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Inhomogeneously broadened laser with a saturable absorber
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A quantum theory for a laser with inhomogeneously broadened active and absorber atoms is
presented. Photon-number distributions are derived for both on- and off-resonance operation of the
laser, and the results are compared with the results of earlier investigations.

I. INTRODUCTION
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Throughout this paper the subscripts 1 and 2 will refer to
active and absorber atoms, respectively. The single atom-
field Hamiltonian is given by
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H=fiQa ta+ g [fico&;b;b;+(Ag;a b;+H. c. )] . (2)

It is well known that a nonlinear absorber inside a laser
cavity imparts new characteristics to the laser which are
of interest both theoretically and experimentally. ' Ex-
amples of such lasers are the laser with a saturable ab-
sorber (LSA) and the dye laser. Both systems have been
investigated in some detail. The treatments for the LSA
with inhomogeneously broadened atoms are, however,
valid either only for small intensities or do not fully take
into account the effect of quantum noise. We would like
to present a quantum-mechanical treatment that allows us
to derive the photon-number distribution for an inhomo-
geneously broadened LSA. We also incorporate the ef-
fects of detuning and atomic motion.

II. EQUATION OF MOTION

Consider a single-mode electromagnetic field at a fre-
quency Q inside a laser cavity interacting with a set of
amplifying and another set of absorbing two-level atoms
in gas phase. The distribution of atomic speeds along the
resonator axis will be assumed to be Gaussian with root-
mean-square speeds ul and u2

Here a t(a ) is the creation (annihilation) operator for the
field, b;(b;) is the raising (lowering) operator for the
atoms of type i, and coo; is the transition frequency. The
coupling constant is given by g;=ex;QQ/2eofiV, where
x; is atomic transition dipole moment, 0 is the field fre-
quency, and V is the quantization volume. The spatial
variation of the field inside the cavity is taken into ac-
count by multiplying g; by an appropriate (traveling or
standing wave) mode function.

The equation of motion for the field density matrix is
derived following the work of Scully, Kim, and Lamb'
and Riska and Stenholm. " The details of this derivation
can be found in the work of Roy. Here we merely out-
line the various steps involved and point out differences
that arise due to inhomogeneous broadening. We first cal-
culate the change in the density matrix due to an atom in-
troduced in state

I
a). When this contribution is multi-

plied by ra, the number of atoms introduced per second in

I
a) and averaged over the distribution of detunings, we

get the coarse-grained rate of change of the density matrix
due to atoms introduced in state I a). Similarly, passive
losses are calculated by introducing a fictitious set of
two-level atoms that absorb laser radiation. Adding the
contribution from atoms and losses we obtain the follow-
ing equation of motion for the probability p(n) for find-
ing n photons in the laser:

p(n) = —[(n +1)R&(n)+nRq(n —1)+Cn]p (n)

+nR
& (n —1)p (n —1)

+ [(n + 1)R2(n)+ C(n + 1)]p (n + 1),
where
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and C is the rate at which the field intensity decays. y is
the decay rate of level

I
a) and yap is the decay rate for

the transition dipole moment between levels
I
a) and

I
P). We have assumed that the active atoms are intro-

duced in their upper state
I

a ) and the absorber atoms are
introduced in their lower state

I
d). The velocity in-

I

tegrals in Eqs. (4) and (5) appear because the atoms mov-
ing with different speeds will have different resonance fre-
quencies due to the Doppler shift ku =(II/c)u. The velo-
city integrals can be expressed in terms of plasma disper-
sion function. ' Equations (3)—(5) are the basic equations
of this paper.
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III. PHOTON-NUMBER DISTRIBUTIONS
We first consider the on-resonance operation

(root ——Q =coo2). In the limit of extreme Doppler broaden-
I

ing ku; »y, b, y,d, a condition which is satisfied for
many gas lasers, the velocity integrals can be evaluated'
to give the following equation of motion for p (n):
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This equation satisfies detailed balance in the steady-state
situation so that the probability p, (n) for n photons in the
laser field becomes

p, (n)=p, (0) ff .
m=1 1+—m
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We have derived Eq. (9) for a traveling-wave field mode
for which the spatial structure of the field plays no essen-
tial role since all the atoms see the same field. For a
standing-wave field mode atoms are subject to spatial hole
burning. In the limit of large Doppler broadening, how-
ever, the effects of spatial holes are washed out because
the atoms sample the field over several wavelengths before
decaying. This is the so-called rate-equation approxima-
tion ' (REA) which is known to be an excellent approxi-
mation even for relatively large excitations. This means
that on resonance Eq. (9) is valid for a standing-wave gas
laser also in the REA.

The expression for p, (n) simplifies under certain cir-
cumstances. In the nonoscillating regime A & C, the
mean photon number is small so that saturation effects

I

are not important and we obtain

(n)" A

(1+(n))"+'' G+C 'p,(n)=, (n) =

which is the Bose-Einstein distribution for thermal pho-
tons. The role of the absorber in this regime is simply to
increase losses. %'ith increasing gain the mean photon
number increases causing saturation effects to come into
play. In the regime where A &C but (A —C)/C&&1 so
that both (8/A)n and (H/G)n are small we can use the

r

expansion ln(1+x)=x —x /2 to obtain

p, (n) =k exp
18 sa—1 n+ ——

6+C 4 A 1+(z
T

1 8 s a(a+3/2) —1 n
12 A (1+a)
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where k is a constant, a=G/C and s =(A/8)/(G/H )is'
the ratio of the saturation number of photons n, =A /8
and n, =G/H for the active and absorber atoms. Both
the numbers n, and n, are of order 10 —10 for gas lasers.
Note that the coefficient of the n term in the exponent
may become positive. If this is the situation the cubic
term, whose coefficient is then necessarily negative, is
needed to ensure a normalized distribution. Photon-
number distribution [Eq. (11)] was also derived by Ka-
zantsev and Surdutovich by using perturbative approach
to the density matrix equation of motion. Under suitable
approximations we can also derive the distribution given
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FIG. 1. Forms of the probability distribution for A /C = 1.5,
B/A =10, s =10, and several different values of 6/C as de-
rived from Eq. (9).
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FICx. 2. Variation of the mean photon number (n ) with
G/C for A /C = 1.5, s = 10 in the transition region as derived
from Eq. (9).
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by Salomaa. If (A/C)[1+(B/A)m] '~ 1—and
(GIC)(1+ (H/G)m) ' «1 then on exponentiating the
distribution in Eq. (9), expanding the logarithmic terms,
and replacing the sum by an integral we arrive at

p, (n)=k exp[(2A /BC)[1+(B/A)n]'
(26—/HC)[l+(H/6)n]'~ n—j . (12)

A/[1+(B/A)n]'~ =Gl[1+(H/G)n]' +C . (13)

Unfortunately the roots of this equation cannot be deter-
mined analytically. A graphical method for finding the
roots of Eq. (13) has been discussed intensively in Ref. 4.
In homogeneously broadened media the positions of the
extrema can be determined analytically. We have com-
pared the distribution (11) and the corresponding distribu-
tion for homogeneously broadened media. We find that
for given ratio s the region of bistability for an inhomo-
geneously broadened laser (in the A/C versus 6/C plane)
is wider than that for a homogeneously broadened system.
As a consequence of this the threshold for bistable opera-
tion is lower in the former case than in the latter.

In the region of bistability the mean photon number
changes rapidly and this is accompanied by large photon-
number fluctuations. The behavior of the mean (n ) and
the normalized variance ((hn) ) l(n ) derived from Eq.
(9) is shown in Figs. (2) and (3). These curves are similar
to those for a homogeneously broadened medium. Fluc-
tuation properties of the LSA based on distributions (11)
and (12) have been discussed in Refs. 3 and 4, respectively.
Based on our discussion, therefore, 'we conclude that the
difference in the behavior of an inhomogeneously
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In view of the large photon numbers involved, n may be
treated like a continuous variable. Then Eq. (12) is the
same as that derived by Salomaa.

The form of the probability distribution p, (n) as de-
rived from Eq. (9) is shown in Fig. 1. It will be seen that

p, (n) may be two peaks separated by a minimum. This
means that the system may exhibit bistability for a suit-
able range of parameters. One of the peaks is always at
n=0. The position of the minimum and the nonzero
maximum is determined by the roots of the equation"

p, (n)=k gS

H'1+,m
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Gf H'/
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(15)
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where ( A', B')=(A,B)e ', (6',H') =(G,H)e '. The
statistics that follow from Eq. (15) and various special
cases may be discussed in a manner similar to the on-
resonance case.

The case of a detuned standing-wave laser is more com-
plicated. A standing wave may be considered to be a
combination of two oppositely directed traveling. waves.
The two traveling-wave components of the standing-wave
interact with two velocity groups of atoms such that the
Doppler shift annuls the detuning, i.e., ku; =+(coo; —&).
The presence of two velocity groups of atoms complicates
the problem and one has to resort to, a perturbative ap-
proach. In the conventional laser it is sufficient to include
terms up to fourth order in the coupling constant, but for
the LSA terms up to sixth order must be included in order
to account for the correct saturation behavior. These
terms can be calculated by using the approach similar to
that presented by Stenholm and Lamb' and Riska and
Stenholm. " The calculations are lengthy but straightfor-
ward. Here we only present the final results for Rt(n)
and Rz(n) which read

broadened LSA and a homogeneously broadened LSA is
only quantitative.

IV. OFF-RESONANCE OPERATION

We now consider the situation when the field frequency
is detuned from the center of the Doppler profile of the
atoms. Let us denote the detuning with respect to the two
types of atoms by 4;=coo; —0, i =1,2. For a running-
wave field mode an atom moving with speed u sees the
mode frequency to be Doppler shifted by an amount
(0/c)u =ku. The resulting velocity integrals are of the
form (4) and (5). We will be content to evaluate them in
the large Doppler-broadening (ku )&y,b, y,d) limit al-
though they can be expressed in terms of the plasma-
dispersion function. In the limit of large Doppler
broadening we have

—(u/u; )2

(b,;+ku) +b
This means that for a running-wave field mode the effect
of detuning is to reduce the pump rates by the factors

2e ' and e ' for the active and the absorber atoms. The
photon-number distribution can be written down from Eq.
(9) and (14) to be
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FIG. 3. Variation of the relative mean squared photon-
number deviations ( ( d n ) ) l ( n )2 in the transition region for,
A/C =1.5 and s =10 as derived from Eq. (9).
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Rp(n) =G' 1—,( I+('2)(n + 1)
H'
46'

I+,, (1+$2+2/2)(n +1)'

1 14=
I+(b, , /y. b)' 1+(b,,/y, &)'

(17)

In arriving at these expressions, the velocity integrals have
been evaluated in the extreme Doppler limit
(ku; &&y,t„y,~) and certain terms of order (y,s/ku;),
(y,q/ku2) have been neglected. These ratios are of order
10 —10 for gas lasers. The steady-state photon-
number distribution for the detuned laser then can be
written in the form

p, (n) = k exp
I I

—1 n+ —, (1+$,)—,(1+/, ) n'

H'
G'+C 3+, ( 1+$2+2/2) —( I+f2)

J

jp I 2

2 (2+/)+5/)) n. (19)

Equations (16)—(18) are consistent with the results of Ref.
(3). The distribution (19), however, was not derived there.

This formula can be used to study the frequency depen-
dence of the fluctuation properties. It is easy to check
that if we put 5t ——0=52 we recover the on resonance for-
mula (11). A case of special interest occurs when
6i ——6=62. Even in this case, however, we cannot put
g~

——g2 because y,s and y,~ will be different. In fact, the
condition for bistability to occur requires that y,~ &y,I, .
The detuning dependence can cause a large variety of
shapes of the p, (n) since a large number of param, eters,
2', G', C, y,~, y,~, etc., are involved. Detuning affects
saturation of the two types of atoms differently and as a
result the region of bistability depends on the detuning. It
should be mentioned that R&(n) and R2(n) can be calcu-
lated to any desired degree of accuracy at least in the
REA. However, terms up to sixth order in the coupling
constant are sufficient to display at least qualitatively all
the interesting features of a detuned LSA with standing
wave field mode.

V. SUMMARY

We have considered the operation of a laser with a
saturable absorber containing inhomogeneously broadened

active and absorber atoms. Both on- and off-resonance
operations have been considered. For a running-wave
field mode exact photon-number distributions are derived.
For the standing-wave case exact on-resonance photon-
number distribution can be derived in the rate-equation
approximation. However, the off-resonance operation of
the standing-wave laser must be considered perturbatively.
We compare our results with earlier treatments and show
how under appropriate operating conditions our results
reduce to those derived earlier. A comparison with LSA
with homogeneously broadened media is made and differ-
ences are found to be only quantitative. Curves are
presented to illustrate the behavior.
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