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The static correlations in highly charged colloidal and micellar suspensions, with and without
added electrolyte, are examined using the hypernetted-chain approximation (HNC) for the macro-
ion —macro-ion correlations and the mean-spherical approximation for the other correlations. By
taking the point-ion limit for the counter-ions, an analytic solution for the counter-ion part of the
problem can be obtained; this maps the macro-ion part of the problem onto a one-component prob-
lem where the macro-ions interact via a screened Coulomb potential with the Gouy-Chapman form
for the screening length and an effective charge that depends on the macro-ion —macro-ion pair
correlations. Numerical solutions of the effective one-component equation in the HNC approxima-
tion are presented, and in particular, the effects of macro-ion charge, nonadditive core diameters,
and added electrolyte are examined. As we show, there can be a strong renormalization of the effec-
tive macro-ion charge and reentrant melting in colloidal crystals.

I. INTRODUCTION

Spatial correlations in dilute, highly asymmetric elec-
trolyte solutions (e.g. , colloidal' or micellar suspensions)
pose a formidable challenge to modern liquid-state
theories. The charge asymmetry is typically
O(10 )—O(10 ): 1—2, and the macro-ion packing frac-
tions are small. The theoretical difficulties are both con-
ceptual and numerical. For example, some of the simpler
analytic theories [e.g., the mean-spherical approximation
(MSA)], if applied using physical parameters for the
macro-ion charge and diameter, give only qualitative
agreement with experiment or fail altogether. The reasons
for the failure are the breakdown of the MSA at low den-
sity and its inability to correctly handle correlations in re-
gions of strong electrostatic repulsion (e.g. , negative pair
correlations can result). Nonetheless, sometimes the
Percus-Yevick or mean-spherical approximations can be
solved analytically, and this has led to several prescrip-
tions for determining effective charge and diameters to
use in MSA-based theories. '

While many of the problems associated with the MSA
should be overcome when a more robust approximation
such as the hypernetted-chain approximation (HNC) is
used, there, one is faced with severe difficulties in obtain-
ing a numerical solution to the nonlinear integral equa-
tions. As far as we are aware, this has limited the direct
application of the HNC approach to systems where the
charge ratio is less than 100:1 in the absence of added elec-
trolyte, ' although recently' a numerical analysis of a
HNC —Percus- Yevick approximation for micelles has
been reported.

The above-mentioned problems notwithstanding, it is
well known that excellent fits to experimental structure
factors for both colloidal and micellar suspensions can be
obtained by using a one-component picture for the large
ion with the Verwey-Overbeek" form for an effective

macro-ion —macro-ion interaction potential, U(r); i.e.,
with

U(r)—:U, , (r) +
2 2 —A. t r —cr)e zeffe

for r &o., (1.1)

where U, „(r) is the nonelectrostatic (short-ranged) part
of the macro-ion —macro-ion interaction potential, z,ff is
an effective charge in electrons, e is the charge of an elec-
tron in electrostatic units, k is the screening wave vector,
0 is an effective macro-ion core diameter, and e is the sol-
vent dielectric constant. [Note, that in writing Eq. (1.1),
we have incorporated an extra factor of (1 + Acr/2) usu-
ally found in the denominator directly into the effective
charge. ] Once Eq. (1.1) is assumed, it is a simple matter
to determine the structure factor within an approximate
theory of the liquid state (e.g. , HNC, MSA, etc.).

At present there are several theories that give prescrip-
tions for determining the effective parameters or in map-
ping one approximate method onto another. In par-
ticular, Hayter et al. " have discussed ways of solving
the effective one-component problem within the MSA,
and Alexander et al. ' have analyzed the effective charge
within the nonlinear Poisson-Boltzmann equation. Final-
ly, a variational principle based on the Gibbs-Bogoliubov
inequality was used in Refs. 5 and 6 to determine effective
sizes and effective charges, respectively.

In this work, we analyze and extend the possibility
pointed out at the end of Ref. 6; namely, if counter-ions
are assumed to have zero diameter, then Eq. (1.1) will be
obtained as an exact consequence of a MSA closure on the
counter-ion —counter-ion and counter-ion —macro-ion
direct correlation functions no matter what approxima-
tion is used for the macro-ion —macro-ion correlations.
This is true even if the counter-ion —macro-ion diameters
are nonadditive, and, as we shall show in the next section,
even if there are extra electrolytes in the solution. The
macro-ion —macro-ion core diameter is not renormalized
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and the screening length is that given by the Gouy-
Chapman theory; however, there is a large change in the
effective charge that is a functional of the macro-
ion —macro-ion correlations through

lations can be described by the symmetrized form of the
multicomponent Ornstein-Zernike equations:

h J(r) = c ~(r) + pc k(r)ehkl(r),
k=1

v0 ——24/„dr re ' "g„(r),
1

(1.2)

where g„=—~p, /6 is the macro-ion packing fraction,
g„(r) is the macro-ion —macro-ion pair correlation func-
tion, and where we henceforth use units where the
macro-ion —macro-ion core diameter is unity. Note, how-
ever, that in many cases, v0 is small and a simple analytic
expression (which differs in the nonadditive diameter case
from the Verwey-Overbeek'' expression) is obtained.

In Sec. II, we extend the analysis of Ref. 6, to the case
where more than one type of counter-ion is present and
derive Eq. (1.1). In Sec. III, we numerically solve for the
macro-ion correlations within the HNC approximation
and compare the results with the experiments of
Schaefer' ' on colloids and with Chen et al. on micelles.
In addition, we analyze some of the general properties of
the effective charge and compare with the results of Refs.
1(d), 2(b), and 9.

As we will show, the effective charge is in genera1 less
than the actual one. In general, the effect of the macro-
ion —macro-ion Coulombic interaction goes through a
maximum as the bare charge on the macro-ion is in-
creased and then drops to zero (the rate depending on the
degree of nonadditivity and the amount of added electro-
lyte). In particular, this gives the possibility of a certain
type of reentrant behavior in colloidal crystals; namely,
that the crystal will melt if the charge on the colloid is in-
creased beyond a certain critical value. In our numerical
analysis of the HNC equation, this possibility manifests
itself as follows: as the charge on the colloid is increased,
the height of the first peak in the structure grows until the
Verlet criterion' for freezing is satisfied. Shortly thereaf-
ter, it becomes impossible to numerically solve the equa-
tions; however, if the region of extremely high charge is
considered, then a solution to the equations is again
found. This solution becomes more ideal gaslike as the
charge on the macro-ion is increased. Moreover, if the
charge on the macro-ion is decreased, then, as in the low
charge region, the Verlet criterion followed by the inabili-
ty to find a numerical solution will occur, thereby leaving
a gap in the corresponding phase-diagram. This gap
should correspond to the colloidal crystal phases. As we
will see, the method works exceedingly well and numerical
solutions for 1000:1 (on the low charge side) or 1000000:1
(on the high charge side) electrolyte solutions are easily
obtained. Finally, in the last section, the results are sum-
marized, the expected range of validity of the MSA-HNC
theory is discussed, and some conjectures about the prob-
lems in the numerical methods are made.

II. THEORY

where

(2.2a)

and

c 1(r)

( )j/2 (2.2b)

are the usual pair and direct correlation functions, respec-
tively, p; is the density of species i, and e denotes a con-
volution:

feg:—f dr' f(r')g(r —r') . (2.3)

and

pczc + plzI ——0 (2.4a)

PkZk
k=2

(2.4b)

where z; is the charge of species i. The macro-
ion —point-particle form of the Fourier-transformed
Ornstein-Zernike equations can be written in the follow-
ing matrix notation:

A full solution of the problem requires a second
mathematical relation, or closure, between c; i(r) and
h; z(r) It wil.l be shown below that assumption of zero
particle radius and the mean-spherical-approximation
(MSA) for all species except the macro-ions, results in an
effective one-component system interacting via a screened
Coulomb potential. An interesting intermediate result is
the transformation of the subset of all charged point-
particle interactions into a mixture consisting of a neutral
ideal gas and one component having an effective charge
and density. It should be noted that the correlations of
the transformed system are only mathematical constructs;
the physical correlations of the counter-ions and electro-
lytes are recovered by inverting the transformation.

In keeping with the notation of Refs. 5 and 6, we
henceforth denote macro-ion properties by the subscript c.
The remaining electrolyes will be numbered from 1 to m,
with 1 reserved for the original counter-ions of the
macro-ion. Units are chosen such that the macro-
ion —macro-ion core diameter is unity, and a common
nonadditive point-ion —macro-ion diameter is denoted by
Rz, (Rz, & —,

' ). Furthermore, extensive use will be made
of the electroneutrality relations associated with both the
macro-particle and the added salt:

Interparticle correlations provide a valuable theoretical
tool for probing the structure of a colloidal (or micellar)
suspension that consists of macro-ions, associated
counter-ions, and possibly added electrolyte. Such corre-

H(k) = (1 + h, )T(k) + C(k) H(k),

where matrices have underlines,

[H];(k):—h ', ;(k), i =1,2, . . . , m

(2.5)

(2.6a)
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[T];(k)—:c', ;(k), i =1,2, . . . , m

[C];J(k) = c; J(k), i,j = 1,2, . . . , m

and where the Fourier transform is defined by

(2.6b)

(2.6c)

with the effective point-ion species will be denoted by a
subscript p as was done in Refs. 5 and 6.

By noting that P ' = PT (the superscript T denotes
the transpose), and left multiplying Eq. (2.5) by Pr we
find that

f(k) =—J dr e'"'f(r) . (2.7)

The eigenvalues and eigenvectors of C depend on the
particular closure chosen for this subset of correlations.
One possibility is the MSA; i.e.,

H'(k) = [1 + h;, (k)]C'(k) + C'(k)H'(k),

where the vectors transform as:

F' = PTF.

(2.17)

(2.18)

and

c;~(r) = Pu; J.(r—), r & R;~

h;J(r) = —1, r & R;&

(2.8a)

(2.8b)

Furthermore, by assuming the MSA closure for all
macro-ion —counter-ion correlations [cf. Eq. (2.8)], it fol-
lows that

where u;/(r) is the interaction potential between species i
and j. For point ions,

( c,'p )'(r) =— r ) R&~4m.r
(2.19a)

/3e z;z~ r)0
er

(2.9)

and

(c,'J )'(r) = 0, r & Rz„j = 2 3, . . . , m . (2.19b)

where/3 = (k&T) '. This implies that

[C(k)];i =—
where

k
(2.10)

1/2
4m.I3e p;

(2. 1 1)

where A, is the Debye screening wave vector. By using Eq.
(2.10), C is easily diagonalized; i.e.,

C'(k) = P 'C(k)P, (2.13)

It is easily seen from Eq. (2.10) that C has only one in-
dependent column-vector, implying that it has only one
nonzero eigenvalue, u, equal to its trace; i.e.,

2
m Qn:——

k
(2.12)

The above equations are consistent with the physical in-
terpretation of Eq. (2.14): the effective interactions outside
the core vanish for the case of the neutral-point com-
ponents, while the point-ion —macro-ion forces are electro-
static in nature. The transformed assembly of particles is
completely characterized by effective charges and densi-
ties.

From Eqs. (2.11), (2.12), and (2.19a), it follows that
1/2

2gp;z;
i =1

(2.20)

hence, all that remains to be evaluated are the effective
densities. These are easily obtained by evaluating h, ; [cf.
Eqs. (2.17) and (2.18)] within the core, and comparing the
transformed functions to the closure relation (2.8b). It
follows that the effective point-ion density is

where p (2.21a)

and

[C'(k)]; = — 5; i5, i, (2.14)

while the effective densities of the m —1 neutral-point
components are

Q (1 —~,, »(&, iQ) —&,,Qi)
(Q2 Q2 )1/2

(2. 15)

is an orthonormal transformation. Henceforth, 6; z
denotes the Kronecker-delta. The inverse Fourier
transform of Eq. (2.14), i.e.,

(c, )'(r) =— 2

6;16;J, r) 0
4~r

(2.16)

implies that the subsystem of point-ions is equivalent to a
mixture of neutral-point gases and a one-component plas-
ma. The former have a zero effective potential, and the
latter interacts via a Coulomb potential. The effective
charge of the plasma is not exactly A, /(4~)'/, since the
symmetrized correlations incorporate an effective density
that is yet to be determined. All properties associated

pi
[Q (p )

1/2
Q ( ) 1/2]2

2, 3, . . . , m
(Q +Qi)

(2.21b)

l =2
(2.22a)

cj'„(r) = pc ~(r), j = c,p (2.22b)

Since the various neutral-point components are physically
equivalent, in effect, there is only one neutral-point com-
ponent whose properties (denoted by subscript n) are ob-
tained by the simple superposition of the corresponding
m —1 independent quantities. In particular,
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and

hj'„(r) = gh ~(r), j = c,p .
l =2

(2.22c)

ppzp + p~ z~ (2.23)

At this point it is useful to rewrite the transformed,
three-component (symmetrized) Ornstein-Zernike equa-
tions, along with the MSA closure:

h J(r) = c J(r) + g c k(r)ehkj(r),
k =p, c, n

(2.24)

Finally, it is straightforward to verify electroneutrality in
the transformed system by using Eqs. (2.20) and (2.21a):

c„',(r) = ( ))/2
pcpn

(2.26)

where g„, =— 4rrp, R&, /3 is the neutral —macro-ion pack-3

ing fraction. The two-component macro-ion —macro-ion
direct correlation function, c,','(r), is related to c, , (r) ac-
cording to:

c,', (r) = c,',' '(r) —c„',(r) e c„',(r) . (2.27)

(2.25a) —(2.25c) is now presented. As we have shown in
Ref. 6, the three-component system can be successively re-
duced to a two- and finally a one-component system. The
only nonvanishing neutral-point components direct corre-
lation is constant within the core; specifically,

and

c j(r) =— l J r ) R;~4nr

h, (r) = —(p;pj)'~' for r & R;),

(2.25a)

(2.25b)

It is easily shown that the second term vanishes for
r ) 2Rp, . The restriction 2Rp,. ( 1 guarantees that c,','

can be chosen such that the core condition is satisfied.
Examination of the hp, Ornstein-Zernike equation within
the core shows that

where i,j =p, c,n, except for i =j =c.
We have recently analyzed this three-component prob-

lem and a summary of the solution to Eqs.

cz,'(r) = cz, (r) ==1 for r & R, ,

where

(2.28)

Pe z, zz {X [voe cosh(XR~, ) —ke ~'] —4~p, I
—eA.

ekIvoe [sinh(A, R„, ) —A,R&,cosh(A. R&, )] + k(1 + XR&, )e
(2.29)

and where vo is given by Eq. (1.2). The Fourier transform
of an effective one-component direct correlation function,
c, , (k) is related to the two-component direct correlation
functions by

s() )(k) s(2)(k) + P[c,(k)]
1 —cp ~(k)

(2.30)

22 —A, (r —1)Vie forr ) 1,

(2.31)

where

f3ez, e

Cvo+ D

2

(2.32)

C = e [sinh(AR&, ) —XR&, cosh(AR&, ) ],
(2.33a)

and

D =—Ae ~(1 + AR~ ) . (2.33b)

Note that the extra factor of p, has been dropped in writ-
ing Eqs. (2.31) and (2.32). The expression for the contact

By using the Fourier transforms of Eqs. (2.25a) and (2.28)
for c~, (k) and czar(k), inverting the above equation for
r ) 1 gives

potential, A, is identical to that obtained previously by the
full MSA analysis; however, its value will differ depend-
ing on the macro-ion —macro-ion closure used to compute
vo. Note that k does not explicitly include the ionic
strength of the macro-ions; nonetheless, it is easy to show
that the correlations will decay with the usual Debye
screening length (i.e., including the macro-ions) when the
low charge and density limit is taken.

Equation (2.31) is the key result of this section. More-
over, in obtaining this result, we did not use the closure
for the macro-ion —macro-ion direct correlations. This is
fortunate because the MSA will break down outside the
core in regions where the potential is large, and this will
occur for the macro-ion —macro-ion correlations long be-
fore the p-p or c-p correlations.

An approximation which should be better able to deal
with the strong interactions associated with the macro-
ion —macro-ion Coulomb repulsions is the hypernetted
chain approximation (HNC) i.e.,

h, , (r) = exp[ —Pu, ,(r) + h, , (r) —c, , (r)] —1,
(2.34)

where we recall that c, ,(r) is the macro-ion —macro-ion
direct correlation function including the explicit effects of
the other ions. However, if the MSA is invoked for the
other ions, then Eqs. (2.27) and (2.31) can be used to
reduce the problem to one for a single-component system.
Specifically, Eq. (2.34) becomes
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h, ,(r) = exp —Pu, ,(r) + Pz, e
+ h, , (r)

—c, , (r)—(])
—X(r —1)Vce

(2.35)

where we recall that h, , and c,",' are related by the one-
component Ornstein-Zernike equation:

h„(r) = cl", (r) + p, ct", *h„. (2.36)

The Coulomb part of the macro-ion —macro-ion potential
is canceled by the second term in the exponent in Eq.
(2.35) leaving only the short-ranged part, u, ,(r). The
multicomponent ionic solution problem has thus been
transformed into a one component problem for a macro-
ionic suspension interacting via a screened Coulomb po-
tential. It is interesting to note that this is the starting
point of many calculations of the structure factors of
macro-ionic suspensions, ' although here the strength of
the Yukawa interaction depends on h, , through Eq.
(2.32).

It is useful to rewrite Eq. (1.2) as
r

vo = 24(„A. ' + A, + dr re '" ''h„(r)
]

(2.37)

For sufficiently low density, the integral on the right-hand
side of Eq. (2.37) will be very small; furthermore, the first
two terms will also be unimportant when the screening
length is not too long. In this event,

—x(1 —2R ~)
e z, e

(2.38)
e(l + A.Rq, )

An effective charge, z,' can be identified from Eq. (2.38)
as

Gillan's method uses a Newton-Raphson algorithm to
determine the gross structural features of y(r):—h(r) —c(r) (as represented by a finite number of basis
functions), and a Picard iteration to determine the finer
structure of y(r). For basis functions, we use the roof
functions described in Ref. 15. We used ten functions,
whose range extended to beyond the point where
y(r) & 0. 1. The Fourier transforms were performed by
the fast Fourier transform technique, using 2048 grid
points. The inte rais were cut off at ten times the
minimum of p, and the distance where the screened
Coulomb potential equals kz T.

In light scattering experiments conducted by Brown
et al. ' ' on five suspensions of identical colloid charge
(z, = 582e) and diameter (R„= 500 A), the maximum
peak position was found consistently at 1.1 && 2 w (p, )'~ .
Such scaling of the peak position was also observed for di-
lute suspensions studied by Schaefer;" ' in particular, Fig.
1 illustrates the insensitivity of the maximum peak posi-
tion to changes in the colloidal charge (in keeping with
the density scaling behavior). Furthermore, the local or-
der [e.g. , as characterized by the height in the first max-
imum of S„(k)] increases as the charge is increased, cul-
minating in a liquidlike structure factor which is close to
the experimental data. Note that the latter does not ap-
proach the correct asymptotic value of 1 for kR„» 1

as required by the definition of S(k). In any case, the fit-
ted charge (z, =400e) lies well within the margin of error
of the reported value (z,"~' = 432 + 100e).

Although the reported experimental conditions" ' ex-
cluded the presence of added electrolytes, Fig. 2 illustrates

This expression is a generalization of the linearized
Verwey-Overbeek theory, " but differs by the presence of
the exponential and the factor in the denominator con-
taining Rz, instead of —,R„. In the additive case, the two
are equivalent. Note, however, that the general expres-
sion, Eq. (2.32), is quite different than the full Verwey-
Overbeek expression. " We now present some numerical
examples.

III. RESULTS

2.0

0.5

4 4 4
4

44

A. Colloids 0.0
0.0 0.5 1.0 1.5 2.0

Numerical solutions of the HNC equation often fail to
converge for small hard-spheres with charge exceeding
100e due to the strength of Coulombic interactions at or
near contact. However, the combination of the closed,
self-consistent form of the screened-Coulomb potential
[cf. Eq.(2.31)], along with the algorithm developed by Gil-
lan', has made it easy to solve the effective one com-
ponent MSA-HNC equations for suspensions with experi-
mental charges exceeding 10 e.

kR,„
FIG. 1. Colloid-colloid structure factors for a suspension

0
containing 2. 56 & 10' 872-A-diameter colloid particles per cm
in water at 46 C. The solid curves show the effect of changing
the charge on the colloid and correspond to z, = 450, 400, 300,
200, and 100 electrons [in order of decreasing height of the first
maximum of S(k)). The discrete points are the experimental
points of Schaefer [Ref. 1(d)].
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2.5

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

kR„
FIG. 2. The effect of changing the screening length by add-

ing salt for the 450 electron case shown in Fig. 1. The various
curves correspond to 0 &( ]0 M, 1 ~ 10 M, 3 ~ 10
and 5&& 10 M concentration of added 1-1 electrolyte [in order
of decreasing height of the first maximum of S(k)j.

I

O O

8
O

0
O 6—

U3

log gg z~

I

I

I

(

I

I

( I

I

I

I

I

the dramatic effect of the addition of micromolar
amounts of 1-1 electrolyte on the maximum peak height.
This result should not be surprising for dilute systems
where the counter-ion concentration is also in the micro-
molar regime; e.g. , the addition of 1& 10 M of 1-1 elec-
trolyte decreases the screening length by a factor of 2'

Such behavior is relevant to the phase transitions of ex-
tremely dilute, highly-charged colloidal suspensions from
the crystalline phase to the liquid state. In the absence of
added electrolyte, a liquidlike suspension should crossover
into the crystalline phase once a critical charge is exceed-
ed. However, if the charge is increased further, a second
critical value is attained when the large density of neutral-
izing counter-ions screens out the electrostatic repulsions,
and the colloidal crystal will melt. These physical argu-
ments are manifest mathematically in Eq. (2.31); the
leading-order behavior of the interaction for k ~ ~ is a
balance between the competing factors (z, lk) and—/)t, ( r —2R ) j /2,e (/I, -z, ) as z, ~ ec. Once the second criti-
cal charge is exceeded, the strength of the interaction is
governed by the exponential factor, and in the limit of in-
finite charge, the colloidal suspension can be modeled as
an extremely dilute solution of hard spheres.

The fine balance between screening and electrostatic
repulsions can be altered in favor of the former by the ad-
dition of electrolytes. With reference to colloidal crystall-
ization, the presence of micromolar concentrations of salt
should dramatically reduce, and possibly even eliminate,
the range of existence of the crystalline phase. A quanti-
tative analysis of this is shown in Figs. 3 and 4.

Each phase diagram has been constructed by plotting
contours of the maximum peak height, S „,as a func-
tion of colloid charge and added salt concentration. The
region enclosed within the Verlet' criterion contour,

FIG. 3. The effects of charge and added salt on the height of
the first maximum S„ for 8„= 872 A (panel a) and 2340 A
(panel b). In each case, the colloid number density was
2. 56 && 10' cm at 46'C. The contours are at S„= 1.5
(~ ~ ~ ~ ), 2.0 ( —~ —~ —~ ), 2.5 ( ———), and 2.85 ( ).

Smax

2.85

I

C)

2
U

0
O

2.0

1.6

3.0

log 1P Zc

FIG. 4. Same as Fig. 3(b), but now, the colloid density is
1.41 && 10" cm

S „=2. 85, represents the crystalline phase. The con-
tour map shown in Fig. 3(a) is based on the colloidal den-
sity and diameter reported by Schaefer;" ' both the exper-
imental point (z, = 432e; no salt) and the refitted HNC
value (z, =400e; no salt) lie to the left of the Verlet con-
tour. Since the maximum number of ionizable head
groups per colloid is 3040e, " ' observation of a
reentrant-liquid (predicted at z, = 10 ) is impossible, al-
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though a transition from liquid to crystalline phases
should occur as the colloid charge approaches 625 e.
Furthermore, this transition can be eliminated altogether
by the addition of salt in excess of 5 && 10 M.

Structural changes can be induced by variation of not
only charge and salt concentration, but by the colloid di-
ameter as well. For the same total charge, larger colloids
have smaller surface charge density and thus the counter-
ions will be less tightly bound to the colloid surface; this
is equivalent to increasing the effective charge of the col-
loid. Since there is an enhancement of local order as the
macro-ionic diameter is increased, the relative change in A.

must be greater in order to screen out the interparticle in-
teractions. This is demonstrated by Fig. 3(b), where the
colloid size has been increased by a factor of 2.7 over that
used to construct Fig. 3(a) (the number density is the
same). The upward elongation of the contours reflects the
fact that at a given charge, a greater concentration of elec-
trolyte is required to reduce the correlations in the larger
diameter system. The shift of the reentrant phenomena to
higher charge is a manifestation of the same effect: a
greater density of counter-ions is required to screen out
the enhanced interactions of the 2340-A system.

Finally, a phase diagram for the suspension parameters
reported by Clark and Ackerson'I' (g„=9.5 && 10
R„=2340 A) is presented in Fig. 4. From the definition
of A. [cf. Eq. (2.12)], it is easily seen that the relative ef-
fect of added electrolyte is enhanced as the suspension be-
comes increasingly dilute. Since the packing fraction is
even less than that of the previous case, the crystalline
phase ceases to exist for salt concentrations in excess of
1 &( 10 M. Note that the experimental point
(z, = 12 700e, no salt) lies within the Verlet-criterion
contour, whereas light-scattering experiments show the
system to be in the liquid state. This discrepancy can be
accounted for in one of three ways: (i) the charge is
correct, while the assumption of the absence of stray elec-
trolyte is not, (ii) the reported charge is too low (if the
latter is true, then it should be possible to observe reen-
trant behavior in the reverse direction by reducing the col-
loidal charge), or (iii) the MSA is breaking down for the
macro-ion —counter-ion correlations.

6 —:: p, c

C, C

p
8

p, c

P P

C, C

0
10

The pair correlation functions for two systems on either
side of the two-phase region in Fig. 3(a) (no added salt)
are shown in Fig. 5. Panels 5(a) and 5(b) correspond to
colloid charges of 500 and 11000e, respectively. The
charges were chosen to give S„'s with comparable max-
imum values ( —2.6), and indeed, the corresponding
g„(r)'s are similar.

Once the macro-ion —macro-ion structure factor is ob-
tained, it is a simple matter to obtain the other partial
structure factors. From Eqs. (2.24) and (2.28), it follows
that

r/R,
FIG. 5. Pair correlation functions for colloidal suspensions

0
containing 2. 56 & 10' cm ' 872-A-diameter particles in water
at 46 C. z, = 500e in panel (a) and 11000e in panel (b). Note
that the maximum values for g~, and g~~ in panel (b) were 104.3
and 22.3, respectively.

Pe z z, Scc(k)
Sz, ——4vr(p, pz ) —[sin(kR&, ) kR&, cos(kR&, )]—— cos(kR&, )

6 k'+ X' (3.1a)

and

(3.1b)

The other correlations show three main features: (1) a
large positive p-c pair correlation at Rz„(2) induced
correlations in gzz and gz, at the maximum of g„, and (3)
induced correlations in gpp at R~, . In all cases, the corre-
lation functions were positive, although (see below) in the
MSA this need not be the case. Note, that the maximum

heights of g~, and gpp increase with increasing charge, re-
flecting the increased density of counter-ions near a given
colloid. Figure 6 shows Sz, for z, = 11000e. Notice, as
expected from Fig. 5(b), the presence of two characteristic
length scales.

B. Micelles

Treatment of the counter-ions as point particles is not
only mathematically appealing, but intuitively reasonable
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I(k) cc p, P(k)S„(k), (3.3)

where P(k) is a form factor specific to the assumed
geometry of the micelle, and S„(k) is the intermicellar
structure factor. The fitting procedure thus requires the
use of a theoretical model for the micellar shape (spheri-

(a)

0.00 0.05 0.10
1 (A')

0.15

FIG. 9. Comparison with experimental small angle neutron
scattering intensities for micellar systems [Ref 2(b)]. See Table I
for details. Each panel shows the experimental points of Ref.
2(b) (open circles), the MSA-HNC approximation using the re-
ported physical parameters of Ref. 2(b) ( ———) and the refit
MSA-HNC approximation ( ).

In addition, four micellar suspensions were
examined, ' ' with the experimental parameters lying in
the following ranges: 0.015 q g & 0.14; 53 & z, & 75;
and 44.3 A & R„& 48.4 A. According to Fig. 9, the
maximum of each of the theoretical micelle-micelle struc-
ture factors are consistently too high and occur at too low
a wavenumber compared to their experimental counter-
parts. Since the peak positions scale approximately as
1. 1 X 2'(p, )'~, the latter can be interpreted to mean
that the micellar density is somehow underestimated,
while the former implies that the micellar interactions are
not sufficiently screened. In many cases, the experimental
structure factors were fit to the raw scattering intensity
data by assuming that peak position scales according to
the micellar diameter; however, by analogy with colloidal
suspensions, 1. 1 X 2rr(p, )'~ is an equally possible
characteristic wavenumber. With this in hand, it is possi-
ble to reinterpret the scattering intensity data while main-
taining the microscopic model assumed by Chen ' ' in the
lithium dodecyl sulfate (LDS) system. A brief summary
of the latter is presented below.

As is well known,

cal), and a choice of an approximate theory for the struc-
ture factor. The internal micellar structure was modeled
as a spherical hydrocarbon core, of radius R„„and ionic
head groups, each of diameter 5.56 A, ' ' attached to the
surface of the core. The micellar diameter is therefore:

R„' = 2(R„„, + 5.56 A). (3.4a)

Each head group carries a unit charge. If the total LDS
monomer concentration is fixed and complete micelliza-
tion is assumed, it follows that micellar charge and densi-
ty are inversely related; i.e., z, ~p, '. Furthermore, for
constant core density, the charge (or aggregation number)
is the ratio of the core volume to the monomer volume,
implying that z, ~ R„„.Since the neutrons scatter main-
ly off of the hydrocarbon core, the form factor (for spher-
ical geometry) is related to the core size according to

V,j)(kR„„)
P(k) cc

kR go1 e
(3.4b)

where V, is the core volume, and j~(x) is the first-order
spherical Bessel function. Hence,

I(k)ccp,
2 2

core jl(k core) S„(k) . (3.5)

We now refit the experimental data by: (1) assuming
that the aggregation number or z, ~ R „„with the propor-
tionality constant of Chen et al. ' and (2) allowing for
partial micellization. The free ionized monomers are then
approximated as excess point salt-ions; these enhance the
screening of the interaction between micelles and reduce
the height of the intensity maximum. In addition, no ex-
plicit correction for the CMC is made; the density of un-
micellized monomer plus the density of monomer within
the micelles is equal to the total density of LDS.

The degree of micellization and charge per micelle were
varied until the best fit to the scattering intensity was ob-
tained and the improvement of I(k) over that obtained by
using the reported parameters is shown in Fig. 9. Note
that the two most dilute solutions exhibit theoretical in-
tensities with distinct shoulders, indicative of enhanced
second peak of S„. In addition, these last two cases have
theoretical intensities which are much smaller than the ex-
perimental ones at small scattering wave numbers. This
reflects the small values of S„(k=0) obtained within the
HNC approximation.

The absence of such features in the experimental data
can be explained by a number of mechanisms. First,
polydispersity' leads to the averaging of several structure
factors and can result in the observed smooth tail.
Second, it has been suggested' that the secondary struc-
ture in I(k), obtained theoretically [see, e.g. , Figs. 9(c)
and 9(d)], is a result of neglecting the scattering from the
monomer head group region. This effect can be incor-
porated into the form factor as the difference

[R„„j~(kR„„)lk] —[R„j~(kR„)/k] times the
head-group neutron scattering contrast (this introduces
another adjustable parameter with which to fit the experi-
mental data). Finally, note that the scattering off of free
monomers is also neglected. A more realistic charged-rod
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kR, ,
FIG. 10. The effect of nonadditive core diameters on S„(k)

for a dense micelle sized system in water at 310 K with
R„= 48. 5 A, z, = 75e, g„= 0.25, and there was no added
salt.

model will give a nonzero form factor, thus adding fur-
ther corrections to the theoretical structure factor.

Reinterpretation of the micellar charge, density, and
size (see Table I) shows that (i) on the average, 80—90%
of the monomers are micellized, and (ii) the refitted micel-
lar charge is consistently less than those reported by Chen.
Note, that no explicit CMC correction has been intro-
duced, and thus, the effective CMC is slightly different
than Chen s. In addition, in contrast with dilute colloidal
suspensions, there is a strong renormalization of charge

r/R„

FIG. 11. The counter-ion density [i.e. , g~, (r)] for the cases
shown in Fig. 8.

[cf. Eq. (2.32)] which can be accurately estimated by Eq.
(2.38).

Finally, the effects of nonadditivity are examined in
Figs. 10 and 11 and Table II for micelle-sized particles.
Note that the density is roughly twice that studied by
Chen et al. The choice of the degree of nonadditivity is
based on Chen's geometric model of a spherical micelle
and allows for the counter-ion to either not penetrate the
head-group region at all (additive case) or penetrate up to
the core region (R~, /R„-0.385). A large change in the
magnitude of S„(cf.Fig. 10) as well as in the effective
charge (cf. Table II) are observed. The decrease in the ef-
fective charge can be understood in terms of the increased
local density of counter-ions as shown in Fig. 11. Of
course, g~, should increase since the p-c Coulomb attrac-

TABLE I. Summary of some micelle results shown in Fig. 7.

Case R„(A)
Calc.

eff
~C

Eq. (2.38)
%%uo

Micellized
A.R„ voR„

0.14
0.07
0.03
0.015

48.4
46.2
45. 1

44.3

Fitted Parameters of Ref. 2(b)
75.0 30.8 24.6
63.0 25.2 26.3
57.0 22.8 27.8
53.0 20.7 28.6

99.93'
96.51
79.99
78.41

4. 1b

2.8
2. 1

1.7

0.14
0.07
0.03
0.015

48.4
46.2
45. 1

44.3

MSA-HNC, Using Fitted Parameters of Ref. 2(b)
75.0 18.6 18.5
63.0 20.7 20.6
57.0 22.6 22.5

53.0 25.8 25 ~ 6

99.93
96.51
79.99
78.41

6.13
4. 10
3.06
2.14

0.160
0.093
0.039
0.025

0.131
0.068
0.032
0.016

47.4
45.2
43.3
42.8

MSA-HNC,
69.0
57.7
48.2
46.0

Refitting Experimental
16.85
18.87
19.63
22.75

Data of Ref. 2(b)
16.76
18.90
20.59
22.72

91.9
91.7
81.0
80.5

6.24
4.11
2.92
2.05

0.138
0,092
0.054
0.042

'This reflects the small difference between the total amount of LDS and that contained in the micelles reported in Ref. 2(b).
In the calculation of Ref. 2(b), the ions in the CMC and the fraction of counter-ions corresponding to the effective micellar charge

were included in the calculation of the screening length.
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R~ /R„
0.50
0.46
0.385

Calc.

15.3
11.8
7.40

Eq. (2.38)

15.3
11.7
7.37

0.450
0.527
0.723

tion will be larger. In addition, note that the approximate
expression for the effective charge, cf. Eq. (2.38), does
quite well (cf. Table II).

IV. CONCLUDING REMARKS

In this work, we have shown that the MSA-HNC ap-
proximation was both easy to implement, and, where
comparison was possible, gave results which were in good
agreement with the full multicomponent HNC approxi-
mation. The various partial structure factors and correla-
tion functions had a reasonable form even for extremely
large charge asymmetry.

A number of new features were discussed. In particu-
lar, in colloids, we predict a second melting of colloidal
crystals if the colloidal charge is increased enough. In mi-
cellar systems, we have shown that the effects of partial
micellization or counter-ion —micelle inter-penetrability
can have large effects on the calculated structure factors.

TABLE II. The effect of nonadditivity for rnicelles. For all

three cases, z, = 75e, R„= 48.5 A, and p, R,', = 0.477.
eff

zc

However, the simple modification of the Verwey-
Overbeek effective charge used to calculate the macro-
ion —macro-ion structure factor [cf. Eq. (2.38)] seems to
work quite well.

In highly charged systems, the counter-ion correlations
contain a number of very different length scales (see, e.g. ,

Fig. 6). The short length scale describes the distribution
of counter-ions around a given macro-ion, which are rem-
iniscent of the ionic distributions found around an elec-
trode. ' The longer length scale describes the correlations
between the macro-ions (or those induced by them) and
are not present in theories of electrodes (or equivalently of
macro-ionic the solutions at infinite dilution). It is possi-
ble that the difficulty in numerically solving the full mul-
ticomponent HNC approximation lies in the nonlinear in-
terplay of these different scales (here they were handled
analytically within the MSA). In the future, we will re-
port on other analytic and numerical approximations on
the HNC equations which can overcome this problem.
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