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Transverse current and generalized shear viscosity in liquid rubidium
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The transverse current correlation function is studied in liquid rubidium by computer simulation,
and the associated memory function is directly determined from the data, for a number of wave vec-
tors. The usual phenomenological relaxation-time approximations for the memory function are
shown to be inadequate, particularly in the wave-vector range where well-defined shear waves are
supported by the liquid. A comparison of the results with new data obtained for a Lennard-Jones
system is also made, and the dynamical processes contributing to the structure of the memory func-
tions are assessed. The related generalized wave-vector-dependent shear viscosity, g(q), is derived
and its importance to the applicability of a microscopic Stokes-Einstein relation finally discussed. It
is shown that the details in g(q), which are revealed by the molecular-dynamics data, play a vital
role in establishing this relation in liquid rubidium.

I. INTRODUCTION

A fundamental problem which most studies of dynami-
cal properties of liquids try to clarify is the transition be-
tween the hydrodynamic and the microscopic regimes. In
recent years important progress in this direction has been
made, for instance by kinetic and mode-coupling
theories, ' or by approaches extending the concept of velo-
city field down to microscopic distances. ' Away from
the strict hydrodynamic regime, all the relevant memory
functions show an increasingly "non-Markovian"
behavior, conventionally described in terms of wave-
vector and frequency-dependent transport coefficients.
Remarkably enough, it is often found that several results
obtained by pure hydrodynamic arguments maintain a va-
lidity in a much broader domain. The typical example is
the Stokes-Einstein law for the diffusion coefficient,
which can be derived microscopically, the only essential
change being that the shear viscosity g is replaced by a
generalized wave-vector-dependent viscosity q(q). In
other circumstances even a formal extension is more com-
plicated, and one is forced to adopt semiphenornenological
models or simple prescriptions interpolating between the
two regimes. In either case, computer simulation data
have provided the traditional test for the theoretical re-
sults, as well as the guidance for more refined approaches.

One of the purposes of the present paper is to report
molecular-dynamics (MD) data for il(q) in a model sys-
tem simulating liquid rubidium. As discussed in detail in
the following, some general features of this generalized
transport coefficient are found to be similar to those al-
ready reported for hard spheres and for a Lennard-Jones
(LJ) liquid. As we shall see, in the case of liquid Rb, the
discrepancies with respect to the simplest theoretical
models (e.g., the viscoelastic one) are found to be much
more important. Another reason of interest is the recent
appearance of data for the wave-vector-dependent longitu

dinal viscosity [a quantity also involving g(q)], deduced
from the results of real experiments in three liquid metals
(Pb, Bi, Rb).

The theoretical time-dependent quantity directly related
to g(q) is the memory function nT(q, t) ass-ociated with
the transverse current, i)(q) essentially being the time in-
tegral of nT(q, t) Thus it. seems worthwhile to explore
also the dynamical features of the latter quantity in an ex-
tensive wave-vector interval, in particular in the "interest-
ing" range where the system is able to support well-
defined shear waves. In this work such an analysis is per-
formed both in the liquid metal and in the LJ system, in
order to emphasize the relevant differences in their
dynamical behaviors. Moreover, the extent of validity of
the commonly adopted phenomenological ansa tze-
which assume a decay of nT(q, t) with one or more relaxa-
tion times "an be established in both cases.

The detailed format of the paper is as follows. In Sec.
II we review the properties of the generalized viscosity
coefficient g(q), including its determination from the
transverse current correlation function CT(q, t) In Sec. .
III, after a short discussion of our simulation experiments,
data for CT(q, t) are reported at several wave vectors In.
Sec. IV we discuss the various numerical techniques by
which it is possible to determine the associated memory
function nT(q, t). Results for the latter are shown and the
limitations of the simple phenomenological models are
pointed out. Finally, in Sec. V we report the results ob-
tained for il(q) and discuss their consequences for the
above-mentioned generalization of the Stokes-Einstein
law.

II. RELEVANT PHYSICAL QUANTITIES

The shear viscosity coefficient ii is the simplest trans-
port property connected with the collective behavior of
the system. The associated dynamical quantity is the
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[Cr (q, t)]h„d,——Cr (q, 0)exp[ (rlq —
Ipm )t], (2)

where p= X/Vis the number density and m is the atomic
mass. In the following we shall frequently consider the
normalized quantity pz. (q, t) =Cz-(q, t) ICz.(q, 0) with
Cr(q, O) = Xk~ Tlm. Equation (2) is expected to be valid
in a physical situation where the length and time scales
are distinctly larger than the ones associated with "micro-
scopic" processes involving the average range and dura-
tion of an atomic collision. When such conditions are not
satisfied the monotonous decay implied by Eq. (2) is not
valid, and the system is expected to support shear-wave
propagation. On the other hand, this solidlike behavior
gives rise to well-defined oscillations of Cr(q, t) only in a
limited range of wave vectors: As q becomes much larger
than the inverse mean free path, the particles can be con-
sidered essentially free, thus yielding a purely kinetic
Gaussian decay, Cr(q, t) = Cr(q, O)exp[ —( kz T/2m )q t ],
where every trace of collective behavior is lost.

The most convenient theoretical framework by which
all these features can be interpreted is the memory-
function formalism. In terms of Laplace transforms de-
fined as

f(z) =Wf (t) = f dt exp( zt)f (t), —

one finds that

pr(q, z)=[z+Kz(q, z)] '=[z+(q Ipm)rt(q, z)] (3)

where Kr(q, t)=W 'Kr(q, z) is the transverse current
memory function, whose initial value is given by

Kr(q, t =0)

(j2 (r)
pk~T+ 2

dr
q

1 —e '&'g r
pm q Bx

(4)

Here the quantity in large parentheses defines the wave-
vector-dependent rigidity modulus G(q), expressed in
terms of the pair potential q)(r) and the pair distribution
function g (r). At liquid densities an excellent approxima-
tion for G (q) is

G(q)=pk~T+(pmcuz/q )[1—3j~(qo)/qcr], (4')

where coE is the Einstein frequency (co~ ——0.61 X 10' s
in liquid Rb at the temperature and density of our com-
puter simulation study) and

j ~(x) =(1/x)[sin(x) lx —cos(x)]

is the n =1 spherical Bessel function. In the following we
shall again find it convenient to deal with the normalized
memory function

np(q, t) =Kg(q, t)l(q Ipm)G(q) .

transverse current correlation function

Ce)qe) , (=pe;*(D)e ' ge,*)t)e ' ),
J

where the wave vector q is taken along the z axis. In the
hydrodynamic limit one indeed finds that

In the last member of Eq. (3) we have introduced a gen-
eralized wave-vector and frequency-dependent viscosity,
g(q, z), which in the hydrodynamic limit q~0, z~O
coincides with the ordinary viscosity coefficient
Beyond this regime a somewhat simpler description of the
nonhydrodynamic effects is provided by the quantity
g(q)=g(q, z =0). By Eqs. (3) and (5) we have that

q(q)=G(q)nr(q, z=O)=G(q) f dtnr(q, t) . (6)

For instance, if we assume that nr(q, t) decays exponen-
tially with a time constant ~(q)—the so-called "viscoelas-
tic tnodel" w—e deduce that g(q) =G (q)r(q).

An equivalent expression of the wave-vector-dependent
viscosity g(q) reads

g(q) = f dt pz (q, t)

Both Eqs. (6) and (7) will be used in the following for the
determination of g(q) from the simulation data. Clearly,
the gross dynamical features of the transverse current-
e.g., the presence of "shear excitations" —have an impor-
tant effect on the value of g(q). No rigorous result is
known on this wave-vector dependence, except

q(q) —(2mp k~T/m. )' q
' as q~~,

which holds at the large wave vectors characteristic of the
free-particle regime.

III. COMPUTER SIMULATION EXPERIMENT

Our simulation experiment is performed by considering
N =500 "rubidium atoms" in a box of length L, =36.15
A. The particles are assumed to interact by the effective
potential of Price et al. at a reduced density
p*=po. =0.905, the same used by Rahman. As shown
in the latter reference, this potential accounts remarkably
well for the static and dynamic structure factors as mea-
sured in liquid rubidium by neutron scattering. Several
characteristics of the Price potential, more or less com-
mon to most liquid metals, have been found relevant in es-
tablishing important differences in the dynamical
behavior with respect to the conventional LJ systems. For
example, the experimental observation of inelastic peaks
in the dynamic structure factor at relatively high wave
vectors has been traced back to a softer core and a less
anharmonic well than those pertinent to the LJ case. ' At
our density~ the usual potential parameters are found to be
o.=4.405 A and e/k~ ——402. 8 K.

After the attainment of thermal equilibrium at a tem-
perature T=332 K, the dynamics of the system is fol-
lowed by integrating the equations of motions with a time
step At=0. 01 ps for an overall interval of 24000ht. As is
well known, the neutrons couple uniquely to longitudinal
density fluctuations and the only way of obtaining infor-
mation on transverse correlations Cr(q, t) is by computer
simulation. Thus we have mainly concentrated on deriv-
ing a comprehensive set of data for the latter quantity, up
to times 512ht, as a starting point for the subsequent
analysis leading to nr(q, t) and to the generalized viscosity
q(q). The wave vectors q were chosen of the form
(2m IL)(n, 0,0), (2m. /L)(0, n, O), (2'/L)(0, 0,n), where the
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FIG. 3. Transverse current spectra pT(q, cu) at the same wave vectors as in Fig. 1.

should also be mentioned here. They studied a smaller
system of 250 atoms and at different thermodynamic
states from the one we have selected. At a reduced densi-
ty p*=0.855 their transverse current correlation function
for the smallest wave vector, qo. =0.93, appeared to show
a hydrodynamiclike behavior at long times. However, the
negative minimum appeared at the same wave vector
when the packing fraction was increased and the tempera-
ture reduced.

As q increases, the overall time scale shrinks, the nega-
tive minimum is much more evident and an oscillatory
behavior begins to appear. The last two features reach
their maximum around qo -4 and gradually decrease at
larger wave vectors, until eventually for qo. ) 30, pr(q, t)
begins to show the structureless Gaussian decay typical of
free-particle behavior (see Fig. 2). An even more evident
picture of the situation is provided by the corresponding
Fourier spectra

pT(q, ~) =(2n )
' f dt exp[ icot]pr(q, t)—

'Repr(q, z =iso)

which are reported in Figs. 2 and 3. In particular,
whereas at the lowest wave vector no evidence of an in-
elastic peak is found, a well-defined shear wave is already
apparent at qo. =1.53. This feature is clearly evident
around qo. =4.6, and then gradually smears out.

Qualitatively, these features are not new; similar
ones —although less pronounced —have indeed been ob-
served both in hard spheres' and in the LJ liquid. ' An
analogous trend has also been found in supercooled liquid
rubidium. '"

IV. TRANSVERSE CURRENT MEMORY FUNCTION

A. Data analysis

nr(q, t) =exp[ t lr(q)], —
with one parameter r(q), as well as a more complicated
2-EXP decay

nr(q, t) =(1—aq)e "+aqe (12)

The next quantity of our immediate interest is the
memory function nr(q, t) defined in Eq. (5). As is well
known, the numerical determination of a memory func-
tion from the data of the corresponding time correlation
function is not straightforward. Two different methods
have essentially been followed, and we shall report the re-
sults of both, together with some comments on their rela-
tive accuracy.

The first method assumes some simple analytical form
for nr(q, t) containing one or more unknown parameters.
The latter are determined by a least-squares fitting pro-
cedure requiring that the corresponding solution of the
Mori equation

pr(q, t)= —(q /pm)G(q) f drnT(q, t r)pr(q, r) (10)—

deviates as little as possible from the data. Since the
choice of nz (q, t) is made in such a way that this solution
is easily manageable, the entire procedure is relatively
simple, but of course it depends on the assumed form and
relies on the actual quality of the fit. Following Ref. 13,
we have assumed for nr(q, t) a single-exponential (1-EXP)
form
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X3+ 1 1+ &'+ G(q)+
+2,q PPPl7J q +1,q +2,q

Then

1 —uq =0. (14)
2 aq+ G(q) ' +

pm 1 q 72q

This second model reduces to the first one whenever
a«=0 or Ti'«= T2'«. In the first case the solution of Eq.
(10) is analytical and reads

pT(q, t) =e ' «'tcosh[A(q)t/2r(q)]

+[A(q)] 'sinh[A(q)t/2r(q)]I, (13)

where A(q)=[1 —4(q /pm)G(q)r(q)]' . Equation (13)
is the well-known prediction of the viscoelastic model for
the transverse current. We have already noted that within
this model g(q)=G(q)r(q); moreover, assuming some
reasonable interpolation scheme for r(q) (e.g. , the one sug-
gested by Akcasu and Daniels, '

) A(q) becomes purely
imaginary beyond a certain wave vector and shear-wave
oscillations are predicted. The 2-EXP ansatz (12) leads to
a slightly more complicated result for pT(q, t). By substi-
tuting Eq. (12) into (10) one derives a third-order differen-
tial equation, whose characteristic equation reads

05-

2 3 4
t(ps)

FIG. 4. Results of the fitting procedure for pT(q, t) in liquid
rubidium at qcr=0. 766. Stars: MD data. Dashed line: 1-EXP
memory-function fit [parameter r(q)=45 4X10 . ' s]. Solid
line: 2-EXP memory-function fit (parameters aq: 0 052,
7& q=40. 52X10 '" s, ~2q ——228. 5&10 ' s). In the present and
following figures an indication of the standard deviation of the
MD data is given.

3

pz(q, t)='g Ci(q)e ' (15)
B. Results

pT(q, z =i~) =pT(q, ~)+ipT(q, co), (16)

with

being PJ(q) the solutions of (14) and Ci(q) determined by
the conditions pT(q, O)=1, pT(q, O)=0 and p'T(q, O)
= —(q /pm)G(q).

The second method extracts the memory functions
from the data themselves, inaking use of the Fourier-
Laplace version of Eq. (3). Letting

The two procedures discussed so far have been applied
to the previously considered data for the state p' =0.905,
T =0.824 of liquid rubidium. It is certainly interesting
to compare the results with those obtained for LJ liquids
and we have also made a similar analysis for these sys-
tems, using our own data at p* =0.83, T' =0.79.

For both model systems the results of the 1-EXP fitting
procedure are satisfactory at the smallest wave vectors,
but at increasing q the quality of the fit gradually gets

pT(q, ~)= f dtcos(cot)pr(q, t)=mpT(q, co),

pT'(q, co) = —f dt sin(cot)pT(q, t),

(17a)

(17b)
pT(q, t)

along with similar definitions for KT(q, z=i co), it is easi-
ly found that

KT(q, co)=(q /pm)G(q) f dtcos(cot)nT(q, t)

p'r(q, ~)
[PT(q ")]'+[p'i-(q ~)]' (18)

0.5-

Therefore, from the data one first obtains numerically
p'T(q, co) and pT(q, co), and then KT(q, co) by Eq. (18); an in-
verse Fourier transform finally gives nT(q, t) As far as
the accuracy is concerned, the method may involve the
usual complications of Fourier transforms of numerical
data, such as extrapolating and smoothing effects. It has,
however, the main advantage of being direct and is cer-
tainly to be preferred in all cases when the quality of the
"best" fit in the first method is not very good.

0-.

2
~ (ps)

FIG. 5. Same as in Fig. 4, but at qo. =4.594. Stars: MD
data. The solid line is the result of both models, 2-EXP=1-
EXP. Parameters aq 0 7(q) =20.38)& 10 ' s.
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FIG. 6. Results of the fitting procedure for pT(q, t) in an LJ
liquid (p*=0.83, T*=0.79) at qo. =0.62. Stars: MD data
from Ref. 6. Dashed line: 1-EXP memory-function fit with
r(q) =24.9& 10 ' s. Solid line: 2-EXP memory-function fit
(Parameters aq 0 114 rl q 18 4&10 s r2q 84.24)&10
s).

worse, the general trend being that the effect of the single
exponential memory function is to overemphasize the os-
cillations occurring in pT(q, t) at intermediate wave vec-
tors. The introduction of a second longer decay constant
in the memory function (2-EXP ansatz) makes the quality
of the fit better at small q, but does not improve signifi-
cantly the situation in the wave-vector region where
shear-wave excitations are observed. This is particularly
true in the liquid metal, where beyond qo. =2 the "best"
2-EXP model is actually found to be the one with a~ =0,
thus coinciding with the 1-EXP result. Some examples il-
lustrating this evolution at increasing wave vectors are re-

p (q, t)

FIG. 8. Direct memory functions nT(q, t) at several wave
vectors in liquid rubidium. (a) qo =0.766, (b) qo. =0.153, (c)
qo. =2.30, (d) qo. =4.594, (e) qo. =6.125, (f) qo. =7.66.

ported in Figs. 4—7. Even in the LJ liquid at compara-
tively large wave vectors (qo & 5) the best 2-EXP fitting is
found actually to be a single exponential, as already no-
ticed in the early work by Levesque and Verlet. '

The standard physical picture behind these results is
that, in general, the dynamics of the transverse current is
determined by two processes (modeled by the 2-EXP an-
satz) with different time scales, the shortest one being as-
sociated with binary collisional events and the longest one
conventionally referred to as being due to cooperative ef-
fects, in which correlated collisions play an important
role. At sufficiently large wave vectors the effects of
single-particle motion gradually take over, and the second
dynamical mechanism becomes progressively less impor-
tant.

The relatively poor quality of the fit obtained in the

nT(q, t)
1-

0.5-

0.5-

0 t(ps)

FICr. 7. Same as in Fig. 6 but at qo =3.72. Stars: MD data
from Ref. 6. Parameter of the 1-EXP memory-function fit
(dashed line): r(q) = 13.75 &(10 '" s. Parameters for the 2-EXP
memory-function fit (solid line): aq =0.015, rl q

——13.37& 10
s, r~, q

——32.9&10 ' s.

'I

2
t (ps)

FIG. 9. Direct memory function nT(q, t) in liquid rubidium
at qo. =0.766 (solid line). The dashed and the dashed-dotted
lines are the 1-EXP and 2-EXP memory functions, respectively.



35 TRANSVERSE CURRENT AND GENENERALIZED SHEAR. . . 4269

nT(q, t)

0.5-

t(ps)

FIG. 10. Same as in Fig. 9, but at o.=4.
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analogous to the ones found in the stress-stress autocorre-
lation function. Since, strictly speaking, the latter is pro-
portional to the memory function in the hydrodynamic
q~0 limit, we expect that such an analogy is especially
valid in the LJ case where the transverse current correla-
tion at the minimum wave vector qo. =0.62 already exhib-
its the long-lasting, monotonic decay typical of hydro-
dynamic behavior. This type of analysis, and a theoretical
description in terms of various many-particle contribu-
tions to the stress-stress autocorrelation function, wi11 be
the subject of a separate paper.

n(q)
ITlP ~"

5

3-

V. GENERALIZED SHEAR VISCOSITY
2-

A. Simulation data for g(q) in liquid rubidium

As a final output of the dynamics of the transverse
current it is now possible to obtain data for the general-
ized viscosity coefficient q(q). As shown by Eqs. (6) or
(7), g(q) can be determined by evaluating the areas under
either the memory function nr(q, t) or pr(q, t) itself, the
two procedures being of course entirely equivalent. The
results for q(q) obtained from the direct data in liquid ru-
bidium are reported in Fig. 13 (stars). They show a rapid
fall of g(q) in the wave-vector region where the system is
able to support shear waves, followed by a slower de-
crease. The latter one is found to follow the q

' law
predicted by Eq. (8) at the largest wave vectors probed in
our simulation experiment. At the other end of the ex-
plored q range, where qo. =0.766, g(q) turns out to be
5.17 mP, a value not very far from the estimate g=5.546
mP for the actual viscosity coefficient at T= 332 K. '

It is interesting to compare these data with those de-

0 2 4 6 qe
FIG. 13. Generalized shear viscosity g(q) in liquid rubidium.

Stars: MD data. Dotted line: viscoelastic model
g(q)=G(q)w(q) with ~(q) determined according to the Akcasu
and Daniels prescription, Eq. (19), with g=5. 5 mP. Dashed
line: results from the 2-EXP memory-function fit. Solid line:
results of the modified viscoelastic model, Eq. (22). Typical sta-
tistical errors (of the order of 10%%uo) are reported over some MD
results.

duced from the 2-EXP assumption for the memory func-
tion. Such a comparison is also reported in Fig. 13 to-
gether with the viscoelastic 1-EXP result g(q) =G(q)r(q)„
where, rather than by a fitting procedure, r(q) is deter-
mined by the interpolation formula of Akcasu and
Daniels'

q2G(q) [G(0)/g] +2(q /pm)[G(q) pksT]—
r(q)= 2 +

pm 1+(q/qo)'
(19)

where qo is given a value close to the wave vector where
the static structure factor has its principal maximum (we
choose qoo =6.23 in liquid rubidium). The agreement be-
tween these different models is seen to be fairly good, but
neither one is able to account for the data in the wave-
vector range 2&qcr & 8, where the direct g(q) is found to
be distinctly larger. The appearance of this "shoulder" in
the generalized viscosity has already been noted in the LJ
case, in which, however, the effect is less pronounced.
Recalling the main results obtained in Sec. IV, the pres-
ence of the shoulder can be traced back to the increased
amplitude of the actual memory function at intermediate
and long times (see Fig. 10).

B. Microscopic version of the Stokes-Einstein law

for the self-diffusion coefficient D

The extension of the concept of velocity field down to
microscopic distances has led to theoretical results for the

velocity autocorrelation function of a single particle as
well as for the cross correlation which describes the
transfer of momentum from a central atom to its neigh-
bors. ' In both cases a satisfactory agreement with the
respective simulation data has been found. One of the
consequences of this approach is a microscopic generali-
zation of the Stokes-Einstein law for the self-diffusion
coefficient,

DH ks T/(4'. gR ), ——

where 8 is the particle "radius" and slip boundary condi-
tions have been assumed. Equation (20) is expected to be
rigorous for a Brownian particle immersed in a continu-
ous medium with viscosity g, i.e., for a situation where
the separation of length and time scales, typical of hydro-
dynamics, is certainly valid. The proper generalization of
Eq. (20) reads



35 TRANSVERSE CURRENT AND GENERALIZED SHEAR. . . 4271

k&T 4p gm f(q) (21)
4m 3m o g(q)

where f(q) =4ma j&(qa)/q and the length a is determined
by 3~pa =1. If the wave-vector dependence of g(q) is

ignored (the generalized viscosity being approximated by
its hydrodynamic value g), one retrieves Eq. (20) with the
quantity a playing the role of the particle radius. Al-
though the latter approximation gives reasonable results
for the diffusion coefficient, it is found that D is generally
underestimated by an amount -25—30%. Since clearly
the approximation 71(q)-g is unrealistic in the whole
wave-vector range, a significant improvement is expected
by taking into account the strong decrease of the general-
ized viscosity g(q). Indeed, in LJ "argon" where
D =2.39X 10 cm s ', the hydrodynamic value is
found to be substantially lower (DH ——1.70 X 10
cm s '), whereas excellent agreement is obtained by using
the viscoelastic result with r(q) given by Eq. (19)
(D =2.34 X 10 cm s '). This success is to some extent
fortunate, since the integral in Eq. (21) is very sensitive to
the details of q(q) and the effects of the small shoulder,
which is absent in the viscoelastic model, are practically
cancelled by those coming from other minor discrepancies
at larger wave vectors.

In liquid rubidium, taking g =5.5 mP, the hydro-
dynamic prediction for the diffusion coefficient turns out
to be D=2.35&(10 cm s ', somewhat lower than the
observed value D=2.66X10 cm s '. ' If the decrease
of g(q) is approximately taken into account by the sim-

plest viscoelastic prescription G(q)~(q)—Eqs. (4') and
(19) one finds a substantial overestimate of the diffusion
coefficient, D=3.84 & 10 cm s '. Clearly the for-
tunate cancellation found in the LJ case is not effective in
the liquid metal, and this discrepancy is mainly due to the
neglect of the pronounced shoulder in g(q), around
qo. -4, when compared with the viscoelastic prediction
[g(q)]vE (Fig. 13). This shoulder effect can be taken into
account in a phenomenological way, for example letting

q( q) = [g(q)]vE+ A (q/q &
)"e ' . (22)

Figure 13 shows that the choice 3=0.55 mP, q&can=4,
n =9 provides a satisfactory description of the observed q
dependence of g(q) even in the intermediate wave-vector
range. If the modified expression (22) is now used to
evaluate the diffusion coefficient according to Eq. (21),
one finds D=2.73&10 cm s '. The very good agree-

ment with the MD value confirms the relevance of the in-
creased magnitude of g(q) in the intermediate wave-vector
range. The structure in the data at qcr-2. 3, which is not
described by Eq. (22), has a much smaller effect on D.
Estimates suggest that it will produce a further reduction
by a few percent.

VI. CONCLUSIONS

In this paper we have addressed three main points. The
first one regards the specific features of the transverse
current memory function at several wave vectors. The
usual phenomenological models were found to be insuffi-
cient to reproduce the actual dynamics of the transverse
current correlation, particularly in the wave-vector range
where shear-wave oscillations are more easily supported.
The different behavior of a model simulating liquid rubi-
dium with respect to the LJ system was discussed and
some arguments which might be useful for a full theoreti-
cal explanation were raised.

The second point, partly related to the first one, con-
cerns the wave-vector dependence of the corresponding
transport property, namely, the generalized shear viscosity
coefficient g(q). It shows a rapid decrease eventually fol-
lowed by a q

' behavior typical of the free-particle re-
gime. In the interesting transition region between hydro-
dynamics and kinetic regime a shoulder appears which
turns out to be more pronounced in liquid rubidium than
in the LJ system.

The consequences of this behavior have been analyzed
in discussing the third point of our work, namely, the mi-
croscopic generalization of the Stokes-Einstein relation
between the self-diffusion coefficient and generalized
shear viscosity. The presence of the shoulder in g(q) is
found to be of relevance in reproducing the proper value
of the diffusion coefficient in the metallike system investi-
gated in this paper.
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