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In this paper we present an experimental study of quasiperiodicity in a hydrodynamical system.
Partial results have already been reported. We present them now in more detail as well as the exper-
iment itself. The system studied is Rayleigh-Bénard convection in mercury in a time-dependent
state with one limit cycle. An external oscillation is coupled to this limit cycle by passing an ac elec-
trical current through the mercury and embedding the system in a horizonal magnetic field. We
have measured the fractal dimension of the complement of all locked states on the critical line. Lo-
cal properties of this line, such as scaling indices, were also measured for two different irrational
routes followed. The results are in good agreement with quantitative predictions of the circle map.

I. INTRODUCTION

In this paper we present an experimental study of
quasiperiodicity in Rayleigh-Bénard convection. In quasi-
periodicity one studies the behavior of a set of nonlinearly
coupled oscillators. The simplest case, two oscillators, is
the one we will report here.

When the amplitude of the nonlinear interaction cou-
pling the oscillators is small, the system can be in one of
two possible states. The oscillators are in a quasiperiodic
state if the ratio of their frequencies or winding number is
an irrational number. Otherwise, the oscillators are said
to be locked and the winding number is rational. Locked
states have the following property: if one changes the fre-
quency or the amplitude of one oscillator within a given
range of variation, the second oscillator readjusts its
respective parameters so that the winding number does
not change. This range of variation increases with the
amplitude of the nonlinear coupling.

The possible states of the system can be conveniently
parametrized in the amplitude-versus-frequency plane of
one of the oscillators. In this plane, the locked states ap-
pear as regions called “Arnol’d tongues.” There is a
tongue for every rational number. The width of each
tongue at fixed amplitude is a rapidly decreasing function
of the denominator of the particular rational number.
The tongues that appear in this plane are ordered through
the Farey scheme, which will be explained in detail in
later sections.

Because the frequency width of the Arnol’d tongues in-
creases with the amplitude, eventually the tongues over-
lap. In the region where the tongues overlap, the state of
the system is not uniquely defined by the amplitude and
frequency values but also by its past history. Hysteretic
effects appear. Moreover, the system can exhibit chaotic
behavior both inside and outside tongues.

In this paper we have focused our attention on the re-
gion in the amplitude-versus-frequency plane below and at
the critical line where the tongues start to overlap. We
have mapped out a number of Arnol’d tongues and mea-
sured global and local properties of the overlap line. We
have also studied the transition to chaotic behavior when

35

the winding number is fixed to an irrational value and the
amplitude of one oscillator is increased towards the over-
lap line. Of course, an irrational frequency ratio cannot
be achieved experimentally, but given our resolution and
stability, we have been able to approximate it within 10~%,

In order to fulfill this program and explore the
amplitude-frequency plane, one must be able to have
under one’s control the amplitude and frequency of one of
the oscillators. Usually, the amplitude and frequency are
not independent. A change in the amplitude of one oscil-
lator will then induce changes in the frequencies of both
oscillators. Since keeping the winding number constant is
essential for comparing our results to existing models for
the quasiperiodic transition to chaos, this control is also
necessary from the experimental point of view. This
stands in contrast to experimental observations of period
doubling and intermittency, where only the change in one
parameter suffices to observe the whole scenario.

To achieve this, we have devised a forced convection
experiment in liquid mercury in a cell of small aspect ra-
tio. In this way, most spatial modes are frozen and the
time domain is singled out. One of the oscillators is the
local oscillation of the fluid for high enough Rayleigh
number, while the second is imposed from the outside by
embedding the system in a uniform magnetic field and
passing an ac electrical current sheet through the fluid.
The induced Lorentz force acts directly upon the fluid’s
velocity field. Since the current is imposed from the out-
side, its frequency and amplitude are at our disposal.

One can then study the response of the fluid as a func-
tion of these two parameters. A signal is obtained from
the experiment by means of a local thermal probe. The
analysis of the experimental data is carried out by per-
forming Fourier spectra of the signal and by studying the
Poincaré cross sections of the dynamical trajectories.

As usual in these types of problems it is impossible to
develop a theoretical model starting with the Navier-
Stokes and Fourier heat equations. The theoretical
analysis consists of comparing the experimental results
with those obtained from a simple dynamical system. The
model dynamical system is a one-dimensional map of the
circle onto itself. The relevance of such a map to our ex-
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periment can be seen from the following facts. A system
of two oscillators describes in phase space a trajectory on
a torus. When the torus is cut by a Poincaré plane, the
trajectory cuts the plane in points lying on a curve topo-
logically equivalent to a circle.

Although results from these circle maps were known to
mathematicians through the works of Arnol’d, Herman,
Denjoy, and others,! ~% it was not possible to make quanti-
tative comparisons with experiment until the development
of renormalization-group techniques applied to dynamical
systems.* In the case of the circle map, these techniques
were applied®~’ while a considerable amount of
knowledge was being amassed from important numerical
studies.®’

The justification for our procedure of analysis is the as-
sumption of the universality of the results in the same
spirit as for critical phenomena.

The first attempt to observe experimentally the transi-
tion to chaos via quasiperiodicity was done by Fein, Heut-
maker, and Gollub,!® who obtained evidence of the scaling
properties of the spectrum. Their system, however, did
not allow them to obtain quantitative properties such as
critical indices or global properties of the amplitude-
frequency plane.

Recently, we reported an experimental observation of
the transition to chaos via quasiperiodicity and fixed
winding number.!! It is the purpose of this paper to give
a more detailed account of both the results and the experi-
ment. The layout of the paper is the following. In Sec.
IT we review the salient features of Rayleigh-Bénard con-
vection relevant to our experiment and describe briefly the
circle map. In Sec. III we describe the experimental setup
and the motivations which led to its particular design. In
Sec. IV we present our results and compare them with the
predictions of the circle map. Finally, in Sec. V we
present our conclusions and future perspectives.

II. THEORY

A. Rayleigh-Bénard convection

Our experiment was performed with mercury as the
convecting fluid. One important property of mercury is
its low Prandtl number P defined as the ratio between the
kinematic viscosity and the heat diffusivity. In the case
of mercury P=0.025. Among the properties of fluids of
low Prandtl number is the appearance of a temporal oscil-
latory mode when the fluid is heated above the convection
onset.!? This mode is an instability of the convection pat-
tern rather than a detachment of boundary layers, which
occurs in large-Prandtl-number fluids. Since this mode is
one of the two oscillators in the experiment, we give now
a brief description of it. We also explain why the experi-
ment was performed in a small aspect ratio.

In a Rayleigh-Bénard experiment one has a layer of
fluid bounded on top and bottom by two horizontal plates.
The temperature of the bottom plate is higher than that of
the top plate. If the temperature gradient across the layer
is small, the heat is transported by diffusion. If on the
other hand the gradient is sufficiently large, convection
sets in. This situation is described by two equations: the

Navier-Stokes momentum equation and the Fourier heat
equation. Assuming incompressibility and a set of fluid
characteristics which is commonly encountered, a consid-
erable simplification of these equations (the Boussinesq
approximation) is possible. Upon recasting the simplified
equations nondimensionally, one arrives at a description
of thermal convection by means of two independent non-
dimensional parameters: the Rayleigh number R and the
Prandtl number P. R includes geometrical factors of the
system and is proportional to the temperature gradient
across the layer. P is an intrinsic property of the fluid
and is independent of the setup.

When convection sets in at R =R_, the only stable cel-
lular pattern consists of horizontal parallel rolls with adja-
cent rolls rotating in opposite directions. The width of
each roll is of order d, the separation between the top and
bottom plates. The cross section of a convective roll is
then approximately square.

As R is increased above R., the convection pattern goes
through a series of instabilities reaching eventually chaot-
ic temporal behavior. The nature of these instabilities is
different for different fluids and what essentially deter-
mines which instabilities the system will go through is the
Prandt]l number P.!2

A linear-stability analysis of the equations of motion
shows that above R. a continuous band of modes is acces-
sible to the system. A nonlinear analysis shrinks this
band but does not select a particular mode of the system.

It is at this point that we have to distinguish between
two possible physical situations: one in which the hor-
izontal dimensions of the system are much larger than d
(large aspect ratio), and one in which the horizontal extent
is comparable to d (small aspect ratio).

For large aspect ratio, the modal interaction manifests
itself in the presence of defects and wavelength variations
in the convective pattern. Moreover, such convective pat-
terns are not stationary and evolve aperiodically over very
long time scales.!*~!5 This broadens the spectral features
and increases the noise level, particularly at small frequen-
cies, rendering the system unusable for our purposes.

In the case of small aspect ratio, the influence of the
walls is strongly felt throughout the bulk. The walls ef-
fectively damp out most degrees of freedom, and the con-
vection pattern is that of a small number of straight rolls
without defects.

For small-Prandtl-number fluid, the first instability
after convection is a time-dependent mode called the os-
cillatory instability. In this mode the rolls bend transver-
sally to the direction of their axes with a well-defined
temporal ratio. The characteristic time scale for this
period is given by 7~d?/k, where « is the heat diffusivity
of the fluid. A very important feature of the oscillatory
instability is that after it sets in, the fluid flow is three di-
mensional. Below threshold, the rolls are straight and the
flow is essentially two dimensional. Thus the vorticity of
the flow which is parallel to the rolls below the instability
acquires an ac vertical component above the instability
threshold. Thus, the instability and vertical vorticity are
intimately related. This was pointed out first by Busse.'®
For infinite layers Busse showed that this instability is
caused by the nonlinear term in the Navier-Stokes equa-
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tion; this term, which is the dominant nonlinearity in the
limit of small Prandtl numbers, is the only one capable of
inducing vertical vorticity in the flow. Moreover, Busse
showed that the instability appears after the amplitude of
the convection exceeds some critical value.

Comparing the advection and diffusion terms in the
Navier-Stokes equation, one can define a Reynolds num-
ber for the flow

_uL

v

where u and L are typical velocity and length scales. v is
the kinematic viscosity. Busse’s conclusion about the
finite-amplitude onset is then equivalent to the existence
of a critical Reynolds number above which the instability
sets in. Therefore, while the onset of convection is associ-
ated with a critical Rayleigh number, the onset of the os-
cillatory instability is associated with a critical value of
the Reynolds number.

Siggia and Zippelius!” have studied the stability of rolls
within the framework of amplitude equations.'®!° They
showed that the Newell-Whitehead-Segel equation is in-
sufficient to determine correctly the instabilities and must
be supplemented with an extra coupled equation that de-
scribes the evolution of a large-scale flow. By large scale,
we mean a scale larger than the roll wavelength. This
flow is the one which possesses vertical vorticity. The in-
teraction between the small-scale cellular pattern and the
large-scale flow induces the instability.

Using these ideas, one easily obtains for the instability
onset

V'R—R,~aP ,

where a is the wave vector of the convective structure.
This brings out the importance of P in determining the
onset of the instability. In addition, one can also make a
prediction about the frequency of the oscillatory instabili-

ty,
o~ %V R—R, .

If R is increased further, eventually a second frequency
appears and the two internal oscillators interact nonlinear-
ly. The nature of this second oscillatory mode is still not
understood. It might be associated with a dephasing of
the rolls’ motion.

Two cases are then possible: either the frequency ratio
of the two oscillators is an irrational number or a rational
one. We refer to the frequency ratio as the winding num-
ber. In the former case, or quasiperiodic state, the experi-
mental signal shows a beating pattern between the two
frequencies. Moreover, as R is changed, both frequencies
change independently so that their ratio changes as well.
When the winding number is rational we say that the sys-
tem is in a locked state, and one observes a periodic signal
from the experiment. A locked state exists for a finite
range of R; as R is changed within this range, both oscil-
lators change their frequencies keeping the winding num-
ber fixed.

What is typically observed in an experiment is that as R
is increased, the two oscillators lock and unlock succes-
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sively until they fall in a locked state in which a period-
doubling cascade occurs.’’ This cascade leads to chaotic
behavior. At other times, the system becomes chaotic
through the appearance of a third frequency.

It is then natural to ask how quasiperiodic states be-
come chaotic. To answer this, one has to be able to con-
trol at least one of the frequencies in the problem, so that
the frequency ratio is an irrational number and therefore
locked states can be avoided. In analogy to the locked
states, one would like to keep the frequency ratio con-
stant. We accomplished this by fixing R so that only one
oscillator is present in the fluid. We then imposed a
second, external oscillation, whose amplitude and frequen-
cy were at our disposal. Our first attempts at imposing an
external oscillator did not lead to interesting results be-
cause the external oscillator did not couple dynamically
with the oscillatory instability, a task which turned out to
be nontrivial. As we will see, the excitation itself has to
induce vertical vorticity in the flow.

There is an essential difference between our experiment
and one in which the two oscillators are a result of flow
instabilities: when both oscillators are flow generated,
there is feedback between the two. In our case the interac-
tion is one sided: the external oscillator acts on the inter-
nal one but not vice versa. The amplitude and frequency
of the external oscillator are imposed.

The three main conclusions from this section, which
were taken into account in our experimental design, are
the following. First, a small-aspect-ratio cell freezes out
complicated spatial modes and isolates the temporal
dynamics. Second, a low-Prandtl-number fluid generates
an oscillatory mode intrinsic to the convection pattern. In
our case, we used mercury, taking advantage of its electri-
cal conductivity to introduce our excitation. The advan-
tages of using electromagnetic methods as opposed to
thermal ones will become clear in the sequel. Last but not
least, in order to study the quasiperiodic transition to
chaos, one of the two oscillators in the experiment must
be an external one. In this way, one can keep the winding
number constant when changing the nonlinearities in the
system.

B. The circle map

Theoretical studies of the transition to chaos via quasi-
periodicity with fixed winding number have focused on
maps of the circle onto itself. In this section we motivate
the relevance of these maps to our experiment and how
they arise phenomenologically. We then survey circle-
map studies and their theoretical predictions following
closely the paper by Jensen, Bak, and Bohr.?!

We consider a dissipative nonlinear oscillator that is
forced by a periodic external excitation. We can think of
this system as one of two oscillators interacting nonlinear-
ly via a one-directional interaction. The meaning of this
is that a dynamical parameter (i.e., amplitude) of the first
oscillator enters the equation of motion of the second
while the first oscillator is unaffected by the second.

With this picture in mind, it is easy to see that the sys-
tem moves in phase space on a two-torus which is the
product of phase spaces (circles) of each of the two oscil-
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lators. Unlike the analogous Kol’mogorov-Arnol’d-Moser
(KAM) tori of nonlinear conservative systems, the torus
under consideration is an attractor of the motion in the
sense that nearby phase-space orbits converge to it.

Thus one studies the dynamical behavior of the physi-
cal system by considering the different types of orbits on
the torus. These can be grouped in two classes. If the fre-
quency ratio of both oscillators is a rational number, then
the orbit on the torus is a closed curve. If on the other
hand the ratio is an irrational number, the orbit does not
close and fills the surface of the torus densely.

It turns out that one can simplify the problem consider-
ably and still retain the essential dynamical information if
one makes use of a construction due to Poincaré, which
effectively reduces the dimension of the problem by one.?
The idea is to look at a cross section (Poincaré cross sec-
tion) of the torus, obtained by cutting it with a surface.
This surface need not necessarily be a plane but the orbits
should cross it transversally. The meaning of transversali-
ty here is that no orbit intersecting the surface is tangent
to it.

The intersection of the orbits and the surface is a curve
which is topologically equivalent to a circle. If the orbit
on the torus corresponds to a rational number p /g, the
Poincaré cross section will consist of a discrete set of ¢
points. If the orbit is quasiperiodic, i.e., the winding
number is irrational, the circle will be densely filled.

The dynamics of the physical system is then reduced to
the study of the Poincaré cross section. One does this by
building a return map of the circle onto itself, i.e., a func-
tional relationship between the angular coordinate
parametrizing the circle at the nth crossing 6,, and the
one at the (n+1)th crossing 6, ;. Mathematically, the
procedure outlined above takes the following form. One
starts from an equation describing a periodically excited
nonlinear dissipative oscillator in the variable 6. Being of
second order, one recasts it as a system of two first-order
differential equations in the variables 6,6. One then con-
structs a return map M between the values of 6,60 at the
beginning of the nth period of the excitation, and their
values at the end of the period. Denoting by 6,,6, the
values of 0,0 at the time nT we have

fl(enyén)
- f2(9nrén) ’

On

9n+l
. =M.
On

9n+l

where the f; are periodic in 6,. Since the original equa-
tion includes a dissipative term, the Jacobian of the
transformation is smaller than one, i.e., the map is area
contracting. The information on the initial conditions is
lost asymptotically. In other words, the motion on the
torus is asymptotically an invariant curve which depends
only on the time 6(¢). In particular, 6 will be a function
of 6,

0,=2(6,) .
Substituting this relation in the above equation yields:
6, ,1=F(0,)=/(6,,8(6,)) ,

which is a one-dimensional map of a circle onto itself.
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The map which is most often considered because of its
simplicity is the sine circle map,

On +1=1(0,)=06,+Q—(K /2m)sin(276,) .

For 0<K <1, f is a diffeomorphism (differentiable map
with differentiable inverse) whereas for K >1, f~! does
not exist. At K =1 the inverse exists but is not differenti-
able at 6=0.

The rotation or winding number is mathematically de-
fined by

o= lim

n—co

f(")(B)
n

For K =0, 0= while for K0, Q has to be adjusted to
achieve a particular value of o.

As we shall later see, the qualitative features of the
transition to chaos with o having an irrational value are
the same for all irrationals. Quantitatively this is not true
and in particular, the critical indices associated with the
transition are different for different irrational values of o.
Before discussing the transition itself, we will first exam-
ine the global properties of the map on the (,K) parame-
ter space.

For 0<K <1 it has been shown that for every rational
p/q where p,q are mutually prime there exists a finite in-
terval of Q values for which o =p /q. When this happens,
the sequence {0,} is periodic 6,,,=6,+p, and corre-
sponds to a closed curve on the torus. One then has a
locked state. For o irrational, the corresponding value of
Q is unique. For small K, the intervals of Q correspond-
ing to rational winding numbers are very small. So if a
random value of € is chosen, o will most likely be an irra-
tional. When K is increased, the width of every Q inter-
val where a locked mode occurs increases, and the proba-
bility of getting an irrational value of o decreases. Even-
tually these intervals overlap when X is further increased,
the overlapping starting at K =1.

The regions in parameter space (,K) where o is ra-
tional are called Arnol’d tongues. They are shown in Fig.
1, which is adapted from Ref. 17. Each tongue is charac-
terized by a rational number p/q with p,g mutually
prime. The tongues are ordered through the Farey
scheme for rational numbers: given two rational numbers
(parents) p/q <p'/q’, one defines their Farey composition
(daughter) as

PgP _ptp
9 9 qg+q

The daughter has two important properties. First, it

obeys
L _ L‘*‘&I < P_, .
9 q9+4q q
Second, the daughter has the smallest denominator among
all the rationals between both parents. In order for all
tongues to fit within the unit interval, the tongue widths
have to decrease sufficiently fast for a given value of K.
Jensen, Bak, and Bohr?! have obtained by numerical
means a scaling law for the tongue widths at K=1. For a
given value of the denominator ¢, they averaged the
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FIG. 1. Parameter space K,{) for the one-dimensional circle
map. K is the strength of the nonlinearity while  is the wind-
ing number. The horn regions are called Arnol’d tongues and
each one is uniquely characterized by a rotational number p /g
where p and g are mutually prime integers. Within a tongue,
successive iterations of the map yield a periodic limit cycle the
length of which is given by the denominator g. Outside tongues
the signal is quasiperiodic. The line at which the tongues just
intersect is called the critical line and is given by K =1.

widths of all tongues with numerators p=1,2,...,qg—1.
By repeating this procedure for different values of ¢ they
obtzziizr;ed that the tongue widths scale on the average as
q =%

At K =1, the complement of the set of € intervals cor-
responding to locked modes forms a Cantor-like set whose
dimension D has been calculated numerically.® Convinc-
ing evidence for the globality of this dimension on all
the K=1 line has been obtained by means of
renormalization-group methods.?> Both the global nature
of D and D itself are universal, i.e., independent of the
map f as long as it has a cubic inflection point. This is
very important experimentally since the precise map cor-
responding to the experiment is not known.

The previous discussion summarizes the global proper-
ties of the map for K <1. We now discuss the way in
which the transition takes place when o is a fixed irra-
tional number and K approaches one. In doing so, we fol-
low Shenker’s paper.’

Because of the infinite limit in the definition of o, it is
impossible to determine the value of Q which produces a
particular irrational value of 0. On the other hand, when
o is a rational, there is a finite interval of values of  that
produces the same value of o. This suggests that to study
an irrational winding number one should use a sequence
of rational numbers that converge to it. It turns out that
the best way of doing this is by truncating the irrational’s
continued-fraction representation. If p is an irrational
number, its (unique) continued-fraction representation is

and we denote it by p={n,n,,ns,...,). For reasons
that will become clearer later, we limit ourselves to irra-
tional numbers with periodic continued-fraction represen-
tations, i.e., those for which there is an integer m such
that n;=n; ,,, for all i. Theoretical studies have focused
on the “golden mean”

p=0s=(11,1,1,...)=(V5-1)/2.

Since only ones appear in the representation of o, the ra-
tional truncations of this irrational number have the
slowest possible convergence. For p=og, the rational ap-
proximants p; are ratios of Fibonacci numbers,

i

Pi= :<1’171’171>’

i+1
where there are i/ ones in the brackets. The Fibonacci
numbers F; are defined recursively by F; ,=F;+F;
for i >2 with Fy3=0 and F,=1. Another irrational num-

ber frequently used is the “silver mean”
0s=42,2,2,2,...)=V2—-1.

Two mathematical results are of importance in the
analysis of the map f. The first, due to Denjoy,® states
that if f is a diffeomorphism and p an irrational number,
then f is equivalent to a uniform rotation by p. In
mathematical terms, there exists a function h(t¢), the
“conjugation” function such that

h~—'ofoh=t+p,

where the O binary operation denotes functional composi-
tion. A also obeys the conditions A(z+1)=h(t)+1 and
h(0)=0. The second result due to Herman? asserts that
for almost all irrationals, 4 is an analytic function.

In our case, f is a diffeomorphism for K <1 and the
function loses its invertibility at K =1. The breakdown of
these results when K approaches 1 must be reflected in
the behavior of A(z). Thus one can study 4 instead of f
in this limit. To do this, it is convenient to study the
periodic function

u(t)=h(t)—t

and its Fourier transform A4 (w).

The strategy adopted by Shekner to study numerically
the function u(z) and its spectrum relies heavily on the
fact that one has at one’s disposal a well-defined algo-
rithm to approximate an irrational number p by a se-
quence of rationals p;. For our problem, the p; are the
successive truncations of the continued fraction represen-
tation of p.

In the same spirit as one approximates p by p;, one de-
fines for the corresponding ith locked states a discrete set
of times {¢;} and functions u;(¢;), 4;(w) hoping that the
behavior of these reflects that of u(¢) and A4(w) for large
i

Shenker studied the functions u;(¢) and A4;(w) for
i=17. For K <1, he found a very smooth curve for u;.
As K approaches one, u; acquires an increasingly fine
scale which strongly suggests self-similarity.

The behavior of the spectrum is more instructive. For
K =0.5 the spectrum shows peaks at values of o corre-
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sponding to small Fibonacci numbers and their ampli-
tudes decay exponentially with . As K increases, new
peaks appear at higher Fibonacci numbers as well as at
combinations of the form mF;+nF; with integers m,n.
The number of possible combinations increases with K as
well. Finally, at K =1, one observes peaks at all Fibonac-
ci numbers and all their integer combinations. Moreover
the amplitude decay is proportional to 1/w instead of ex-
ponential.

Using this fact, one can rescale the spectrum at K =1
to show a very appealing structure. Plotting |wA4(w) |
versus In(w), one observes the spectrum to be divided into
almost identical bands flanked by strong peaks corre-
sponding to adjacent Fibonacci frequencies. As one looks
at higher w, the bands resemble more one another in their
structure and their width tends to a constant. This is just
an expression of the fact that ratios of adjacent Fibonacci
numbers tend to the golden mean. It is in this way that
the self-similarity of u(¢) manifests itself in its spectrum
A(w). However, we will not discuss Shenker’s version of
the rescaled spectrum further since it cannot be compared
with experimental spectra in a straightforward way. His
frequency w is not really a physical frequency. The
reason for this is his particular definition of the Fourier
transform. An alternative definition of the spectrum has
been used by Rand et al.> They also discuss the relation
between both definitions and the advantages of their for-
mulation. Since the spectrum as defined by these authors
can be readily compared with our experimental results, we
discuss the rescaled version in their formulation. In the
sequel we denote again by A their spectrum and by w the
physical frequency. Plotting | A(w)/w | versus In(w), one
again observes the spectrum to be divided into almost
identical bands flanked by strong peaks. However, the
self-similarity is now asymptotic to the low-frequency side
of the spectrum. The peaks in the low-frequency side are
generated when K =1 is approached. One can divide all
the peaks in the spectrum into “generations.” Within
each generation, the ratio of any two peaks is an integral
power of the golden mean. The classification into genera-
tions proceeds through the following scheme: all the
peaks in the spectrum can be obtained through the formu-
la w=|mog—n| where m,n (m>n) are successive
numbers in Fibonacci sequences with different seeds. For
example, generation 1 is obtained by the seed (1,1), genera-
tion 2 by the seed (2,2), generation 3 by (1,3), generation 4
using (3,3) and so on.

One, of course, expects the same overall behavior for
any irrational p with a periodic continued-fraction repre-
sentation. A renormalization-group calculation of the
spectrum has recently been performed.?*

In physical terms, an experiment described by a circle
map is expected to show correlations over longer and
longer time scales as the critical point K=1 is ap-
proached. One also expects to encounter the same type of
temporal self-similarity if the spectrum of the experimen-
tal signal is rescaled accordingly.

The picture of the approach to chaos that we have just
described is very reminiscent of the well-known scenario
of second-order phase transitions in critical phenomena.
In the latter case, the correlation length diverges at the
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critical point. This length measures the size of regions in
the system over which the order parameter is correlated.
In our dynamical system, instead of having a diverging
length scale the correlation increases over longer time
scales. Smaller frequencies are generated by the system as
the transition to chaos is approached.

It is then natural to ask whether the renormalization
group applied to dynamical systems could be as successful
a technique as it is in the study of critical phenomena.
The answer hinges on whether scaling behavior can be ob-
served in the particular problem. The work of Feigen-
baum has shown that the answer is positive in the case of
period doubling.*

Strong evidence of scaling for the circle map was first
found by Shenker. Renormalization-group analyses by
other authors appeared soon afterward.’~’

In analogy to Feigenbaum’s indices a and §, scaling in-
dices were also defined for the circle map. For a given
value of K, denote by Q;(K) the value of Q such that
there is a cycle with winding number p; passing through
0=0. Shenker defined the index 8 as a measure of the
convergence of the sequence (),

Qi _1(K)—Q;(K) ]

8(K)= lim

i— o

Q:(K)—Q; 4 1(K)

He found a nontrivial value of 8(K) for K=1. If 4,
represents the distance modulo 1 between 6=0 and the
closest element on the g; cycle closest to it, the index
a(K) was defined by

i—1

a(K)= lim

I— o0

i

Again, a nontrivial value was found when K=1. The
values of a(K') and 8(K) at K =1 are denoted simply by a
and 6. These depend upon the irrational winding number
p chosen to approach the K=1 line. Therefore a and &
are local properties of the critical line as opposed to its
fractal dimension, which is a global property.

In contrast to period doubling, where both the critical
indices are readily obtained from experimental data, only
d can be measured directly from the quasiperiodicity ex-
periment. To do this, one interprets the Q; in the defini-
tion of & as the locked-state widths at the critical line.
The justification for this procedure can be found in Jen-
sen, Bak, and Bohr.2!

To measure @, one has to resort to a more involved
analysis of the data?® This has recently been done using
the idea that the attractors in phase space can be described
as interwoven fractal sets of singularities.?®?” Since this
development is quite recent and well documented, we will
not dwell on it and refer the reader to the above-cited
literature.

III. THE EXPERIMENT

A. Effect of a magnetic field on convection

In this section we present in detail our experimental
system. We start by describing the influence of the mag-
netic field on the convection of an electrically conducting
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fluid. This has been studied before, and we present here
only a summary of these ideas and results. We then
describe in detail the geometry of our cell and finish by
giving a description of the overall setup.

In our experiment we used mercury as a convective
fluid. The purpose is twofold. First, mercury has a small
Prandtl number P=0.025. Second, mercury is an electri-
cal conductor. We used the latter property to introduce
the external excitation into the system by passing an ac
current through the fluid. Since the experiment was em-
bedded in a magnetic field, an ac Lorenz force acted on
the fluid. There are two main reasons for using elec-
tromagnetic methods to excite the system as opposed to
thermal ones. First, the response and relaxation times are
much faster in the former case: a couple of minutes
versus about one hour for thermal methods. In the
thermal-method case, the heat excitation can only be ap-
plied through the boundaries of the cell and has to diffuse
across the bulk. Since this diffusion time is of the order
of the motion time scale, one introduces a phase lag be-
tween the internal mode and the excitation. Moreover
this phase lag is space dependent. On the other hand, an
electromagnetic excitation can act directly on the bulk
with negligible phase lag. But most important, with an
electromagnetic excitation one acts directly on the velocity
field instead of acting on it indirectly through the tem-
perature field. In particular, one can devise a geometry
for currents and field so that the excitation will induce
vertical vorticity in the flow.

As mentioned in Sec. II A, for low-Prandtl-number
fluids like mercury the first instability of the convection
pattern when R is increased is the oscillatory instability.
The action of a horizontal magnetic field on an electrical-
ly czg)%iucting convective fluid has already been investigat-
ed.”®

In a theoretical description of the problem, one aug-
ments the Navier-Stokes equation with a term jX B where
j is the induced current in the fluid due to the motion of
charges in B. One adds to the Navier-Stokes and Fourier
equations an equation describing the evolution of the
field,

3,B=Vx(uxB)+v,,V’B,

where the magnetic viscosity v,, is 1/(ou), o being the
electrical conductivity and pu the magnetic permeability.
This equation is derived from Maxwell’s equations after
neglecting the displacement current. This effectively adds
to our two nondimensional parameters R and P a nondi-
mensional number Q called the Chandrasekhar number.*°
Q contains the effect of the field,
2,72
0= oB“d ‘
PV

Given the length and velocity scales of the flow in our ex-
periment and the electrical conductivity of mercury, the
diffusion term in the field equation dominates over the
advection term in the right-hand side. Moreover, the
magnetic time scale of the problem is d?/v,, ~1073 sec
for d =7 mm whereas the thermal timescale is d?/k ~ 10
sec. The field then relaxes much faster than a thermal
disturbance so it does not contribute in a significant way

to the dynamics of the problem.

Another important result concerning convection in a
magnetic field is the analogue of the Taylor-Proudman
theorem for convection in a rotating layer. The
mathematical expression of this result is

(B-V)u=0.

The physical significance of this result is that any velocity
gradient in the direction of the field will be considerably
damped.

For a horizontal field, this result implies that the con-
vection rolls will have their axes aligned parallel to the
field. Also, instabilities for which the rolls deform trans-
versely to the field will be inhibited. For the oscillatory
instability in particular, we can then expect its onset to be
pushed up in R and that its frequency will be increased.
This has been verified both theoretically and experimen-
tally. The experimental results are in agreement with the
following theoretical predictions:

R(QOI}—R‘Q(’:”O «Q,

(o1 _ 0D
Jfo ' —fo=0xQ,

where R©D and f'O7 are, respectively, the Rayleigh num-
ber and frequency at the onset of the oscillatory instabili-

ty.
B. The cell

Our Rayleigh-Bénard cell is depicted in Fig. 2. Its
height is d =0.7 cm, length 2d, and width d so that it can
support two convective rolls. Its lateral boundaries are
made out of Plexiglass while the bottom and top plates
are made out of copper. The heat conductivities at 300 K
of these materials are given in Table I.

The copper surfaces were covered with a very thin layer
of paint in order to avoid chemical contact between the
mercury and the copper.
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FIG. 2. Schematic diagram of our Rayleigh-Bénard cell. The
dimensions of the cell are height d =7 mm, width d, and length
2d. Two convective rolls fit in the cell and are depicted by
dashed lines. The electrodes through which an electrical current
is passed are shown by bold lines. Notice they cross only up to
half the cell’s width. An experimental signal is taken out from
the experiment through a bolometer located at the center bottom
of the cell. The cell is embedded in a magnetic field parallel to
the rolls’ axes.
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TABLE 1. Thermal conductivities at 373 K of mercury and
the materials used to build the cell’s bounding surfaces.

Thermal
Material conductivity (W/cm K)
Mercury 0.085
Copper 4.01
Acrylic _3
(Plexiglass) 2x10

Two thin line electrodes were attached to the horizontal
surfaces on top of the paint layer. Although the wires
crossed the cell completely, their insulation was stripped
over half the cell’s width, as depicted in the figure.

An ac pulsed current sheet was then passed through the
electrodes via the copper plates, the top one of which was
grounded. The current consisted of rectangular pulses
whose width was set to about — the period of the oscilla-
tory instability, i.e., about 0.40 sec. A typical value for
the pulse amplitude was 20 mA. The pulses were ob-
tained by reshaping a square wave signal from a Hewlett-
Packard HP-3325A function generator with an analog cir-
cuit. This circuit allowed us to change the duty cycle
smoothly.

The whole setup was embedded in a horizontal magnet-
ic field of 200 G strong parallel to the short side of the
cell. The ac Lorenz force acting on the fluid was then
horizontal and transverse to the rolls’ axes. Notice that
with the electrode geometry described above, the action of
the Lorenz force is to bend the convection rolls, thereby
creating an ac vertical vorticity component in the flow.
Had the effective length of the electrodes been equal to
the width of the cell, one roll would have been compressed
while the other would have been expanded according to
the force’s phase. This, of course, does not induce any
vertical vorticity.

The fact that the excitation induces vertical vorticity in
the flow allowed us to couple it dynamically with the os-
cillatory instability. This assertion was confirmed experi-
mentally by making power spectra of a temperature signal
obtained from the cell. In the case of the electrodes hav-
ing length d, both the oscillatory instability and the exci-
tation peaks were observed in the spectrum but no com-
bination peaks appeared. Thus the oscillators were not
dynamically coupled. On the other hand, when the elec-
trodes length was d/2 as in Fig. 2, strong combination
peaks appeared.

Other types of excitations were also considered and
tried but with negative results. Among these, the most
notable is one in which instead of acting on the vertical
vorticity we acted directly on the velocity field. This was
achieved by putting two vertical electrodes in the middle
of the long side of the cell, and aligning the horizontal
field perpendicular to the rolls. In this case the Lorenz
force was vertical and acted along the plane dividing the
two rolls. The force accelerated or retarded the rolls velo-
city depending upon the phase.

In the initial trials of the experiment a sinusoidal exci-
tation was used. While a very strong coupling between

the excitation and the oscillatory instability was observed
for the 1/1 tongue, no other tongues were found when
sweeping with the external frequency. In addition, as the
amplitude of the injected current was increased, the exci-
tation completely dominated the flow before any interest-
ing dynamical behavior was observed.

We then tried an ac current of small duty-cycle pulses.
The motivation for this was that since no force acts on the
fluid between pulses, time is left for the fluid to relax
after each pulse. With a sinusoidal excitation, a force acts
on the fluid essentially at all times.

The temperature signal was obtained from a negative
temperature resistance (NTR) thermistor located at the
center of the bottom plate. Its linear dimensions are 0.03
cm and it was implanted in the copper through a 1-mm
hole filled with high-thermal-conductivity stycast. The
thermistor was part of a bridge and lock-in detection was
used to amplify the signal for further processing.

The temperatures of the top and bottom plates were
monitored by platinum bolometers implanted in the
copper plates. Heat was applied to the cell by passing a
regulated current through a heating coil attached to the
bottom plate.

C. The setup

The overall setup is shown in Fig. 3. Both the Plexi-
glass cell and the lower plate were enclosed by a brass can
anchored thermally and mechanically to the upper copper
plate. There was no thermal contact between the can and
either the Plexiglass cell or the lower copper plate.

Since the temperature of the upper copper plate was
kept constant up to 1X 1073 °C, the can’s temperature
was constant as well. The can therefore worked as a con-
stant temperature radiation shield so that a dynamic
equilibrium in radiation flux to and from the lower plate
could be maintained. A brass thermal resistance with a
water jacket on its top was attached to the top copper
plate.

Since the whole system was enclosed by a vacuum can,
the water jacket provided the only means of taking heat
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RESISTANCE
——— I |
TEMPERATURE
REGULATION ‘j R ATI
BOLOMETER = REGULATION
*—1+— UPPER COPPER
PLATE
SIGNAL T CcEL
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FIG. 3. Our experimental setup. For details see text.
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out of the system. A Plexiglass plate was located between
the brass resistance and the vacuum can to isolate the sys-
tem from thermal disturbances in the can. The brass
thermal resistance and the upper copper plate acted like a
low-pass thermal filter. They filtered out fast variations
in the room temperature and in the cooling rate due to
temperature and pressure changes in the water line.

In the experiment, only the temperature of the upper
plate is regulated. A heating coil is located at the top of
the upper plate for this purpose. A platinum bolometer
was inserted in the copper plate as near as possible to the
coil as part of the regulation loop.

We end this section by noting some important points
concerning our temperature regulation. Because of the
geometry of our cell and the thermal conductivities of
mercury and Plexiglass, practically all the heat supplied
through the bottom plate goes through the mercury. In
other words, the thermal impedance of the walls is much
higher than that of the mercury. Since a constant current
is applied to the heating coil of the lower plate and only
the temperature of the upper plate is regulated, we are ef-
fectively controlling the heat flux through the cell. Using
an analogy with an electrical circuit, we have then a “con-
stant current” situation instead of a ‘“constant voltage”
(constant AT).

As mentioned above, the temperature of the upper plate
is constant up to 1x 1073°C which means a temperature
stability of better than 10™>. A good temperature regula-
tion is essential in this experiment since the stability of
the oscillatory instability depends on temperature, in par-
ticular its frequency (see Sec. ITA). In our case, a change
of 1 1073°C induced a change of 10 uHz in the frequen-
cy of the oscillatory instability.

IV. RESULTS
A. Preliminaries

In our cell, convection starts when the temperature
difference between the upper and lower plates is
3.0£0.1°C. This defines our critical Rayleigh number
R.. The critical-temperature difference was determined
from Nusselt-number measurements. One then increases
the temperature difference until a well-defined oscillatory
instability appears in the flow. As explained in Sec. IIT A,
both the onset of the oscillatory instability and its fre-
quency depend upon the applied magnetic field.

If Ry; denotes the Rayleigh number at which the oscil-
latory instability appears, then the change of R, with the
field is given in our system by

L A(ROI _Rc)

=2.8x1073 G~ !,
R, AB X

If 0} is the frequency of the oscillatory instability at zero
magnetic field, then the relative change in frequency with
field is

1 Aw

——=4x10"*G™'.
wf) 88

With a field of 200 G, the oscillatory instability appeared
at 11.9°C with a frequency of wy=230 mHz. This rela-
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tively small value of the field was chosen in order for the
signal to be as simple as possible in its harmonic content.
For higher values of the field (B ~800 G) the signal ac-
quires a strong 2w component.

Since the oscillatory instability appears through a Hopf
bifurcation, it starts from zero amplitude. Eventually its
amplitude saturates when R is increased enough above
ROI .

A second oscillatory mode appears in the flow if R is
further increased. We therefore set R below the onset of
this secondary mode but in the range of saturation of the
oscillatory instability. This still leaves a large range of
variation for R. It turns out that a more stringent lower
bound has to be imposed on R. We have found that if the
oscillatory instability does not have a high enough ampli-
tude, the excitation starts to dominate completely the
behavior of the flow before the transition to chaos takes
place. The way in which this happens is detailed in Sec.
IVB. An oscillatory mode with an amplitude of 70 dB
above noise level or higher suffices to reach a chaotic re-
gime. This amplitude can be achieved by adjusting the
Rayleigh number and the magnetic field.

Once the amplitude of the oscillatory instability has the
required value, the experiment can proceed. One chooses
a particular frequency ratio wy/w, and tunes the external
frequency @, to get this ratio. This tuning is nontrivial
since the introduction or change in the excitation alters
the frequency of the oscillatory instability. One has there-
fore to tune w, iteratively two or three times until one
achieves the desired accuracy in the frequency ratio. In
our case we can achieve a precision of 1075, We explain
now the different procedures we have used to perform the
tuning.

For low amplitudes of the injected current, we have
used a fast Fourier transform of the signal and monitored
the frequency of the internal and external oscillators.

For current amplitudes near the critical line, the easiest
and fastest method is to follow the sequence of locked
states corresponding to the rational approximants of the
irrational number chosen. This method works well on the
critical line since all the locked states cover it except for a
set of measure zero. For example, in our experiment we
can clearly resolve the locked state —5 which is a rational
approximant to og. The difference between this rational
number and og is 2X 1075, It should be nevertheless
clear that in a physical experiment, irrational winding
numbers cannot be obtained. The best one can do is to
approximate them with a rational ratio.

The third procedure to calibrate the frequency ratio is
due to Thomae.’! The idea is to strobe the signal with the
excitation’s frequency and plot the points in a computer
screen versus points generated by a uniform rotation
S;41=5,+p. One then varies p until a well-defined curve
is traced. Even tiny differences between p and the experi-
mental frequency ratio lead to a considerably blurred
curve. The procedure is nothing more than a Lissajous
figure. It allows a determination of the frequency ratio
with an accuracy of 2 10°. This method has been used
to monitor the drifts in the experiment due to limitations
in temperature stability.

As mentioned before, 1 X 10~3°C change in temperature
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changes wo by 10 pHz. Therefore changes in the frequen-
cy ratio are observable.

B. Local results

Starting with a small amplitude in the injected current,
we tuned the frequency ratio to og+10~% Without the
excitation, the oscillatory instability had a frequency of
230 mHz. We then progressively increased the amplitude
of the excitation, keeping at each step the frequency ratio
constant within 10~% We present in Fig. 4 three spectra
for various values of the current amplitude. These spectra
have been presented previously.!!

In Fig. 4(a), we show a typical spectrum for small
current amplitude (I =16.9 mA). One sees the oscillatory
instability and excitation peaks plus other peaks corre-
sponding to frequencies of the form w =mwy+nw,. Here
m,n are integers which in this case are small. As the
current amplitude is increased, the height of all the spec-
tral peaks increases and new peaks corresponding to com-
binations with larger m and n appear.

This trend continues with increasing excitation. But
there exists a value of the excitation above which the os-
cillatory instability and the combination peaks start
shrinking. At the same time the excitation peak continues
to grow. The excitation at this point is strong enough to
disrupt the oscillatory instability mode and it starts to
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FIG. 4. Spectra logP(w) vs w for quasiperiodic states with
frequency ratio wy/w, =0 +2X 10™*, where w, is the frequency
of the oscillatory instability and e, the excitation’s frequency.
The spectra were taken when the Rayleigh number was fixed to
be R=4R.. Each spectrum corresponds to a different ampli-
tude of the injected pulsed current: (a) I =16.9 mA below the
critical line, (b) I =17.4 mA good approximation to the critical
line, and (c) 7 =21.5 mA above the critical line.

dominate the dynamical behavior. Further increases of
the injected current enhance this phenomenon. Eventual-
ly, the excitation completely dominates the flow, and it is
the only peak in the spectrum.

The value of the current amplitude at which this
phenomenon appears depends on the amplitude of the os-
cillatory instability at which one starts the experiment.
For this phenomenon to occur after the transition to
chaos has taken place, we need an amplitude larger than
70 dB for tke oscillatory instability.

In Fig. 4(b) we show a spectrum for I=17.4 mA. The
peak population has greatly increased. Finally in Fig. 4(c)
we show a spectrum for 7=21.5 mA. High-order com-
bination frequencies are weaker and broadband noise has
started to rise with an average increase of 20 dB. The
spectrum in Fig. 4(b) is a good approximation to the criti-
cal line. In fact, one can find the critical line with great
precision by rescaling the spectrum as explained in Sec.
IIB. As the critical line is approached, more and more
self-similar bands appear in the spectrum in the low-
frequency region. At the same time, peaks belonging to
the same generation tend to have the same rescaled ampli-
tude. We show such a rescaled spectrum corresponding to
Fig. 4(b) in Fig. 5. We plot log,o[P(w)/w?] versus
log,ow. Not all the peaks appearing in Fig. 4(b) appear in
the rescaled spectrum for the sake of clarity. Apart from
the oscillatory instability and excitation peaks, one can
observe six peaks belonging to generation one, all of which
have nearly the same amplitude. Generations of order
higher than 1 do not appear in the low-frequency side of
the spectrum. Moreover, the constant-amplitude criterion
for these is less well obeyed.

We have lately been able to get a better approximation
to the critical line. We present our best spectrum in Fig.
6. Notice that the excitation peak does not appear in the
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FIG. 5. Rescaled version of the spectrum in Fig. 4(b). We
plot logP(w)/w? vs log(w). Not all the peaks in Fig. 4(b) appear
in this figure for the sake of clarity. Each peak is labeled by an
integer specifying the generation to which it belongs.
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FIG. 6. Power spectrum for a quasiperiodic state with fre-
quency ratio o0g+1X 10™* This spectrum represents the nearest
approximation to the critical line obtained from our experiment.
Notice that the excitation’s peak does not appear given the
bandwidth of the spectrum. Peaks can be classified into genera-
tions, and we indicate by means of dotted arrows the peaks be-
longing to the first three generations.

bandwidth chosen. Figure 7 shows an expanded view of
the low-frequency portion of Fig. 6. Not counting the os-
cillatory instability peak, we now have nine peaks belong-
ing to the first generation falling near Fibonacci frequen-
cies. One can also observe the self-similar structure of the
spectrum at lower frequencies than for the case of Fig.
4(b).

We have approached the critical line through a dif-
ferent irrational route, namely, the silver mean og. In
Fig. 8 we show both the normal power spectrum and its
rescaled version in a good approximation to the critical
line.
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FIG. 7. Blow up of the low-frequency side of the power spec-
trum shown in Fig. 6. One can observe here additional peaks

belonging to generations 1, 2, and 3 which do not appear in Fig.
6.
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Figures 6 and 8 were not obtained in the same experi-
mental run. If one performs these measurements on the
same run, one can map out the position of the critical line.
We have done this for both o and og. Our results clear-
ly show that the critical line is not a line of constant
current amplitude. We present these results in Sec. IVD
in our discussion of the parameter-space current versus
external frequency (/,®, ).

We have performed Poincaré cross sections of the ex-
perimental data to see how the transition manifests itself
in phase space. To do this, we strobe the experimental
signal at the frequency of the excitation. In the right-
hand part of Fig. 9 we show three-dimensional phase por-
traits for the golden-mean route. The left side of the fig-
ure contains the Lissajous figures used to determine the
winding number of the particular state. The limit cycles
have been drawn as lines and not as a set of points since
an averaging and interpolation procedure has been applied
to the data. This figure has been adapted from Ref. 24.
Three cases are presented in this figure: small excitation
I1=2.26 mA, intermediate amplitude /=7.82 mA, and
near-critical amplitude 7 =11.81 mA.

By rotating these figures on the computer screen, we
have checked that all these phase-space trajectories do not
self-intersect when the embedding space of the experimen-
tal points is three dimensional. We have verified this for
the og case as well. All the limit cycles in Fig. 9 are
closed, nonintersecting curves and are topologically
equivalent to a circle. Of course, we expect this since
below criticality the dynamics of our problem is topologi-
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FIG. 8. Power spectrum and its scaled version (up to genera-
tion 3) for a quasiperiodic state with frequency ratio
0s+2X107* The amplitude of the injected current is I=25.2
mA. The state was obtained for R =3.98R..
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FIG. 9. Strobed signal A4, vs uniform rotation generated
points x, and corresponding limit cycles in three-dimensional
phase space (4,,2,4,,1,4,). The states have a frequency ratio
of 0+£2x 10™* and correspond to the following injected current
amplitudes: (a) 2.26 mA (low amplitude), (b) 7.82 mA (inter-
mediate amplitude), and (c) 11.81 mA (good approximation to
the critical line).

cally conjugate to that of a uniform rotation. For small
amplitudes, the trajectory is very simple. As the current
amplitude increases, the trajectory wrinkles more and
more. However, given our accuracy, we are not able to
see whether a fractal structure develops.

For comparison we plot in Fig. 10 two-dimensional
phase portraits x,,,x, for different current amplitudes
in the case of the silver mean. No averaging or interpola-
tion procedure has been applied in this case. The figure
shows phase portraits below, near, and above criticality.
The first feature to catch one’s attention is that the limit
cycles for o5 are much more contorted than those for og.
This may be due to the following reasons. The conver-
gence of the rational approximants to the silver mean is
much faster than that of og. In the parameter space
(I,0,), the tongues corresponding to these rational ap-
proximants will be more closely clustered around the oy
line than for o5. By the same token, we expect that in
phase space the basins of attraction of these different
locked states will be more closely interwoven. Since the
irrational limit cycle avoids these basins of attraction, it
must necessarily be more contorted.

Another important feature observed in this figure is
that above criticality, the trajectory seems space filling.
We do not expect a simple, closed nonintersecting trajec-
tory since the equivalence with a uniform rotation does
not hold in this case. Nevertheless, one should keep in
mind other alternative explanations, such as a possible
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FIG. 10. Two-dimensional phase spaces (A4,,1,4,) for states
with frequency ratio of o5 +2x 10~* and different amplitudes of
the injected pulse current: (a) below criticality, (b) near criticali-
ty, and (c) above criticality.

breakdown of the description of the experiment by a one-
dimensional map. If this is indeed the case, one should
find a different behavior in the rich bifurcation structure
within locked states above criticality. Results concerning
this problem have already been published elsewhere.>

C. Scaling behavior

In Sec. IV B we presented spectra at the critical line for
both the golden and silver mean. The qualitative features

TABLE II. Frequency limits of locked states near o and o
at the nearest approximation to the critical line. The frequen-
cies were obtained at I =17.4 mA and R =4.09R, for o, and
at 1=19.4 mA and R =3.94R, for os.

Locked
state 0w (MHz) Ohigh (MHZz)
oe=(1,1,1,1,...)
o 392.350 392.663
n 393.230 393.345
% 393.050 393.095
= 393.133 393.150
0s=42,2,2,2,...)
= 574.175 574.575
- 573.450 573.650
2 573.865 573.925

70
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TABLE III. Experimental values of the scaling index & for

the irrational trajectories o and os at the corresponding criti- -

cal current amplitudes.
os=(1,1,1,1,...)
o) 2.8 (£10%)

0s=(2,2,2,2,...)
7.0 (£10%)

of these spectra are the same. It is reasonable to expect
the same conclusion for other irrational routes as well, as
long as these are characterized by periodic continued-
fraction representations.

However, the quantitative characteristics of both spec-
tra are different. The same is true for the scaling proper-
ties of these and other irrational routes. In Sec. II B the
scaling indices a and & were defined. The experimental
measurement of 8 is straightforward. One needs to mea-
sure the widths of tongues corresponding to three con-
secutive truncations of the continued-fraction representa-
tion of a particular irrational. We measured 6§ around
both o; and og. In Table II we show the low- and high-
frequency limits of the locked states used in the computa-
tion of 6. In Table III we present our results and the
theoretical predictions from the circle map for both og
and og. Within the experimental uncertainty, the agree-
ment is very good. As we mentioned before, the measure-
ment of a is more involved and we refer the interested
reader to the paper by Jensen et al.?

D. Global results

By varying the amplitude and frequency of the injected
current, we mapped out a number of Arnol’d tongues.
We show some of these tongues in Fig. 11, where the am-
plitude of the current is plotted as a function of 1 over its
frequency. The normalization factor w(y corresponds to
the frequency of the oscillatory instability at zero excita-
tion.

Within a tongue, the signal is periodic but its line shape
changes as the tongue is scanned at constant current am-
plitude. This happens because the relative phase between
the external and internal oscillators changes as the tongue
is crossed.

Looking at constant current amplitude lines in Fig. 11,
one observes the rapid decrease in the width of the
tongues as the denominator increases. It is for this reason
that tongues with denominator higher than 5 have not
been shown.

Nevertheless, we were able to observe tongues with
denominator higher than 200 in a stable way. The slight
inclination of the tongues towards lower values of 1/w, is
due to the decrease in the frequency of the oscillatory in-
stability as the amplitude of the excitation is increased.

One also observes that the width of a given tongue in-
creases with the current amplitude. Since this is true for
all tongues, they eventually overlap at some critical
current amplitude. This critical current amplitude is
dependent on the winding number. By using the pro-
cedures outlined in Sec. IV B, we have found the position
of the critical line for o and for og. This is indicated in
Fig. 11 by the origins of the two insets.
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FIG. 11. Parameter space (1,08 /wey) Where I is the ampli-
tude of the current injected into the system, w.,, its frequency,
and o3 the frequency of the oscillatory instability at zero
current as normalization. The diagram shows only Arnol’d
tongues of appreciable width with their corresponding winding
numbers. Insets: locked states near o and os on the critical
line. The origin of each inset shows the position of the critical
line at the particular frequency ratio. For the exact frequency
limits of each of these states see Table II.

The tongues interpolate between the zero amplitude line
where the locked states have zero width, and the critical
line where they fill it, up to a set of zero measure. This
set of zero measure and the critical line has a fractal
structure and hence can be characterized by its fractal di-
mension D*. A good approximation D to D* can be ob-
tained by the following algorithm.>*> Denote by S the
length of the interval between two locked bands on the
critical line. This interval contains inside it the locked
band corresponding to the Farey composition of the two
flanking locked states. Denote by S| and S, the length of
the intervals between the daughter state and each of its
parents. Then D is given by

D D
S,

S,
— | =1.
S

S

A more accurate approximation to D* would involve tak-
ing more subintervals .S; by generating more daughters by
the Farey scheme. It turns out that for the circle map the
difference between D* and D is ~3%.

Taking our data from Table II we computed D near o
and og. Our results are displayed in Table IV. Within
the experimental error, the results are the same confirm-

TABLE 1V. Experimental values for the fractal dimension of
the critical line obtained near o and os.

os={(1L1,1,1,...)
D 0.86 (£3%)

0s=(2,2,2,2,...)
0.85 (+3%)
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ing that D* is a global property of the critical line.
Second, they compare well with the theoretical prediction
D=0.868... .

V. CONCLUSIONS

From a theoretical standpoint, we have drawn three
main conclusions from our study.

As in the case of period doubling, we have shown that
the theory of dynamical systems provides a good frame-
work for understanding the time dynamics of small-
aspect-ratio fluid systems.

Second, our assumption of universality proved to be a
good one. Below and at the transition to chaos, the circle
map, simple though it may be, accounts qualitatively and
quantitatively with the dynamical behavior of the huge
number of degrees of freedom of the moving fluid, re-
gardless of their interaction. The same fact has been veri-
fied in quasiperiodicity experiments in strikingly different
systems such as electron plasmas in semiconductors.’*

Third, our results show that the quasiperiodic transition
to chaos is indeed a phase transition of the second kind.
In critical phenomena, the transition is associated with the
divergence of the correlation length as the critical point is
approached. Our system shows correlation over longer
time scales as the critical line is approached. Moreover,
critical indices can be defined and measured in our case.

From the experimental and hydrodynamical point of
view, we would like to emphasize the following points.
There is a definite requirement for the amplitudes of the
oscillators in an experiment, in order for the transition to
chaos via quasiperiodicity to be observed. These ampli-
tudes must be high enough in order to feed the multitude
of composite modes represented in the Fourier spectrum
at the transition. As our results in Sec. IV show, the crit-
ical point can be regarded as a multicritical point in a gen-
eralized parameter space with the amplitudes and frequen-
cies of both oscillators as the axes. There is a surface
transversal to the amplitude axes dividing this space in
two regions. In one region, the oscillators have small am-
plitudes whereas in the other, the system is characterized
by large amplitudes. The critical point is in the large-
amplitude region. If the system is in the small-amplitude
region, one can get near the critical point but eventually
one falls into one of its unstable manifolds and the transi-
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tion is not observed.

If on the other hand one is in the large-amplitude re-
gion, one can fall on the stable manifold of the critical
point and the transition is observed. Hence, the surface
dividing the small- and large-amplitude regions is the
locus of the minimal amplitudes the oscillators must have
in order for the transition to chaos to be observed. These
minimal amplitudes are winding-number dependent.

We have experimentally demonstrated the connection
between the oscillatory instability and vertical vorticity.
Of all the different ways we tried to excite our system, the
one that induced vertical vorticity caused dynamical cou-
pling with the oscillatory instability.

Moreover, we have shown how the velocity and tem-
perature fields are intimately connected. Our excitation
acted on the velocity field which in turn acted on the tem-
perature field through the nonlinear term in the Fourier
heat equation.

Last, we would like to draw attention to the remarkable
accuracy at which a well-controlled hydrodynamical sys-
tem can be driven.

Some aspects of the experiment should be pursued in
the future. A detailed study of the region above the criti-
cal line should be performed. Although the bifurcation
structure of a tongue has already been studied,’? a study
of other tongues as well as the chaotic regions is lacking.
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