36) are identically
equal; this equilibrium cancellation of drift and force
terms is a manifestation of detailed balance.

III. NONEQUILIBRIUM MOMENTUM
CORRELATIONS

A. Truncated gradient expansion

At this point it is convenient to introduce the variables
r for the center position of two particles, and s for their
separation,

fo"(r, P t}=fo"(
I P I

),
go (rl Pl r2 P2't) =go (

I
rl r2 I

}
(2) (2)

(28)

(29)

r = —,(r 1+r2),

s=(r2 —r, ) .
(37)

po=&«= f f"'(
I p I

)dp . (31)

The spatial integral on the right of (6) or (7) vanishes by
symmetry, so that

Ko(r, p, t) =0 .

The local potential of mean force, Eq. (10), reduces to

V, , wo (rl, pl, r2, p2, t) =V, ,wo (
~
rl —r2

~
),(2) (2)

where

V, wo'( ~rl —r2~ )

(32)

(33)

po f [V,,k( lrl —r31)]go"(rl r2 r3}dr3
+ (2)

go ( Irl —r21}
(34)

When we use the equilibrium definition of wo ', namely,

go '(
I
rl r21 ) =e"p[ Pwo '(

I
rl —r21 )]— (35)

then (34) is the correct expression for wo
' (see, e.g. , Ref.

16, p. 44).
Let us now evaluate the first two BBGKY equations

in equilibrium. Since the time and position derivatives of
fo

'(
~ p ~

) vanish, and since Ko ——0, the one-particle equa-
tion (8) vanishes term by term. In contrast, Eq. (11) does

where fo" (
~ p ~

) is the Boltzmann function, and

go '(
~

r
~

) is the radial distribution function. Specifically,
with kz ——Boltzmann's constant, T is the temperature,
and P=(k&T)

fo''(
~ p ~

) =po(g/2ltm) ~ exp( —Pp /2m),

Then V, = —,
'

V, —V„and V, = —,
'
V,+V,. The momen-

tum variables are also changed, to achieve notational sim-
plification,

P=P1 ~

P =P2~

q=p+p

(38)

When using the new variables, the order of position and
momentum variables will be changed, as in the example

f' '(rl, pl, r2, p2, t)=f' (r, s, p, p', t) . (39}

The particle symmetry of f '(r, s, p, p', t), and of
g' 1(r,s, p, p', t), means these functions are invariant under
interchange of s,p, p' with —s,p', p. A useful property of
any local function Q(r, s, t) is

jV,Q(r, s, t)ds=0. (40)

Now, in a nonequilibrium fluid, to the extent that mul-
tiparticle correlations are important, there must be some
restrictions on gradients of the probability densities. For
example, under a translation of r by a distance of order or
less than the correlation length I„at a given time, the
function f' '(r, s, p, p', t) should change by a relatively
small amount. In other words, s Vj' ' should be small
compared to f ' ', for

~

s
~

& I, . This condition should
hold separately for the factors of f' '(r, s, p, p', t), namely,
f"'(r,p, t) and g' '(r, s, p, p', t). With this concept, f' ' has
the following gradient expansion, restricted to

~

s
~

(I„
f' (r, s,p, P', t)

= f'"(r,p, t)f'"(r, p', t)g' '(r, s, p, p', t)

+ —,'s A(r, p, p', t)g' '(r, s,p, p', t)+, (41)
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where

A(r, p, p', t) = f'"(r,p, t)Vg" I(r, p', t)

—f"'(r,p', t)V,f'"(r,p, t) . (42)

the two-particle densities and currents are

p(r, t)e' '(r, t)= —,
' f f f p(

~

s
~
)f,' '(r, s,p, p', t)dpdp'ds,

(44)

P' '(r, t)

f f f p'(
~

s
i

) f,' '(r, s, p, p', t)dpdp'ds,

(45)

Note that while (41) for f ' '(r, s, p, p', t) is restricted
to

~

s
~

(I„ the two-particle correlation function
g' '(r, s, p, p', t) is still defined for all s, and still has the
distant value 1, so that g' ' —1 is a local function of s.

Expansions in the spirit of (41) are assumed to converge
rapidly. This is not to say that gradients are small in an
absolute sense, but rather that statistically meaningful
correlations cannot extend across significant variations in
the probability densities, so that the correlation length l,
ought to be small compared to the distance over which
fI" and g' ' change appreciably. With this in mind, the
second step in constructing local evolution equations for a
dense fluid is to apply the gradient expansion to the
BBGKY equations. In doing this, the expansion of each
theoretical expression will be truncated after the lowest
contributing order. This constitutes a slight redefinition
of theoretical functions, and allows us to construct a
theory which satisfies the conservation laws and the h

theorem exactly, and not merely in a certain order of an
expansion. Since we cannot argue that this procedure has
universal validity, the truncated gradient expansion con-
stitutes a limitation of the present theory.

We consider first the mechanical densities and currents,
defined in Sec. II C. The one-particle densities and
currents are not affected by the gradient expansion. The
truncated two-particle contributions are much simpler
than the originals. With the abbreviation

f,' '(r, s, p, p', t)=f"'(r, p, t)f'"(r, p', t)g' '(r, s,p, p', t),
(43)

tities in zeroth order, i.e., none of the above expressions
vanishes in a general nonequilibrium fluid. A further
property of these expressions, not present in the original
definitions of Sec. IIC, is that the integrands are sym-
metric in particles. This invariance of integrands under
interchange of particles is a property of importance when
it comes to constructing an h theorem.

B. Reduced correlation function

Integral properties of B(r,q, t), which follow from the in-
tegrals (12) and (13) of f I "(r,p, t), are

B r, q, t dq=p r, t (49)

f v(r, t) B—(r, q, t)dq=O .
2m

(50)

Now y' '(r, s, q, t) is defined by

B(r,q, t)y' '(r, s, q, t)

rpt rp, t

XgI"(r,s, p, p', &)&(p+p' —q)dpdp' . (51)

Properties of y' ' are y' '(r, s, q, t)=y' '(r, —s, q, t), y' ' —1

is a local function of s, and y' '(r, s, q, t) has the equilibri-
um limit go '(

~

s
~

), as defined in Sec. IID.
The two-particle densities and currents, Eqs. (44)—(47),

are expressed in terms of y' '(r, s, q, t) as follows:

p(r, t)e' '(r, t)= —,
' f f P(

~

s
~
)B(r,q, t)y' '(r, s, q, t)dqds,

(52)

The question of the momentum dependence of
g ' '(r, s, p, p', t), i.e., what p, p' dependence should
g' '(r, s, p, p', t) actually possess, is difficult. In fact, this
question can be avoided, because the momentum depen-
dence of g' '(r, s, p, p', t) which enters the two-particle den-
sities and currents, according to Eqs. (44)—(47), is limited
to the single vector q =p+ p'. To reflect this situation,
we will introduce a reduced two-particle correlation func-
tion y' '( r, s, q, t). First B(r, q, t) is defined by

B(r,q, t)= f f f"'(r,p, t)f'"(r, p', t)5(p+p' —q)dpdp'.

(48)

P' (r, t)= ——,
' f f P'(

~

s
~

) (Br, tq)

Xy' '(r, s, q, t)dqds,
Xf,' '(r, s, p, p', t)dp dp' d s,

J'"'(r, t)= ——,
' f f f p'(

f
s

~
)
" + v(r,t)—
/sf 2m

(53)

(46)

J' "(r,t)= ——, f f p'(
~

s
~

) v(r,t)—
[s[ 2m

XB(r,q, t)y' '(r, s, q, t)dq ds, (54)

Xf,' '(r, s, p, p', t)dpdp'ds . (47)
J' '(r, t)= —,

' f f P(
~

s
~

) v(r, t) B(r,q,t)—
2m

An important point is that the truncated gradient expan-
sion is capable of representing all these mechanical quan- Xy' '(r, s, q, t)dqds . (55)
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Since these expressions represent all the significant
mechanical densities and currents, then y '(r, s, q, t) is the
physically significant part of g' '(r, s, p, p', t). We there-
fore want to construct the entire theory in terms of y' ',
instead of g' '.

The third step in our construction is to separate the y' '

terms in the BBGKY equations. This is done in the fol-
lowing way: g' ' is replaced by y' '+(g' ' —y' '), terms
in (g' ' —y' ') only are put on the right sides, and the left
sides are evaluated in the truncated gradient expansion.
The left side of the one-particle equation retains the ap-
pearance of (8), where now K(r, p, t) is given by

f'"(r,p, t)K(r, p, t)

= V, —,
' f f P'(

~

s
~

) f'"(r,p, t)f'"(r, q —p, t)

Xy' '(r, s, q, t}dqds

and the vector D(r, q, t) is given by

D(r, q, t)=2 f f"'(r,p, t)f~ "(r,q —p, t)K(r, p, t)dp .

(59)

The function M(r, s, q, t) is local, and from its origin in
the w' ' terms in Eq. (11), it must satisfy

f M(r, s, q, t)dq=O . (60)

Now every term in (57) is linear in 8/Bt or in V„ includ-
ing M, so every term vanishes in equilibrium. The
nonzero equilibrium terms of the original BBGKY equa-
tion, as displayed in Eq. (36), were taken out by the
momentum integrations. This is a proper result, since the
nonzero rates of change which identically cancel in equili-
brium, will appear in the irreversible parts.

C. The potential-of-mean-force term

+ —,
' s -Arpq —pt

Xy"'(r, s, q, t)dqds . (56)

Let us separate y' '(r, s, q, t) into two contributions.
The first is the momentum-averaged correlation function
I' '(r, s, t), defined by

Hence in the truncated gradient expansion, all contribu-
tions to the one-particle mean force K(r, p, t) are of order
V„such terms, of course, vanish in equilibrium.

In the two-particle BBGKY equation (11), the potential
of mean force w' '(r, s, p, p', t) appears in a driving term.
We will not try to evaluate this term, but will merely
represent it by a function ~, whose form will be ex-
pressed in Sec. IIIC. For the remainder of Eq. (11), all
y' ' terms are collected on the left side, the truncated gra-
dient expansion is applied, and the result is multiplied by
5(p+p' —q) and integrated over dpdp'. The left side of
the two-particle equation, comprising the time derivative
and all drift and force terms, is then

+ V, B(r,q, t)y' '(r, s, q, t)
Bt 2m

+ C(r, q, t):V,sy' '(r, s, q, t)

+V D(r, q, t)y' '(r, s, q, t)+ M(r, s, q, t), (57)

where B(r, q, t) is defined in (48), the nonsymmetric tensor
C(r, q, t) is given by

C(r, q, t)= f [V,f'"(r,p, t)] f'"(r,q —p, t)dp,

(58)

or in view of the definition (51) of y' '(r, s, q, t),

p (r, t}l ' '(r, s, t)= f B(r,q, t)y' '(r, s, q, t)dq .

The q-dependent part of y' '(r, s, q, t) is then 5y' '(r, s, q, t)
defined by

(62)

y' '(r, s, q, t)=I ' '(r, s, t)+5y' '(r, s, q, t) .

From these definitions it follows

(63)

f B(r,q, t)5y' '(r, s,q, t)dq=O. (64)

Significant properties of the constituents of y' '(r, s, q, t}
are I' '(r, s, t) —1 and 5y' '(r, s,q, t) are local functions;I' '(r, s, t)) 0, and 5y' '(r, s, q, t) is of indefinite sign; and
in equilibrium I 0 '(r, s, t) =go '(

~

s
~

), and 5yo '(r, s, q, t)
=0. Because of the integral conditions (49) and (50), the
two-particle densities pe' ' and P' ' depend only on I ' ',
while the two-particle energy currents J' ' and J' ' de-
pend only on 5y' '.

The expression (57) is the left side of the equation for
B(r,q, t)y' '(r, s, q, t). This can be integrated over dq to
find, with the help of (25) for conservation of particles,
the left side of the equation for I' '(r, s, t),

p (r, t)I"' I(r, s, t)

= f f f'"(r,p, t)f'"(r, p', t)g' '(r, s, p, p', t)dpdp',

p (r, t) +v(r, t) V,+s.V,v(r, t) V, I' '(r, s, t)
at

+v, . t —v(r, t) B«,q, t)5y'"(r, s, q, t)dq+ f C(r, q, t):V,s5y"'(r, s, q, t)dq . (65)

This result, together with (57) and (8), gives the left side of the equation for 5y'2'(r, s,q, t), in which the terms not linear
in 5y' '(r, s, q, t) are
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~(r, s, q, t)+B(r,q, t) v(—r, t) V,I ' '(r, s, t)+s [C(r,q, t) —B(r,q, t)V,v(r, t)] V,l ' '(r, s, t) .
2m

(66)

Here ~(r, s, q, t) represents the force term arising from
w' '(r, s, p, p', t), while the terms in I '(r, s, t) are drift
terms. These force and drift terms are not independent,
since the potential-of-mean force depends on momenta; in
fact, we will assume that the effect of ~ is merely to
modify the drift terms in (66). Hence (66) represents the
net of force and drift terms arising from the momentum-
averaged correlations 1 ' '(r, s, t), and contributing to the
evolution of the momentum correlations 5y' '(r, s, q, t).
The role we assign to ~ is to cancel the center-of-mass
drift of particle pairs, represented by the V',I' ' term in
(66), and to cancel the central component of the drift of
particle pairs with respect to the center of mass, represent-
ed by the V,I' ' term in (66),

~(r, s,q, t)

B(r,q, t—) v(r, t) V,I—'(r, s, t)
2m

—[TrC(r, q, t) —B(r,q, t)V, v(r, t)]s.V,I' I(r, s, t) .

(67)

This expression is local, and satisfies the integral condi-
tion (60).

D. The h function

h (r, t) =h"'(r, t)+hi '(r, t) . (70)

A o = —S /Nkg

ho
' ———S' '/%kg .

(71)

Contributions to the h current, I(r, t), can be construct-
ed by analogy to the energy current J(r, t) J'."(r,t) is
given by (22), and is merely a drift, relative to the center
of mass, of the one-particle energy (p —mv) /2m, so
I "(r,t) should be the corresponding drift of lnh f"',
I'"(r, t)= ' [lnh f"'(r,p, t)]f'"(r,p, t)dp .p —mv(r, t)

m

(72)

J' '(r, t) has two contributions, listed in (54) and (55). The
simple contribution is J' '(r, t), which is merely a drift,
relative to the center of mass, of the two-particle energy
—,P(

~

s
~

), so I' '(r, t) should be the corresponding drift of
—' in@' '

I' '(r, t)= —,
' f f lny' '(r, s, q, t) q v(r,t)—

2m

In equilibrium, h'" and h' ' reduce to one- and two-
particle contributions to the total system entropy S, as
follows:

For an equilibrium dense fluid, we have recently pro-
posed an entropy expression which includes the effects of
multiparticle correlations. ' That expression wi11 now be
extended to a nonequilibrium fluid, to define h (r, t), the h

quantity per particle. The one-particle contribution is of
the Boltzmann form,

p(r, t)h ' "(r,t) = f f I ' (r, p, t)lnh f"'(r, p, t)dp . (68)

By extension of the equilibrium result, the two-particle
contribution is of the form

Because the correlation function appears as the argument
of a logarithm, the step of replacing g' ' by y' ' is pro-
found; this choice will exert a strong influence on con-
struction of the irreversible parts. Finally, since the series
h ' "+h ' '+ . - is assumed to converge rapidly, and
since we want to construct a closed two-particle theory,
we will omit higher-order correlation contributions and
write

r, p, t r, p', t g r, s, p, p, t

Xlng' I(r, s, p, p', t)dpdp'ds .

However, since we are constructing a theory based on y' ',

we will replace g' ' with y' ' in the above expression, to
obtain

p(r, t)h' '(r, t)= —,
' f f B(r,q, t)y' '(r, s, q, t)

X lny' '(r, s, q, t)dq ds . (69)

&&B(r,q, t)y' '(r, s, q, t)dqds . (73)

J'2'(r, t) can be constructed from its physical basis, as fol-
lows. The rate of increase of kinetic energy density at
(r ——,

'
s, p), due to the particle density at (r+ —,

'
s, p'), is

[p—mv(r ——,
'

s, t)]
j(r——,'s, p)= V,P(

~

s
~

). V~
2m

)&f' '(r ——,
'

s, p, r+ —,
' s,p', t),

the rate of increase of kinetic energy density at
(r+ —,s, p'), due to the particle density at (r ——,s, p), is

[p' —m v(r+ —,s, t)]2
j( r+ —,

'
s, p') = —V,p(

~

s
~

) VP 2m

)&f' '(r ——,'s, p, r+ —,'s, p', t),

and s times the difference of these quantities is a current.
In fact, if we write the total of this current,

f f f s[j(r+ —,
'
s,p') —j(r——,

'
s, p)]dpdp'ds,

and then apply the truncated gradient expansion, the re-
sult is exaclty J' '(r, t) as given by (54). Now the analo-
gous expression for I' '(r, t) is
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f f f sVQ(
~

s
j
).[ V~lnh f"'(r p t)+V~lnh'f"'(r p', t)]f (r —,—'s p r+ —,'s p', t)dpdp'ds .

I' '(r, t) = —, f f B(r,q, t)P'(
~

s
~

) .Vq

Xy '(r, s, q, t)dqds . (74)

Applying the truncated gradient expansion, and introduc-
ing the definition (51) of y' '(r, s, q, t), leads to the result

(c) X(s,p, p'
~

s, p, p')is local in s, s . (80)

Aside from the 5 functions noted here, 7 is presumably a
smooth function of its variables. The requirement for
conservation of the energy of mean force is the key to an
effective two-particle formulation of statistically correlat-
ed interactions.

The total h current is finally

I(r, t)=I (r, t)+I '(r, t)+I (r, t) .

IV. THE INTERACTION INTEGRALS

(75)

Note there are nonlocal transitions, involving two dis-
tant particles, but these particles are not correlated with
one another. Hence the transition rate for correlated two-
particle interactions has to be a local function.

(d) X satisfies the following three symmetries:

A. Transition rates

The nature of a dense fluid, which is in contrast to the
nature of a gas, is that a particle in a fluid is in continu-
ous interaction with a large number of other particles,
where the "large number" is of order 10. This in true in
equilibrium or in nonequilibrium. The interactions of
fluid particles are not a sum of independent two-particle
interactions, but are rather a sum of statistically correlated
two-particle interactions. The problem at hand is to
represent the effect of such interactions in the evolution of
a nonequilibrium fluid, in an effective two-particle formu-
lation. This will be done by defining transition rates, and
then by constructing the interaction integrals.

The potential of mean force will appear explicitly in the
transition rates. In this function we assume that a
momentum-independent central potential is appropriate.
We could construct a momentum- and angle-average of
w' '(r, s, p, p', t), but in fact we will merely represent the
potential as w' '(r,

~

s ~, t), a local function. It may be
noted that this limitation is strictly correct in a near-
equilibrium situation, where w' '(r, s, p, p', t) becomes
wo '(

~

s
~

), a known equilibrium function.
At a given r, t in an equilibrium or nonequilibrium

fluid, there are effective two-particle interactions in which
(s,p, p') goes to (s,p, p '). For a given phage-space volume
element dpdp'ds, the transition rate is

X(s,p, p'
i s,p, p')dpdp'ds .

The dependence of 7 on r, t is suppressed for abbreviation.
The important properties of X are (a)—(d) of the following
list:

X(s P P l

s P P )=X(s P P l
s P P»

X(»p p'ls P P )=X( s P P l

s P P ),
X(s,p, p'

~
s,p, p') =X(s,p', p s, p', p) .

The first of these is a statement of detailed balance. The
second two are sufficient conditions to obtain required
symmetries of the interaction integral, as discussed fol-
lowing equation (84) below.

Let us return momentarily to the two-particle probabili-
ty density f' '(r, s, p, p', t), defined before the gradient ex-
pansion is applied. In an equilibrium or nonequilibrium
fluid, the total rate of change of f' '(r, s, p, p', t), due to ef-
fective two-particle interactions in which (s, p, p')
~(s,p, p'), and in which (s,p, p')~(s, p, p'), is

r, s, p, p', t — r, s, p, p, t

XX(s,P, p'
l
s,p, p')"p "p'"s .

Because X is local in s, s, only the local part of f I ' enters
this expression. After the truncated gradient expansion,
and the replacement of g' ' with y' ', the significant two-
particle density is

f,' '(r, s, p, p', t) =f"'(r,p, t)f'"(r, p', t)y' '(r, s,p+p', t) .

(82)

The total rate of change of this quantity is FI '(r, s, p, p', t),
given by

F '(r, s,p, p', t)

r, s, p, p, t —,r, s, p, p, t
(a) X(s,p, p'

~
s, p, p') &0 . (76)

XX(s,p, p'
~

s, p, p')dpdp'ds . (83)

5(p+p' —p —p'), or 5(q —q),
and conservation of the "energy of mean force, "

(77)

(b) X contains two 5 functions as factors. These 5 func-
tions express conservation of linear momentum, FI '(r, s, p, p', t) is our primary interaction integral. All

other interaction integrals will be defined in terms of I" '.
For example, the rate of change of f'' (r, p, t), due to the
same effective two-particle interactions, is F ' (r, p, t),
where

5(co —co),
where

2 ~ 2

~«, s/pf, [p'/, t)= + +w'"(r, fs/, t).2' 2m

(78)

(79)

FI "(r,p, t) = f f F' (r, s, p, p', t)dp'ds . (84)

Since F' '(r, s, p, p't) is the rate of change of the quantity
(82), then F' '(r, s, p, p', t) must be invariant under the in-
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terchange of s with —s, and also under the interchange of
p with p'. These invariances will frequently be used in
manipulating integrals containing F' '(r, s, p, p', t), in-
tegrals which will appear in the conservation laws and in
the h theorem. Sufficient (but not necessary) conditions
to ensure these invariances are the last two symmetries of
X listed in (81).

B. Interaction invariants

Because of the first symmetry of X listed in (81), and be-
cause of the 6-function factors of 7, there are three in-
teraction invariants:

W=p+p'

4=~«» II I
IP'I t)

(86)

The integral condition (85), for each interaction invariant,
can be expressed with the help of FI "(r,p, t), as follows:

F"' r, p, t dp=o, (87)

f pF"'(r, p, t)dp=O, (88)

2
P r'"r, p, ~dp

2m

+ —, w r, s, t

XF' '(r, s, p, p', t)dpdp'ds=O . (89)

While the interactions conserve the energy of mean
force microscopically, i.e., within the process of each ef-
fective two-particle interaction, the interactions must also
conserve total energy macroscopically, i.e., in the mean.
This can be expressed as a single integral condition on 7,

2 F"' r, p, t dp
2m

+ —, s F' ' r, s, p, p', t dpdp'ds=O .

A function g(r, s, p, p', t) which is unchanged through
transitions induced by the effective two-particle interac-
tion is an interaction invariant, and satisfies the equation

f f f F' '(r, s, p, p', t)@(r,s, p, p', t)dpdp'ds=O.

(85)

V. COMPLETE EVOLUTION EQUATIONS

a + P .V f(I)(r p t)
Bt m

+ V f'"(r,p, t)K.(r, p, t) =F'"(r,p, t), (92)

where K(r, p, t) is the one-particle mean force, and is
given by Eq. (56).

The equation for the product function
f'"(r, p, t)f'"(r, p', t) follows at once from Eq. (92). When
the equation for fI "(r,p, t)f"'(r, p', t) is multiplied by
5(p+p' —q), and integrated over dpdp', the following re-
sult is obtained:

+ .V, B(r,q, t)q
Bt 2m

where

+TrC(r, q, t)+Vq D(r, q, t)=X(r,q, t), (93)

A. One- and two-particle equations

It is helpful at this point to summarize our philosophy
for the construction of the evolution equations. Starting
with the BBGKY equations, the first step was to intro-
duce the potential of mean force w' '(r, s, p, p', t), and the
second step was to apply the truncated gradient expan-
sion. At this point, the BBGKY equations retain their
original physical content. The third step was to gather
terms in y' '(r, s, q, t) on the left sides of the equations,
and the fourth step was to reconstruct the potential-of-
mean-force term on the left side of the two-particle equa-
tion. The last step will be to replace the right sides by ir-
reversible terms, in the form of interaction integrals. This
step converts the equations to irreversible evolution equa-
tions, and significantly alters their physical content. In
the final form of the evolution equations, the quantities
w' '(r,

~

s ~, t) and X(s,p, p'
i s, p, p ') are considered known

functions, in the same way the scattering cross section is
supposed to be a known input function for the Boltzmann
equation.

The left side of the one-particle equation is given by (8).
Since this is an equation for df"'/dt, the interaction in-
tegral should be the rate of change of f."' due to effective
two-particle interactions, namely, F'" of Eq. (84). Hence
the one-particle evolution equation has an appearance
similar to the Boltzmann equation,

In view of (89), this equation can be replaced by

s —w r, s

(90)
X(r,q, t) = f f [f"'(r,p, t)F"'(r,p', t)

+f"'(r,p', t)F'"(r, p, t))

x &(p+p' —q)dp dp' . (94)

X F' '(r, s, p, p', t)dpdp'ds=O . (91)

There is a significant contrast between the present theory
and Boltzmann's. In Boltzmann's theory there is no ener-

gy of mean force, the collision invariants are 1, p+p', and

(p /2m)+(p' /2m), and the energy invariance of the col-
lisions guarantees macroscopic energy conservation as
well. The interaction-integral contribution to

Equation (93) will help us in constructing the two-
particle-evolution equation. Also, because of (87) and
(88), X(r,q, t) satisfies the integral conditions

f X(r,q, t)dq=O, (95)

qX r, q, t dq=O . (96)
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(3/Bt)f'"(r, p, t)f'"(r, p', t)y' '(r, s, p+p', t), due to effec-
tive interactions between the two particles at r, s, p, p', t, is
F' '(r, s,p, p', t). There is a further interaction-integral
contribution to this time derivative, a contribution con-
taining f"'(r,p, t)F'"(r, p', t)+f "(r,p', t)F'"(r,p, t), due
to interactions of one of these particles with other parti-
cles. These two interaction-integral contributions are to
be multiplied by 5(p+p' —q), and integrated over dpdp',
to obtain the corresponding contributions to
(8/Bt)B(r, q, t)y' '(r, s, q, t). Hence the first contribution is
G' '(r, s, q, t),

G' '(r, s, q, t)= f f F' '(r, s, p, p', t)5(p+p' —q)dpdp',

(97)

and the second contribution contains X(r,q, t), according
to (94). We write the second contribution in the form
[I' '(r, s, t)+o.(r, s, t)]X(r,q, t), where o(r, s, t) is a local
function of s; this form has the correct distant limit, and
also has the property that o(r, s, t)=0 in a near-
equilibrium situation. Then the two-particle evolution
equation, whose left side is the expression (57), becomes

+ .V, B(r,q, t)y' ~(r, s,q, t)+C(r, q, t):V,sy' '(r, s,q, t)+Vq D(r, q, t)y' '(r, s, q, t)+M(r, s, q, t)
Bt 2m

=G' '(r, s, q, t)+[I"' I(r, s, t)+o(r, s, t)]X(r,q, t) . (98)

p(r, t) f [I' '(r, s, t}—l]ds= —I+a(r, t), (100)

where a(r, t) results from density fluctuations, and u(r, t)
is small compared to 1. For many applications, it will be
an acceptable approximation to set o, =O; our evolution
equations are consistent with this approximation, provid-
ing the following condition on 5y' ' is satisfied:

T

f f,' v(r, t) B(r,q, t)5y' —(r, s, q, t)dqds=O .

(101)

The local function o(r, s, t) is arbitrary except for a single
integral condition, namely, the condition required to
achieve an h theorem, as discussed in Sec. IVC. An im-
portant property of G' '(r, s, q, t), representing the fact
that 5(p+p' —q) is an interaction invariant, is

f G' '(r, s, q, t)ds=O . (99)

It is useful at this point to remark on the "normaliza-
tion" of the correlation function. From its definition by
Eq. (61), or by (62), I ' '(r, s, t} is the total pair-correlation
function at r, s, t, averaged over all particle momenta. In a
nonequilibrium dense fluid, we expect I ' ' to satisfy the
normalization

On the other hand, one may wish to impose a normaliza-
tion on every q component of y' '(r, s,q, t), as, for exam-
ple,

f B(r,q, t)[y' '(r, s, q, t) —1]ds= p(r, t) . — (102)

In this case (101) is automatically satisfied, and our evolu-
tion equations are consistent with (102) if

f o(r, s, t)ds=O . (103)

B. The conservation laws

Consider the distant evaluation of (98). When
~

s
~

& I„
y' '(r, s, q, t)=l, G' '(r, s, q, t)=0, and Eq. (98) reduces to
Eq. (93). This is a necessary property of the two-particle
evolution equation: at any r, t in the evolution of a non-
equilibrium fluid, the distant value of y' '(r, s, q, t) is 1,
and this distant value must remain 1 under evolution ac-
cording to the two-particle equation. Equation (98) is
nonlocal, because it has terms which do not vanish when

~

s
~

& 1, . By subtracting (93) from (98), the following lo-
cal form of the two-particle evolution equation is con-
structed:

B(r,q, t) —+ V, y' '(r, s, q, t)+C(r, q, t):sV,y' '(r, s, q, t)+D(r, q, t) Vqy' '(r, s, q, t)+~(r, s, q, t)Bt 2m

=G' '(r, s, q, t)+[o(r, s, t) —5y' '(r, s,q, t)]X(r,q, t), (104)

where C is the transpose of C. Every term of (104) is local in s; hence, for example, this equation can be integrated over
ds, term by term.

Equations for conservation of particles, momentum, and energy are (25), (26), and (27), respectively. The one-particle
densities and currents are given by (12), (13), (15), (18), and (22), and the two-particle densities and currents are given in
final form by (52)—(55). The coupled one- and two-particle evolution equations, (92) and (98), now satisfy identically the
three mechanical conservation laws. The one-particle equation alone is used to prove conservation of particles, and con-
servation of linear momentum. For energy conservation, the one-particle equation determines mean kinetic energy, and
the two-particle equation determines mean potential energy. Hence only the local part of (98) is significant in the conser-
vation laws, since (98} is multiplied by the local function P(

~

s
~

} to construct the mean potential energy. Also in energy
conservation, there is a term
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—,
' f f P'(

~

s
~

):C(r,q, t)5y' '(r, s, q, t)dqds
s

on the left side of the kinetic energy equation. This is the sum of two forcing terms, based on the j quantities defined
below Eq. (73), and the entire term is exactly cancelled by an opposite change of mean potential energy, which arises
from the C(r, q, t) term in (98). Finally, because of the interaction-invariant conditions (87) and (88), and the energy con-
dition (90), the interaction integrals contribute nothing to the conservation laws.

C. The h theorem

The integral condition which is required to obtain an h theorem is

f f Ilny' '(r, s, q, t)[l"' '(r, s, t)X(r, q, t)+cr(r, s, t)X(r, q, t) —M(r, s, q, t)] —y' '(r, s, q, t)X(r, q, t)]dqds=0 . (105)

If the integral on dq is carried out, the resulting s in-
tegrand is local in s, term by term. Hence (105) is a con-
dition on the local function cr(r, s, t), which is otherwise
arbitrary. For example, a solution is

cr(r, s, t) =o(r, t)V, s[I ' '(r, s, t) —1],
where o(r, t) is uniquely determined by (105). Given a
solution for o(r, s, t), we can add a local function 5o.(r, s, t),
provided 5cr makes no contribution to (105). Then the
term 5oX in the two-particle equation (98) contributes
zero to the conservation laws, and to the h theorem, and
to the evolution of P(r, t) and J(r, t). The term 5oX does
contribute to the evolution of the h current I(r, t), but the
nonequilibrium h(r, t) is not unique; in fact, there are
whole classes of functions which will serve as bases for an
h theorem, and only the equilibrium limit of h(r, t) has
physical significance. Since o(r, s, t) does not influence
the equilibrium limit of h(r, t), as determined by our evo-
lution equations, we assume that the arbitrariness of
cr(r, s, t) is of no physical consequence.

The h-function density is given in (68)—(70), and the h

currents are given in (72)—(75). The evolution equations
(92) and (98) are used to calculate the evolution of
ph ' "+ph ' ', with the following result:

Bp(r, t)h (r, t) +V,.[p(r, t)v(r, t)h(r, t)+I(r, t)]=X(r, t),
at

(106)

where the source term X(r, t) is and then in the form of a Lyapunov functional,

(108)

X(r, t)= f F"'(r,p, t)lnh f"'(r,p, t)dp

+ —,
' f f G' '(r, s, q, t)lny' '(r, s, q, t)dqds .

(107)

The s integrand in (107) is a local function. In fact, just
as in the proof of energy conservation, only the local part
of the two-particle evolution equation is significant in the
h theorem. Let us examine the terms which contribute to
c)ph/Bt. First, the one-particle mean force K(r, p, t) does
not contribute to Bph' "/Bt, so this force is reversible, even
though it is momentum dependent. Second, in (98), the
terms in C(r, q, t) and D(r, q, t) give zero contribution to
Bph' '/Bt. Contributions to Bph' '/Bt from ~(r, s, q, t),
and from X(r,q, t), are set zero by the integral condition
(105). In a near-equilibrium situation, the contribution
from M(r, s, q, t) vanishes by symmetry, leading to the re-
sult o(r, s, t) =0 near equilibrium.

The h-theorem source term is always negative or zero.
This can be shown by using the definitions of Sec. IV to
rewrite 2 (r, t), first in the intermediate form

X(r, t)= —,
' f f f [lnh3f'"(r, p, t)+Inh f' "(r,p', t)

+lny' '(r, s,p+p', t)]

XF' '(r, s,p, p', t)dpdp'ds,

X(r, t)= ——,
' f . f [f,' '(r, s, p, p', t) —f,' '(r, s, p, p', t)][lnh f,' '(r, s,p, p', t) —lnh f,' '(r, s,p, p', t)]

XX(s,p, p'
i
s, p, p')dpdp'dsdpdp'ds, (109)

where f,' '(r, s, p, p', t) is defined by (82). Including the
minus sign in front, the integrand is (109) is (0 every-
where, i.e., for all values of the integration variables.
Hence the integral vanishes only when the integrand van-
ishes everywhere. We have the following interesting situa-
tion: through the interaction integrals in the one- and
two-particle evolution equations, the effective two-particle
interactions, which depend on w '(r,

~

s ~, t), drive the

probability densities f' "(r,p, t) and y'2'(r, s, p+ p', t)
toward "equilibrium. " Simultaneously, w' '(r,

~
s ~, t)

changes as the system evolves. Presumably w' '(r,
~

s ~, t),
in a general nonequilibrium fluid, contains some sense of
local equilibrium, and attempts to "lead the way" in this
self-consistent evolutionary process. Again in a near
equilibrium situation, this concept does take place, and in
a natural way.
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D. Equilibrium solution

Regarding the expression (109) for X(r, t), it is conceiv-
able that there are phase points for which the integrand
vanishes, so that X(r, t)=0 for some r, t, yet the fluid is
not in equilibrium. Such points do not correspond to a
steady solution of the evolution equations, hence are only
transient points in the fluid evolution. At equilibrium,
however, the evolution equations vanish term by term,
and so do the equations which express the conservation
laws and the h theorem. In particular, X(r, t) =0 at equili-
brium.

To examine this equilibrium condition, it is convenient
to imagine an expansion near equilibrium, where subscript
0 denotes equilibrium, and subscript 1 denotes a first-
order nonequilibrium quantity. Then Fo ' ——0, and I"] '

contains only the equilibrium transition rate
Xo(s,p, p'

~

s,p, p '). Equation (108) in lowest order is

Xi= 2i f f f [lnh fo (p)+lnh fo (p )

+»yo (s p+p')]

XFI '(s, p, p')dpdp'ds, (110)

where we are considering global equilibrium, in which
there is no r, t dependence. X& vanishes only when the
square brackets containing logarithm functions is a com-
bination of the interaction invariants contained in

Fi '(s, p, p'), which means

detailed balance. The primary interaction integral

Fo '(s, p, p'), from Eq. (83), vanishes because

fo"(p)fo"(p ')yo"(s) =fo"(p)fo"(p')yo"(s) .

Also the equilibrium comparison between ho and the en-

tropy per particle, S/N, is given by (71), so that S/N con-
tain terms in addition to —kz(ho" +ho '), namely, the
higher-order terms S' '/N, . . . , which are presumably
very small.

E. On neglecting momentum correlations

Suppose we reconstruct our arguments through Eqs.
(44)—(47), which give the two-particle densities and
currents in the truncated gradient expansion. At this
point suppose we are prepared to neglect the two-particle
energy currents, J' ' and J' ', at least for a given
nonequilibrium-fluid calculation. Then J' '=0, and expli-
cit momentum dependence of g ' '( r, s, p, p', t ) does not ap-
pear in any mechanical density or current. The theory
can be developed exactly as before, with I' '(r, s, t) replac-
ing y' '(r, s,q, t). The one-particle densities and currents
remain unchanged, but the two-particle contributions sim-

plify to the following list:

p(r, t)e' '(r, t)= ,p (r, t) f P( —~ s
~

)I' '(r, s, t)ds, (116)

p'2'(r, t)= —,'p (r, t) f —P'(
~

s
~

) I' '(r, s, t)ds,

lnh fo"(p)+lnh fo"(p')+lnyo '(s, p+p')
2 t 2

=a+b. (p+p')+c + +too"( ~s~ )2' 2m

+terms in(p+p')", n =2, 3, . . . ,

where a, b, c are strict constants. Since lnyo '(s, p+p') is a
local function, and since the terms in (p+p')" on the right
side are nonlocal, then yo

' cannot depend on p+p', and
the right-side terms in (p+p')" must vanish. It then fol-
lows

p(r, t)h' '(r, t)= ,'p (r, t) f I—' '(r, s, t)lnI' '(r, s, t)ds,

J' '(r, t) =I' '(r, t) =0 .

The primary interaction integral is now written

F' '(r, s, p, p', t)

"' r, p, g
'" r, p', t I ' ' r, s, j

f I "(r,p, t)f"'(r, p'—, t)I' '(r, s, t)]

XX(s,p, p'
i
s, p, p')dpdp'ds .

(117)

(118)

(119)

(120)

2

lnh fo"(p)= —,'a +b.p+c
2m

lnyo '(s) =cwo '(
~

s
~

) . (112)

Now the initial properties of the nonequilibrium fluid,
which are conserved in the evolution, are the total number
of particles, the total momentum, and the total energy.
These represent unique equilibrium values of the particle
density po, the center-of-mass velocity vo, and the tem-
perature p, thus fixing the constants a,b, c, and giving fi-
nally

fo"(p) =po(p/2m. m) exp[ —p(p —m vo) /2m],

(113)

Integrals of F' '(r, s, p, p', t) which will now appear in the
evolution equations are F'"(r,p, t), the same as before,

F"I(r, p, t)= f f F' '(r, s,p, p', t)dp'ds, (121)

and G' '(r, s, t), defined by

G' '(r, s, t)= f f F' '(r, s, p, p', t)dpdp' . (122)

The transition rate 7 has the same properties as listed in
Sec. IVA, the interaction invariants still lead to the in-
tegral conditions (87)—(89), and conservation of total en-

ergy by the interactions is still expressed by (90).
Now in the one-particle evolution equation, the one-

particle mean force K(r, p, t) becomes the momentum-
independent force L(r, t),

yo"'(s) =go'"(
I

s
I

) =exp[ —p~o"'(
~

s
~
)] . (114)

In equilibrium, Xo does not vanish, and transitions do not
cease, but the interaction integrals nevertheless vanish, by + L(r, t).VQ"'(r, p, t) =F"'(r,p, t), (123)
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where

(o(r, t)L(r, t) = —V, P"'(r, t) . (124)

The two-particle evolution equation (98) can be integrated
over dq, to give the equation for I '2'(r, s, t),

p (r, t) +v(r, t).V,+s.V,v(r, t).V,2 a
at

&& I ' '(r, s, t) =G' '(r, s, t) . (125)

This equation is local in s, and compared to (98) or (104)
for y( '(r, s, q, t), this equation is very simple. The left side
of (125) contains only the time-derivative and drift terms,
and ~(r, s, q, t) and X(r,q, t) no longer appear in the
two-particle equation. The coupled equations (123) and
(125) provide an apparent separation of the p dependence,
and the s dependence, in the evolution of a nonequilibri-
um fluid; in fact these dependences remain coupled only
within the transition rate function X(s,p, p'

~

s, p, p'). Fi-
nally, with the densities and currents given in Eqs.
(116)—(119), plus the standard one-particle expressions,
Eqs. (123) and (125) satisfy the conservation laws and the
h theorem, without the need for an auxiliary h-theorem
condition.

The philosophical basis for the above approximation is,
if we can neglect J' '(r, t) for all r, t, then I '(r, s, t) is the
physically significant part of g' '(r, s, p, p', t), and it makes
sense to construct the entire theory in terms of I' '(r, s, t)
instead of g' '(r, s, p, p', t). It remains to be learned under
what conditions I' '(r, t) =0 is a physically acceptable ap-
proximation. In any case, however, this approximation
has simplicity and elegance to recommend it.

A final observation can be made, regarding the general
theory with momentum correlations. In the theoretical
development, the original correlation function
g' '(r, s, p, p', t) was replaced by one with less information,
namely y' '(r, s, q, t). The fact that the resulting two-
particle equation (98) contains arbitrariness, in the func-
tion o(r, s, t), suggests that a further reduced correlation
function may yet be found, in terms of which the two-
particle equation will be unique. This is precisely what
happens when momentum correlations are completely
neglected, as the analysis of Sec. V E shows.
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